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From R to Rn

Generalising results from R to Rn is mostly straightforward,

except:

I Some real numbers have to stay real, e.g. � and � in the

de�nition of limits.

I We may want to consider spaces of more than one

dimension, e.g. functions from Rm to Rn where m is not

necessarily equal to n.

I Some structures on R lack good analogues in Rn, e.g. the

order structure of multiplicative structure.

I Some statements which would be equivalent in R aren't in

Rn. For example, the product rule for di�erentiation

generalises to the cross product in R3 if you write it as

(fg)0 = f 0g + fg0 but not if you write it as (fg)0 = fg0 + gf 0.

I R0 can cause problems either in statements or proofs.



How to do it, and how not to

The way to do this is to take statements and proofs and

I replace R with Rm, Rn, etc. as appropriate,

I replace absolute values by lengths, where needed,

I write vectors and vector valued functions in bold or with

arrows, if using one of those conventions, and

I check that all expressions are meaningful, e.g. that you

aren't adding scalars to vectors.

This is to be done in de�nitions, statements of theorems and

proofs. With rare exceptions it works.

What not to do is to de�ne vector concepts componentwise. It's

a bad idea, for example, to de�ne limx!w f(x) = z as meaning

that limx!w fj(x) = zj for j = 1; 2; : : : ; n. It's tempting, because

you can recycle results from the real case, but it leads to trouble.



From R
n to normed vector spaces

Some properties of the Euclidean norm aren't really needed. Like

kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

Others are used frequently, like

I kxk � 0 and kxk = 0, x = 0,

I k�xk = j�jkxk, and

I kx+ yk � kxk+ kyk.

It's useful to extract these frequently used properties and de�ne a

norm on a vector space to be a real valued function which

satis�es them, i.e. q : V ! R is a norm if (and only if)

I q(x) � 0 and q(x) = 0, x = 0,

I q(�x) = j�jq(x), and

I q(x+ y) � q(x) + q(y).

To adapt de�nitions, theorems and proofs to normed vector

spaces, replace the Euclidean norm with a general norm (or

norms).



Examples

It's possible to �nd other norms on Rn besides the usual

(Euclidean) norm.

q(x) =

 n∑
j=1

∣∣xj ∣∣p
1=p

is a norm for any p 2 [1;1). For p = 2 this is the Euclidean

norm.

It's also possible to de�ne norms on in�nite dimensional spaces.

C ([a; b]), the space of continuous functions from [a; b] to R, is a

vector space.

q(f ) =

(∫ b

a

jf (t)jp dt

)1=p

is a norm for any p 2 [1;1).



Metrics

In discussing limits, continuity, etc. we only really need lengths

(or norms) of di�erences of vectors, i.e. distances between

vectors. Again, we only need certain properties:

I d(x ; y) � 0 and d(x ; y) = 0, x = y ,

I d(x ; y) = d(y ; x), and

I d(x ; z) � d(x ; y) + d(y ; z).

A function satisfying these properties is called a metric. I've

dropped the bold face font because these properties don't

reference addition or scalar multiplication, so make sense beyond

vector spaces.

Given a norm q we can always get a metric d by taking

d(x; y) = q(x� y), but not all metrics arise in this way.



Examples

Subsets of metric spaces are metric spaces, e.g. S2 2 R3. Just

restrict the metric from the larger space.

Other examples of metrics include the following

I The discrete metric on a set S : d(x ; y) = 0 if x = y and

d(x ; y) = 1 otherwise.

I The Hamming distance on the subsets of a �nite set S :

d(A;B) = #A4B, where # represents cardinality and 4

represents symmetric di�erence.

I The p-adic metric on the set Q of rational numbers.



Successive generalisations

You can track through a de�nition or proof as we go through

these various levels of generalisation.

jf (x)� z j < �

in the de�nition of the limit of a real valued function of a real

variable becomes

kf(x)� zk < �

for functions form Rm to Rn and then

q(f(x)� z) < �

for functions from a normed vector space to a normed vector

space and then

d(f (x); z) < �

for functions from a metric space to a metric space.


