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From R to R”

Generalising results from R to R” is mostly straightforward,
except:

>

>

Some real numbers have to stay real, e.g. § and € in the
definition of limits.

We may want to consider spaces of more than one
dimension, e.g. functions from R™ to R"” where m is not
necessarily equal to n.

Some structures on R lack good analogues in R”, e.g. the
order structure of multiplicative structure.

Some statements which would be equivalent in R aren’t in
R”. For example, the product rule for differentiation
generalises to the cross product in R3 if you write it as
(fg) = f'g + fg’ but not if you write it as (fg)' = fg’ + gf’.
RO can cause problems either in statements or proofs.



How to do it, and how not to

The way to do this is to take statements and proofs and
> replace R with R™, R”, etc. as appropriate,
» replace absolute values by lengths, where needed,

P> write vectors and vector valued functions in bold or with
arrows, if using one of those conventions, and

» check that all expressions are meaningful, e.g. that you
aren’t adding scalars to vectors.

This is to be done in definitions, statements of theorems and
proofs. With rare exceptions it works.

What not to do is to define vector concepts componentwise. It's
a bad idea, for example, to define limy_,, f(X) = z as meaning
that limy_w fj(x) = z; for j = 1,2,..., n. It's tempting, because
you can recycle results from the real case, but it leads to trouble.



From R" to normed vector spaces

Some properties of the Euclidean norm aren't really needed. Like
I+ ylI? + [Ix = ylI* = 2[Ix]|* + 2[ly[|>.
Others are used frequently, like

» ||x|| >0and ||x|| =0 x=0,

> Jlax|| = |ellx]|. and

> x4yl < (]| + llyll-
It's useful to extract these frequently used properties and define a
norm on a vector space to be a real valued function which
satisfies them, i.e. g: V — R is a norm if (and only if)

» g(x) >0and g(x) =0 x=0,

> g(ax) = |a|q(x), and

> g(x+y) < a(x) + q(y).
To adapt definitions, theorems and proofs to normed vector

spaces, replace the Euclidean norm with a general norm (or
norms).



Examples

It's possible to find other norms on R” besides the usual
(Euclidean) norm.

1/p

a() = | 2 I’

is a norm for any p € [1,00). For p = 2 this is the Euclidean
norm.

It’s also possible to define norms on infinite dimensional spaces.
C([a, b]). the space of continuous functions from [a, b] to R, is a

vector space.
b 1/p
ot = ( [ I o)
a

is a norm for any p € [1, o0).



Metrics

In discussing limits, continuity, etc. we only really need lengths
(or norms) of differences of vectors, i.e. distances between
vectors. Again, we only need certain properties:

> d(x,y)>0and d(x,y) =0 x =y,

» d(x,y)=d(y,x), and

» d(x,z) <d(x,y)+d(y,z).
A function satisfying these properties is called a metric. I've
dropped the bold face font because these properties don't
reference addition or scalar multiplication, so make sense beyond
vector spaces.

Given a norm g we can always get a metric d by taking
d(x,y) = q(x —y), but not all metrics arise in this way.



Examples

Subsets of metric spaces are metric spaces, e.g. S2 € R3. Just
restrict the metric from the larger space.
Other examples of metrics include the following
» The discrete metric on a set S: d(x,y) =0 if x =y and
d(x,y) =1 otherwise.
» The Hamming distance on the subsets of a finite set S:
d(A, B) = #AAB, where # represents cardinality and A
represents symmetric difference.

» The p-adic metric on the set Q of rational numbers.



Successive generalisations

You can track through a definition or proof as we go through
these various levels of generalisation.

|f(x)—2z| <€

in the definition of the limit of a real valued function of a real
variable becomes
If(x) —z| <

for functions form R™ to R” and then
q(f(x) —z) <e

for functions from a normed vector space to a normed vector

space and then
d(f(x),z) <e

for functions from a metric space to a metric space.



