
MAU22200 Lecture 2

John Stalker

Trinity College Dublin

13 September 2021



Lecture notes

There are lecture notes posted to the webpage and Blackboard

Start reading Chapter 1 (Introduction) It's long, but you don't

need to read it all now.

Its main purpose is to introduce the cast of characters for the

drama, especially the main characters: normed vector spaces,

metric spaces and topological spaces. We'll see more of each in

later chapters.

It has a few other purposes:

I to give some back story on the main characters

I to introduce some background on sets and functions, not

part of general topology but needed for it

I to �x some terminology and notation

I to give you lots of examples of proofs, and a few techniques



Reading and writing proofs

I Mathematical writing is dense. Reading and writing maths

will be slower than other types of reading or writing.

I It's never written, and shouldn't always be read, in linear

order.

I You can't memorise each step of every proof.

I There are three sorts of steps:
I Steps which are purely mechanical: Details are generally

omitted in proofs because they can be �lled in mechanically.
I Steps which are nearly mechanical: There are a few types

which quickly become familiar.
I Steps which require actual thought: These are fairly rare.

You need to identify and remember these. Many proofs have

no such steps.



What's purely mechanical?
There are algorithms to verify some types of statements.

1. Arithmetic statements, e.g.

22
5

+ 1 = 4294967297 = 641 � 6700417.

2. The statement that one set of linear equations do or don't

imply another, e.g. x + y + 2z = 5 and x + 2y + 3z = 5

imply 2x + 3y + 5z = 8.

3. The statement that one set of polynomial equations over C

do or don't imply another, e.g. x + y + z = 0 and

x2 � xy � xz + y2 � yz + z2 = 0 imply

x3 � 3xyz + y3 + z3 = 0 and xy + xz + yz = 0.

4. The statement that one elementary function is the derivative

(or antiderivative) of another, e.g. d

dx
tan(log x) =

sec2(log(x))
x

or
∫ sec2(log(x))

x
dx = tan(log x).

5. The statement that an elementary function has no

elementary anti-derivative.



What's purely mechanical? (continued)

6. Logical statements using only Boolean operations, i.e. and,

or, not, implies, if and only if, etc.

7. The corresponding statements about sets, e.g. if A � B,

B � C and C � A then A = B = C . To convert this to

purely Boolean form rewrite A � B as x 2 A) x 2 B and

A = B as x 2 A, x 2 B, etc.

8. Statements proved by simple operations on quanti�ers, e.g.

that the negation of \For all � > 0 there is a � > 0 such that

if 0 < jx � w j < � then jf (x)� z j < �" is \There is an � > 0

such that for each � > 0 there is an x such that

0 < jx � w j < � and jf (x)� z j � �"

Details are normally omitted if you can �ll them in yourself. At

this point you should be able to cope with ??, ??, ??, ??, ?? and

?? but not ?? or ??.



What's nearly mechanical?

Certain steps are more or less routine. At any point in a proof are

a small number of these available. Which ones are depends on the

form of what you're trying to prove. For example, if you want to

prove that A � C for some given subsets A and C then these are

some things you could try:

I Assume x 2 A and try to prove x 2 C .

I Use the fact that if A � B and B � C then A � C .
I Try to �nd a B for which you know that A � B and B � C .
I Try to �nd a B for which you know that A � B and for which

proving B � C looks easier than A � C .
I Try to �nd a B for which you know that B � C and for which

proving A � B looks easier than A � C .

I Assume that A * C , i.e. that there is an x 2 C such that

x =2 A, and try to derive a contradiction.

I Use the fact that ? � C for all C and try to prove that

A = ?.



An example of following your nose

If ' : X ! Y is a function then the preimage of B � Y under ' is

'�(B) = fx 2 X : '(x) 2 Bg:

Most people write '�1 in place of '�. This is a bad idea for

subtle reasons.

There's a theorem that if ' : X ! Y and  : T ! X then

(' �  )� =  � � '�. How do we prove this? To prove functions

are equal, usually we show that they take the same value at each

point. The points here are sets, so we want to show that

(' � )�(W ) = ( � �'�)(W ). To prove sets are equal, we usually

show that every element of one is an element of the other. So we

want to show that t 2 (' �  )�(W ) i� t 2 ( � � '�)(W ).
Unwrapping de�nitions can lead to long and confusing

expressions, but simple de�nitions are usually �ne. Like the

de�nition of composition.



An example of following your nose (continued)

( � � '�)(W ) =  �('�(W )). If you've just seen a de�nition and

now you need to prove a statement where it appears then you will

have to unwrap it. The de�nition of the preimage, applied to  

and '�(W ) tells us that t 2  �('�(W )) i�  (t) 2 '�(W ).
Applying it again tells us that  (t) 2 '�(W ) i� '( (t)) 2W .

We can now use the de�nition of composition again:

'( (t)) 2W i� (' �  )(t) 2W . And of the preimage:

(' �  )(t) 2W i� t 2 (' �  )�(W ).
Now we have a proof. t 2 ( � � '�)(W ), t 2  �('�(W ))
,  (t) 2 '�(W ), '( (t)) 2W , (' �  )(t) 2W

, t 2 (' �  )�(W ) for all t so (' �  )�(W ) = ( � � '�)(W ) for
all W and hence (' �  )� = ( � � '�).
This is part of a lemma in the notes.



Gowers and Ganesalingam

You could imagine teaching a computer to �nd proofs the way

computers play chess. At each stage there are a few possible

moves. Create a new branch in your tree for each of these. If the

number of branches gets too large, prune the ones which don't

seem to be going anywhere.

People have done this. Tim Gowers and Mohan Ganesalingam

even wrote a program which can prove the basic theorems of

general topology with no branching and no backtracking! In other

words, it doesn't try various branches, it just picks the \most

obvious" option at each stage and doesn't ever revisit that

choice. The rules for what's \most obvious" aren't obvious. They

were arrived at by trial and error on many examples. You'll also

learn what's \most obvious" by trial and error on many examples.



Reading and writing non-linearly

Proofs are normally printed in an order suited to veri�cation.

That's not the order they're written in.

If I'm proving A � C by using the �rst strategy above then I'd

write \Suppose x 2 A. . . . so x 2 C . We've just seen that all

x 2 A belong to C , so A � C ." Then I'd try to �ll in the middle.

If I were using one of the other strategies I might write \Suppose

x 2 C and x =2 A. . . . but this is impossible, so our assumption

that there is an x 2 C which does not belong to A is untenable,

and therefore A � C ." Again, I'd then try to �ll in the middle.

The word \suppose" has the same logical meaning in both cases,

but the intent is di�erent. You don't really �nd out what's going

on until later. Possibly much later.

You'll need to read some proofs multiple times to understand the

structure. Read it once to identify the top level structure, so you

can split it into pieces. Read it again to understand the structure

of each piece. Repeat as needed.



Identifying the key ideas

Most of any proof is either purely mechanical or nearly

mechanical. You want to identify the few bits, if any, which

aren't. Those are the key ideas of the proof. If you remember

those you can easily reconstruct the rest.

This module, more than any other, is the one where you learn to

read and write proofs. Most of that is learning how to do the

nearly mechanical bits. If you learn than than you can recognise

the key ideas in other people's proofs and can reconstruct a full

proof from them. And you can write your own proofs more easily.


