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Main theorem on exchange economies

Theorem 8.11: Suppose that xhi > 0 for 1 ≤ h ≤ m and
1 ≤ i ≤ n and that uh : Rn

+ → R is continuous, strictly increasing
and quasiconcave for 1 ≤ h ≤ m. Then there are positive p∗i for
1 ≤ i ≤ n and non-negative x∗hi for 1 ≤ h ≤ m and 1 ≤ i ≤ n such
that

n∑
i=1

p∗i x
∗
hi =

n∑
i=1

p∗i xhi

for 1 ≤ h ≤ m and
m∑

h=1

x∗hi =
m∑

h=1

xhi

for 1 ≤ i ≤ n. Also, for any 1 ≤ h ≤ m and any (x1, . . . , xn) ∈ Rn
+,

n∑
i=1

p∗i xi ≤
n∑

i=1

p∗i xhi ⇒ uh(x1, . . . xn) ≤ uh (x∗h1, . . . , x
∗
hn) .



Economic interpretation

I xhi is the amount of good i initially held by household h.

I uh is the utility function for household h.

I p∗i is the market clearing price of good i .

I x∗hi is the amount of good i held by household h after
redistribution.

I The equation
∑n

i=1 p
∗
i x
∗
hi =

∑n
i=1 p

∗
i xhi expresses the fact

that each household breaks even.

I The equation
∑m

h=1 x
∗
hi =

∑m
h=1 xhi expresses the fact that

goods are conserved.

I The implication

n∑
i=1

p∗i xi ≤
n∑

i=1

p∗i xhi ⇒ uh(x1, . . . xn) ≤ uh (x∗h1, . . . , x
∗
hn)

expresses the fact that each household’s utility is maximised,
subject to its budget constraint.



Proof of Theorem 8.11
Proof of Theorem 8.11: Let xh = (xh1, . . . , xhn),
x∗h = (x∗h1, . . . , x

∗
hn), x = (x1, . . . , xn), p∗ = (p∗1 , . . . , p

∗
n),

∆ =

{
p ∈ Rn

+ :
n∑

i=1

pi = 1

}
,

Bc(p,w) =
{
x ∈ Rn

+ : x ≤ c,p · x ≤ w
}
,

V̂c,h(p) = max
x∈Bc(p,p·xh)

uh(x)

ξ̂c,h(p) =
{
x ∈ Bc(p,p · xh) : uh(x) = V̂c,h(p)

}
,

dc =
m∑

h=1

ξ̂c,h

s =
m∑

h=1

xh.



Proof of Theorem 8.11 continued
By Proposition 8.9 dc : ∆⇒ Rn

+ is non-empty valued, compact
valued, convex valued and upper hemicontinuous if c� 0. Also,
p · x ≤ p · s if x ∈ dc(p).
Define ζc : ∆⇒ Rn by

ζc(p) = {z ∈ Rn : z + s ∈ dc(p)} .

Then p · z ≤ 0 for all z ∈ ζc(p).
ζc(∆) ⊆ {z ∈ Rn : − s ≤ z ≤ c− s}, which is compact, so by
Theorem 8.10 there are p∗ ∈ ∆ and z∗ ∈ ζc(p∗) such that z∗ ≤ 0.
Let y = z∗ + s. Then y ∈ dc(p∗) so there are x∗1, . . . , x∗m such that
x∗h ∈ ξ̂c,h(p∗) and y =

∑m
h=1 x

∗
h ≤ s. y ≤ s because z∗ ≤ 0. Also,

x∗h ≥ 0 for all h so x∗h ≤ s. If we choose c� s then x∗h � c.
x∗h ∈ ξc,h(p∗), i.e. x∗h maximises uh over Bc(p∗,p∗ · xh). Let

N =
{
x ∈ Rn

+ : x� c
}
.

Then N is an open neighbourhood of x∗h in Rn
+. x∗h maximises uh

over N ∩ B(p∗,p∗ · xh), so by Proposition 8.4 it maximises uh over
all of B(p∗,p∗ · xh). Also, p∗ · x∗h = p∗ · xh, hence p∗ · y = p∗ · s.



Proof of Theorem 8.11 concluded

If p∗i = 0 then we could increase uh(x∗) while continuing to satisfy
the budget constraint, by increasing x∗hi while leaving x∗hj constant
for all j 6= i . Since this can’t happen, we know that p∗i > 0 for all
i . We’ve already seen that y ≤ s and p∗ · y = p∗ · s, so y = s. In
other words,

m∑
h=1

x∗h =
m∑

h=1

xh.

This completes the proof of Theorem 8.11.
Note that the idea of rationing was useful for technical reasons,
but ultimately doesn’t matter. None of the rationing constraints
are active in the solution.
For a bit more about excess demand, see Sections 8.9 and 8.10.


