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Addition of compact valued correspondences

If Ω ⊆ Rk and ξ1, . . . ξm : Ω⇒ Rn then we define∑m
h=1 ξh : Ω⇒ Rn by saying that (

∑m
h=1 ξh) (p) is{

y ∈ Rn : ∃(x1, . . . xm) ∈ ξ1(p)× · · · × ξm(p) :
m∑

h=1

xh = y

}
.

Proposition 8.7 If ξ1, . . . ξh are non-empty valued, compact
valued and upper hemicontinuous then so is

∑m
h=1 ξh.

We will use the following criterion for upper hemicontinuity.
Proposition 2.16: Suppose X ⊆ Rn, Y ⊆ Rm and Φ: X ⇒ Y is
compact valued. Then Φ is upper hemicontinuous if and only if for
every p ∈ X and ε > 0 there is a δ > 0 such that

Φ(BX (x, δ)) ⊆ BY (Φ(p), ε).

Note that B’s here are balls rather than budget correspondences.



Proof of Proposition 8.7

Proof of Proposition 8.7: Each ξh(p) is compact, so their
Cartesian product is compact. Addition of vectors is continuous
and the image of a compact set under a continuous function is
compact so (

∑m
h=1 ξh) (p) is compact.

Let ε > 0. Then ε/m > 0. Since each ξh is upper hemicontinuous
there is a δh > 0 such that

ξh(BΩ(p, δh)) ⊆ BRn (ξh(p), ε/m)

by Proposition 2.16. Let δ = min1≤h≤m δh. Suppose q ∈ BΩ(p, δ)
and z ∈ (

∑m
h=1 ξh) (q). Then there are w1 ∈ ξ1(q), . . . ,

wm ∈ ξm(q) such that
∑m

h=1 wh = z. For each h then

wh ∈ ξh(q) ⊆ ξh(BΩ(p, δ)) ⊆ ξh(BΩ(p, δh)) ⊆ BRn (ξh(p), ε/m) .

In other words there is an xh ∈ ξh(p) such that ‖wh − xh‖ < ε/m.



Proof of Proposition 8.7 concluded

From ‖wh − xh‖ < ε/m and the triangle inequality we get
‖z− y‖ < ε, where

m∑
h=1

xh = y,
m∑

h=1

wh = z.

xh ∈ ξh(p), so y ∈ (
∑m

h=1 ξh) (p) and hence
z ∈ BRn ((

∑m
h=1 ξh) (p), ε). But z was an arbitrary element of

(
∑m

h=1 ξh) (BΩ(q, δ)) and q an arbitrary element of BΩ(p, δ). In
other words, for every ε > 0 there is a δ > 0 such that(

m∑
h=1

ξh

)
(BΩ(p, δ)) ⊆ BRn

((
m∑

h=1

ξh

)
(p), ε

)
.

But then
∑m

h=1 ξh is upper hemicontinuous, by Proposition 2.16.
This completes the proof of Proposition 8.7.



Proposition 8.8
If household h has an initial endowment of xh and the prevailing
prices are p then they can sell that endowment for a wealth of
p · xh and buy whatever bundle of goods maximises their utility for
that price/wealth pair.
Proposition 8.8: Suppose the xh � 0, c� 0. Suppose further
that uh : Rn

+ → R is quasiconcave, strictly increasing and

continuous. Let ∆ ⊆ Rn
+ and ξ̂c,h : ∆⇒ Rn

+ be defined by

∆ =

p ∈ Rn
+ :

n∑
j=1

pi = 1

 ,

V̂c,h(p) = max
x∈Bc(p,p·xh)

uh(x),

ξ̂c,h(p) =
{
x ∈ Bc (p,p · xh) : uh(x) = V̂c,h(p)

}
Then ξ̂c,h is non-empty valued, compact valued, convex valued and
upper hemicontinuous.



Comments on Proposition 8.8

I We’ve assumed that xh � 0. That was purely to ensure that
the initial wealth of the household is not zero, even if some
goods are free. This assumption can be weakened.

I We’ve also assumed rationing with quantity limits c� 0.
This assumption prevents us from “buying” unlimited
quantities of free goods.

I The assumption that
∑n

i=1 pi = 1 looks unnatural, and is. It’s
harmless though, as long as there is at least one non-free
good, since the quantities bought and sold by a utility
maximising household are unchanged if all prices are
multiplied by a positive constant. It’s technically useful,
because it restricts prices to a compact set.



Proof of Proposition 8.8

Proof of Proposition 8.8: Let ψh : ∆→ Γ̂n be defined by

ψh(p) = (p,p · xh).

ψh is continuous. By Proposition 8.6 Vc : Γ̂n → R is continuous
and ξc : Γ̂n ⇒ Rn

+ is non-empty valued, compact valued, convex
valued and upper hemicontinuous. So the same holds for

V̂c,h = Vc ◦ ψh

and
ξ̂c,h = ξc ◦ ψh.

This completes the proof of Proposition 8.8.



Corollary 8.9

Corollary 8.9: With notation and hypotheses as in
Proposition 8.8, dc : ∆⇒ Rn

+, defined by

dc =
m∑

h=1

ξ̂c,h,

is non-empty valued, compact valued, convex valued and upper
hemicontinuous. Furthermore, p · x ≤ p · s for all x ∈ dc(p), where

s =
n∑

h=1

xh.

The economic interpretation of dc(p) is as the aggregate demand
at prices p subject to rationing constraints c. The economic
interpretation of s is as the aggregate supply. This is a pure
exchange economy, without production, so supply is independent
of price.



Proof of Corollary 8.9

Proof of Corollary 8.9: That dc is non-empty valued, compact
valued, convex valued and upper hemicontinuous follows
immediately from Propositions 8.7 and 8.8. ξ̂c,h(p) ⊆ Bc(p,p · xh)

so if xh ∈ ξ̂c,h(p) then p · xh ≤ p · xh. Summing over h gives the
inequality p · x ≤ p · s for all x ∈ dc(p). This completes the proof
of the corollary.
The following general theorem will be used to deduce the existence
of equilibria in exchange economies.
Theorem 8.10: Suppose K ⊂ Rn is compact and ζ : ∆⇒ K is
non-empty valued, closed valued, convex valued and upper
hemicontinuous. If p · z ≤ 0 for all p ∈ ∆ and z ∈ ζ(p) then there
is a p∗ ∈ ∆ and a z∗ ∈ ζ(p∗) such that z∗ ≤ 0.



Proof of Theorem 8.10
Proof of Theorem 8.10: Choose a compact convex set L
containing K , e.g. a large closed ball. Let γ(x) = max1≤i≤n xi and

µ(x) = {p ∈ ∆: p · x = γ(x)} ,

as in Proposition 8.3. We saw there that µ is non-empty valued,
compact valued, convex valued and upper hemicontinuous. Also
p · x ≤ p′ · x for all p ∈ ∆ and p′ ∈ µ(x). Define
Φ: ∆× L⇒ ∆× L by

Φ(p, z) = (µ(z), ζ(p)).

µ and ζ are closed valued and upper hemicontinuous, so they have
closed graphs by Proposition 2.11. Φ therefore is convex valued
and has closed graph. By the Kakutani Fixed Point Theorem there
is a (p∗, z∗) ∈ ∆× L such that p∗ ∈ µ(z∗) and z∗ ∈ ζ(p∗). Now
p∗ · z ≤ 0 for all z ∈ ζ(p∗). Also p∗ ∈ µ(z∗) implies p · z∗ ≤ p∗ · z
for all p ∈ ∆. So p · z∗ ≤ 0 for all p ∈ ∆. This is only possible if
z∗ ≤ 0. This completes the proof of the theorem.


