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The chicken and egg economy

Imagine an economy with only two goods, eggs and chickens, and
two industries, laying and hatching.
The laying industry takes chickens as an input and produces eggs
as an output. More precisely, 1 chicken can produce 100 eggs.
Equivalently, it takes 0.01 chickens to produce an egg.
The hatching industry takes eggs as an input and produces
chickens as an output. It takes 1 egg to produce 1 chicken.
The input-output matrix is

A =

(
0 0.01
1 0

)
.

As you can see, the entries of this matrix are non-negative. There
is no positive power Am for which all entries are positive, so the
Perron theory doesn’t apply directly.



Undeterred, let’s consider the action of A on

∆w =
{
p ∈ R2 : p1 ≥ 0, p2 ≥ 0,w1p1 + w2p2 = 1

}
by fw(p) = q, where

q1 =
0.01p2

0.01w1p2 + 1w2p1
, q2 =

1p1

0.01w1p2 + 1w2p1
.

The fixed point fw(b) = b is

b =

(
1/(w1 + 10w2)

10/(w1 + 10w2)

)
It’s an eigenvector of A with eigenvalue 0.1.
This isn’t a very good model of poultry farming. It first appeared
in a paper of Kuhn, as a counter-example, disproving a “turnpike
theorem” which Gale claimed to have proved.



Frog-centipede-snake and the minimax theorem

Consider a two person zero sum game with three pure strategies
for each player, so m = n = 3, and payoff matrix

A =

 0 −1 1
1 0 −1
−1 1 0


This corresponds to a number of popular hand gesture games. The
earliest recorded name is Shǒush̀ı L̀ıng, but the game is currently
best known as Rock-paper-scissors, after the three gestures which
replaced the original gestures for frog, centipede and snake as the
game made its way to English speaking countries.



Applying the minimax theorem

∆P =
{
p ∈ R3 : p1, p2, p3 ≥ 0, p1 + p2 + p3 = 1

}
,

∆Q =
{
q ∈ R3 : q1, q2, q3 ≥ 0, q1 + q2 + q3 = 1

}
,

µP(q) = max(q2 − q3, q3 − q1, q1 − q2)

µQ(p) = min(p3 − p2, p1 − p3, p2 − p1)

P(q) = {p ∈ ∆P : ∀i ∈ {1, 2, 3} : qi+1 − qi+2 < µP(q)⇒ pi = 0}
Q(p) = {q ∈ ∆Q : ∀i ∈ {1, 2, 3} : pi+2 − pi+1 > µQ(p)⇒ qi = 0}
where we’ve used the wrap-around convention p4 = p1, p5 = p2,
q4 = q1, q5 = q2. Clearly

max
p∈∆P

min
q∈∆Q

f (p;q) = 0 = min
q∈∆Q

max
p∈∆P

f (p;q)

This is attained only at the point

(p∗;q∗) = (1/3, 1/3, 1/3; 1/3, 1/3, 1/3).



The Ultimatum Game

Unlike the previous example, the Ultimatum Game exists only as
an illustrative example or as an academic experiment, but it is
illustrative of a real world phenomenon. There are various
formulations, but here we’ll use a zero sum version with three
players. Player A chooses a number from the set
M = {0, 1, . . . ,m} and announces this choice to Players B and C.
Player B then chooses to say either “accept” or “reject”. Player C
then has no choice but to pay m− j euro to Player A and j euro to
Player B if Player A chose j and Player B accepted. If Player B
rejected then there are no payments.



Strategy sets

This might seem like a similar game to the two person zero sum
game considered earlier, with m + 1 pure strategies available to
Player A, 2 strategies available to Player B, and only one strategy
available to poor Player C. That’s correct as far as Players A and C
are concerned. Their strategy sets are the m-simplex

SA = ∆P =

{
p ∈ Rm+1 : pi ≥ 0,

∑
i∈M

pi = 1

}

and the 0-simplex (single point)

SC = ∆R = {r ∈ R : r ≥ 0, r = 1} ,

as expected. For Player B things are more complicated, because
Player B already knows not just what mixed strategy Player A has
chosen but also what pure strategy they have selected, and can
adapt their own mixed strategy to this.



Player B’s strategy set, utilities

What Player B needs is a probability qj of accepting an offer of j
from Player A. Their strategy set is therefore

SB = [0, 1]m+1 =
{
q ∈ Rm+1 : 0 ≤ qj ≤ 1

}
Note that there is no reason for the q’s to sum to 1. The utility
functions for the the players are the expected net payments they
receive:

uA(p;q; r) =
m∑
j=0

(m − j)pjqj ,

uB(p;q; r) =
m∑
j=0

jpjqj ,

uC (p;q; r) =−
m∑
j=0

mpjqj .



bi and Bi

bA(q; r) = max
0≤j≤m

(m − j)qj ,

BA(q; r) =

{
p ∈ ∆P : ∀i ∈ M : (m − i)qi < max

0≤j≤m
(m − j)qj ⇒ pi = 0

}
.

bB(p; r) =
m∑
j=0

jpj =
m∑
j=1

jpj

BB(p; r) =
{
q ∈ [0, 1]m+1 : ∀i ∈ M − {0} : pi > 0⇒ qi = 1

}
.

bC (p;q) = −
m∑
j=0

mpjqj , BC (p;q) = {1}.



Nash Equilibria

There are loads of Nash Equilibria. To be more precise, the set of
Nash equilibria forms the polyhedron of an m + 1 dimensional
simplicial complex. Most of them are fairly stupid. For example,
with m = 2, the following are equilibria:

(p∗;q∗; r) = (1, 0, 0; 1, 1, 1; 1),

(p∗;q∗; r) = (0, 0, 1; 0, 0, 1; 1),

(p∗;q∗; r) = (0, 1, 0; 0, 1, 0; 1).

The Nash equilibrium conditions is necessary for a set of strategies
to be sensible, but it’s clearly not sufficient.


