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Generalising the minimax theorem

How can we generalise von Neumann’s theorem?

I Allow n players in place of two.

I Replace standard simplices with arbitrary non-empty compact
convex subsets of a Euclidean space.

I Replace a single payoff function with continuous utility
functions for each player, which they seek to maximise.

I Replace the linearity of the payoff for one player, given the
strategy chosen by the other player, with quasiconcavity of the
the utility of one player, given the strategies chosen by the
other players.



Mathematical formulation

An n-person game, as above, is specified by the following
information:

1. Non-empty compact convex Si ⊆ Rmi for 1 ≤ i ≤ n.

2. Continuous functions ui : S → R for 1 ≤ i ≤ n, where
S = S1 × · · · × Sn, which are quasiconcave in their i ’th
argument when the other arguments are fixed.

We will show that for any such S1, . . . , Sn and u1, . . . , un there
are x∗1 ∈ S1, . . . , x∗n ∈ Sn such that for each i

ui
(
x∗1, . . . , x

∗
i−1, xi , x

∗
i+1, . . . , x

∗
n

)
≤ ui

(
x∗1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
n

)
Such a (x∗1, . . . , x

∗
n) ∈ S is called a Nash equilibrium.



Recovering the von Neumann theorem

Is this a true generalisation of the minimax theorem proved earlier?
Mathematically, yes. To get von Neumann’s theorem it suffices to
take n = 2, S1 = ∆P , S2 = ∆Q , u1 = f and u2 = −f . It’s
straightforward to check that the hypotheses on Si and ui are
satisfied. Relabeling x1, x∗1, x2 and x∗2 as p, p∗, q and q∗ we can
rewrite
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as

f (p,q∗) ≤ f (p∗,q∗) − f (p∗,q) ≤ −f (p∗,q∗)

or, equivalently,

f (p,q∗) ≤ f (p∗,q∗) ≤ f (p∗,q).



Difference of interpretation

Economically, it’s not such a good generalisation. Recall that

f (p,q∗) ≤ f (p∗,q∗)

means Player A will be at least as well off choosing p∗ as any other
available strategy, assuming Player B chooses q∗, while

f (p∗,q∗) ≤ f (p∗,q).

means they’ll be no worse off if Player B chooses some other
available strategy, assuming they’ve chosen p∗. The analogue of
the two inequalities above in an n-person game would be
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We’re going to get the first of these, but not the second.



Notation

As before, S = S1 × · · · × Sn. Set

S−i = S1 × Si−1 × Si+1 × Sn.

There are natural projections πi : S → Si and π−i : S → S−i and a
natural map σ : Si × S−i → S such that σ(πi (x), π−i (x)) = x.
Define bi : S−i → R and Bi : S−i ⇒ Si by

bi (x−i ) = max
π−i (x)=x−i

ui (x),

Bi (x−i ) = {xi ∈ Si : ui (σ(xi , x−i )) = bi (x−i )}

Define Φ: S ⇒ S and Gi ⊆ S × S by

πi ◦ Φ = Bi ◦ π−i ,

Gi = {(x, y) ∈ S × S : πi (y) ∈ Bi (π−i (x))}



Proof of existence of Nash equilibria

bi is continuous and Bi is non-empty valued, compact valued,
convex valued and upper hemicontinuous by the Berge Maximum
Theorem (2.23). Graph(Bi ) is therefore closed by
Proposition 2.11. Gi = (πi × π−i )

−1(Graph(Bi )) is then closed
because πi × π−i : S × S → Si × S−i is continuous.
Graph(Φ) =

⋂n
i=1 Gi is therefore closed. Φ is non-empty valued

because Bi is non-empty valued for each i and the Cartesian
product of non-empty sets is non-empty. If xi ∈ Si and x−i ∈ S−i

then
ui (σ(xi , x−i )) ≤ max

π−i (x)=x−i

ui (x) = bi (x−i )

so
Bi (x−i ) = {xi ∈ Si : ui (σ(xi , x−i )) ≥ bi (x−i )}

and hence, by Lemma 7.2, Bi (x−i ) is convex. The product of
convex sets is convex, so Φ(x) is convex for all x ∈ S .



Conclusion of proof

We’ve just shown that Φ: S ⇒ S is non-empty valued, convex
valued and has closed graph. We can therefore apply Kakutani’s
Fixed Point Theorem (5.4) to get an x∗ such that x∗ ∈ Φ(x∗).
Equivalently, x∗i ∈ Bi (x

∗
−i ), where x∗i = πi (x

∗) and x∗−i = π−i (x
∗).
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This completes the proof.



Statement of theorem

We’ve just proved
Theorem 7.3: for every collection of non-empty, compact convex
Si ⊆ Rmi and continuous quasiconcave ui : S → R for 1 ≤ i ≤ n,
where S = S1 × · · · × Sn, there is a Nash equilibrium, i.e. a point
x∗ ∈ S such that
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for all 1 ≤ i ≤ n and xi ∈ Si .


