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Zero sum two person games

We consider games between two players, each of whom has a finite
number of pure stategies available. The net payment from one
player to the other is a function of the pure strategies each selects.
There are no other players or payments, so the sum of the net
payment from Player A to Player B and the net payment from
Player B to Player A is zero. In addition to the pure strategies
players can adopt mixed strategies, selecting a pure strategy at
random with specified probabalities. A mixed strategy is
characterised by those probabilities. We assume the goal of each
player is to maximise the expected value of the net payment they
receive.



Mathematical formulation

Let m and n be the numbers of pure strategies available to Players
A and B respectively. Fix an ordering of those strategies. A mixed
strategy for Player A is then an element of the m — 1-simplex

m
i=1

where p; is to be interpreted as the probability that the player
selects the i'th pure strategy. Similarly, Player B's mixed strategies
are elements of

n
Ag={a€R":q1>0,...,q,20,) ¢ =1
j=1

Note that pure strategies are also mixed strategies, just with all
but one of their probabilities equal to zero. They correspond to the
vertices of the simplices.



Optimal response
If ajj is the net payment from Player B to Player A when Player A
selects their i'th pure strategy and Player B selects their j'th then
the expected net payment when they choose mixed strategies
peApandqeAgis

f(p.a) => Y a;piqi=p’ Aq.

i=1 j=1

Suppose Player A has to choose their mixed strategy first, and this
choice is revealed to Player B. If Player A chooses p € Ap then
the best expected outcome Player B can achieve is

= min f(p,q).
1Q(p) [min (p,q)

The minimum exists by the Extreme Value Theorem. To achieve it
they should choose a mixed strategy q from

Q(p) ={a € Aq: f(p,a) = ue(p)}-



Payoff from optimal strategies

Working backwards, if the Player A knows that Player B will
respond optimally then they should choose a mixed strategy p
which maximises pg(p), to achieve an expected net payment of

max = max min f(p,q).
peAPuQ(p) max Jmin (p,q)

Similarly, if Player B chooses first then Player A should respond to
q with p € Q(p) where

P(a) ={p € Ap: f(p,a) = nr(a)}, pp(a) = max f(p,q).
Q
Knowing this, Player B chooses q, achieving the expected payment

min = min max f(p,q).
quPup(q) Jmin max (p,a)



Von Neumann's Minimax Theorem

General properties of maxima and minima ensure that

max min f(p,a) < min max f(p, ).
In other words, there is nothing to be gained by being forced to
choose your strategy first. Remarkably though, if both players play
optimally there's no penalty to being forced to go first either.
Von Neumann’s Minimax Theorem (7.1): With Ap, Ag and f
defined as above,

in f = mi f(p,q).
max min (p,q) Jnin max (p,q)

In fact there is a (p*,q*) € Ap x Ag such that for all
(p,q) € Ap x Ag

f(p,q*) < f(p*,q") < f(p*, q).



Interpretation

What does
f(p,q") < f(p*,q") < f(p*,q).

mean? From Player A’s point of view,
f(p,a”) < f(p",q")

means that they’ll be at least as well off choosing p* as any other
available strategy, assuming that Player B chooses q*. But

f(p*,q") < f(p*,q).

means that they’ll be no worse off if Player B chooses some other
available strategy, assuming they've chosen p*. From Player B's
point of view things are similar, switching the roles of the players
and their strategies and switching the roles of the two inequalities.



Proof of von Neumann's theorem

By Berge's Maximum Theorem (2.23) the correspondences P and
Q@ are non-empty valued, compact valued, convex valued and
upper hemicontinous. The same is then true of the correspondence
d: Ap x AQ = Ap X AQ defined by

®(p,q) = (P(a), Q(p))-

Every compact subset of R™" is closed, so ¢ is closed valued and
hence, by Proposition 2.11, Graph(®) is closed. Also, products of
convex sets are convex. By the Kakutani Fixed Point Theorem
(5.4), there is a (p*,q") € Ap x Ag such that

(p*,q*) € (p*,q*), i.e. p* € P(q*) and q* € Q(p*). The first of
these statements implies f(p, q*) < f(p*, q*) for all p € Ap, while
the second implies f(p*,q*) < f(p*,q). for all g € Ag. This
completes the proof.



Quasiconvexity and quasiconcavity

The function f from von Neumann's theorem was linear in each of
its arguments for fixed values of the other argument. For
generalisations it's useful to weaken that property. If K € R" is
convex then f: K — R is called quasiconvex if

f((1—t)u+ tv) < max(f(u),f(v))
for all t € [0,1] and is called quasiconcave if

f ((1 _ t)u + tv) > min (f(U)7 f(V))

min (f(u), f(v)) < (1 — t)f(u) + tf(v) < max(f(u), f(v))

so convex functions are quasiconvex and concave functions are
quasiconcave. Linear functions are quasiconvex and quasiconcave.
Lemma 7.2: f~1((—oo, b]) is convex if f is quasiconvex and
f~1([a,00)) is convex if f is quasiconcave.



