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The c-norm

Recall from last lecture that A is a matrix with non-negative
entries such that some power of A has positive entries. On that
assumption we found vectors b and c in the interior of the simplex
∆w and a µ > 0 such that Ab = µb and cTA = µcT . Define

‖x‖c =
n∑

j=1

cj |xj |.

It is easily verified that this is a norm on either Rn or Cn. Also,

‖Ax‖c =
n∑

j=1

cj

∣∣∣∣∣
n∑

k=1

ajkxk

∣∣∣∣∣ ≤
n∑

j=1

cj

n∑
k=1

ajk |xk |

=
n∑

k=1

n∑
j=1

cjajk |xk | = µ

n∑
k=1

ck |xk | = µ‖x‖c.

Then, by induction on l , ‖Alx‖ ≤ µl‖x‖c.



Geometric series

If |λ| > µ then

∞∑
l=0

‖λ−l−1Alx‖c ≤
∞∑
l=0

|λ|−l−1µl‖x‖c =
‖x‖c
|λ| − µ

<∞.

So the series y =
∑∞

l=0 λ
−l−1Alx converges absolutely in the

c-norm. Then

(λI − A)y =
∞∑
l=0

λ−lAlx−
∞∑
l=0

λ−l−1Al+1x

=
∞∑
l=0

λ−lAlx−
∞∑
l=1

λ−lAlx = x,

so y = (λI − A)−1x. In particular the null space of λI − A is trivial
and so λ is not an eigenvalue of A.



Monotonicity

Suppose now that λ is real and λ > 0. As we just saw,

(λI − A)−1 =
∞∑
l=0

λ−l−1Al .

Every term on the right hand side is a matrix with non-negative
entries and at least one of them has positive entries, so all entries
of (λI − A) are positive. Similarly,

d

dλ
(λI − A)−1 = −

∞∑
l=0

(l + 1)λ−l−2Al

and
d2

dλ2
(λI − A)−1 =

∞∑
l=0

(l + 1)(l + 2)λ−l−3Al ,

so all entries of (λI − A)−1 are strictly decreasing and strictly
convex.



More monotonicity

We now reformulate the preceding results on the vector equation
y = (λI − A)−1x in terms of solutions of the equivalent system of
scalar equations

λyi = xi +
n∑

j=1

aijyj .

This system has a unique solution for every λ > µ and x1 > 0,
. . . xn > 0. For this solution each yi is positive and is a strictly
increasing function of xj for each j and is a strictly decreasing
convex function of λ. Also, it’s a strictly increasing function of ajk
for each j and k.



More about eigenvalues

We’ve already seen than there are no eigenvalues larger than µ. µ
is itself an eigenvalue, so it is an eigenvalue of largest norm, but is
it the eigevalue of largest norm? Yes! But it takes some work to
prove this.
Let V = {x ∈ Rn : cTx = 0} and let W be the space spanned by
the single vector b. If x ∈ V ∩W then x = αb for some α ∈ R and

0 = cTx = α

n∑
i=1

bici .

This implies α = 0 because
∑n

i=1 bici > 0. So V ∩W = {0}. But
V is of dimension n− 1 and W is of dimension 1 so Rn = V ⊕W .
Also A(V ) ⊆ V , since cTAx = µcTx = 0 if cTx = 0, and
A(W ) ⊆W , since Aαb = αµb.



Action on the simplex ∆c

Recall the action of A on the simplex

∆w =

p ∈ Rn : p0 ≥ 0, . . . , pn ≥ 0,
n∑

j=0

wjpj = 1

 .

by fw : ∆w → ∆w by fw(p) = q, where

qi =

∑n
k=1 aikpk∑n

j=1

∑n
k=1 wjajkpk

which we defined in the last lecture. We saw there that fw maps
∆w into the interior of ∆w. Now

fc(p) =
1

µ
Ap

for p ∈ ∆c, so µ−1A maps ∆c to its interior.



Brin’s argument

Now ∆c belongs neither to V nor to W , but its translate

Σ =

{
x ∈ Rn : x +

(
cTb

)−1
b ∈ ∆c

}
is a simplex of V . µ−1A(Σ) ⊆ Σ and 0 belongs to the interior
of V . We can therefore apply
Brin’s Lemma: Suppose V is a real vector space, Σ is a simplex
in V whose interior contains 0, T : V → V is linear and T (Σ) lies
in the interior of Σ. Then T has no eigenvalues, real or complex,
with eigenvalue of absolute value 1. Assuming this lemma, which
we will prove shortly, µ−1A|V has eigenvalues less than 1, so the
largest eigenvalue of A is µ and this eigenvalue has algebraic and
geometric multiplicity 1.



Proof of Brin’s Lemma

Suppose x ∈ V is an eigenvector of T with eigenvalue ν = e2πiα,
either real or complex. Let S be the subspace spanned by the real
and complex parts of x. S is of dimension either 1 or 2. If α is
rational then there is an infinite sequence of powers of ν such
which are equal to 1. If α is irrational then there is an infinite
sequence of powers of ν which tends to 1. So in either case there
is an increasing sequence j1, j2, . . . of positive integers such that
ν jk → 1 as k →∞. If y ∈ S ∩ ∂Σ then

T jk =
ν jk + ν jk

2
I +

ν jk − ν jk
ν − ν

T → y

But T jky ∈ T (Σ) and T (Σ) is closed, so y ∈ T (Σ). T (Σ) though
lies in the interior of Σ, not the boundary, so we have a
contradiction. This completes the proof of the lemma.



Leontief

Wassily Leontief won the “Nobel Prize in Economics” for a model
with n industries producing output some of which is to be used as
input for other industries and some for consumption. aij is the
amount of industry i ’s output that industry j needs as an input to
produce a unit of its own output, xi is the amount of industry i ’s
output produced and yi is the amount of its output consumed by
consumers. Assume that xi ≥ 0, yi ≥ 0 and aij > 0. The equation

xi =
n∑

j=1

aijxj + yi

expresses the fact that all of industry i ’s output goes either
towards producing inputs of other industries or towards
consumption. This system has a unique solution x for given y if
and only if all eigenvalues of A are of absolute value less than 1.


