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Kakutani Fixed Point Theorem

Theorem 5.4: Suppose X ⊆ Rn is a non-empty compact convex
subset of a Euclidean space and Φ: X ⇒ X is non-empty valued,
convex valued and has closed graph. Then Φ has a fixed point, i.e.
there is an x∗ ∈ X such that x∗ ∈ Φ(x∗).
Proof: X is bounded, so there is an n-simplex ∆ such that
X ⊆ ∆. By Proposition 3.8 there is a retraction r : Rn → X . Its
restriction, which we’ll also call r , is a retraction r : ∆→ X .
Define Ψ: ∆ ⇒ ∆ by

Ψ(x) = Φ(r(x))

for x ∈ ∆. Like Φ, Ψ is non-empty valued, convex valued and has
closed graph. Let K be the simplical complex consisting of ∆ and
its faces. Let K (j) be a sequence of simplicial complexes such that
K (0) = K , K (j+1) is a subdivision of K (j) and µ(K (j))→ 0. These
could, for example, be the successive barycentric subdivisions.



Proof of Kakutani, continued

For each v ∈
⋃∞

j=0Vert(K
(j)) choose a ψ(v) ∈ Ψ(v). We know

there is at least one such choice because Φ, and therefore Ψ, is
non-empty valued. Define a piecewise linear fj : ∆→ ∆ by
choosing fj(v) = ψ(v) if v ∈ Vert(K (j)) and fj is linear on each
simplex of K (j). There is a unique such fj by Proposition 4.8 and it
is continuous by Proposition 4.7. By the Brouwer Fixed Point
Theorem (5.3) there is a zj ∈ ∆ such that fj(zj) = zj . This zj
belongs to some n-simplex σj ∈ K (j) and has barycentric
coordinates ti ,j with respect to the vertices vi ,j of σj . Set

yi ,j = fj(vi ,j) = ψ(vi ,j) ∈ Ψ(vi ,j).

Then
∑n

i=0 ti ,j = 1 and zj =
∑n

i=0 ti ,jvi ,j is equal to

fj(zj) = fj

(
n∑

i=0

ti ,jvi ,j

)
=

n∑
i=0

ti ,j f (vi ,j) =
n∑

i=0

ti ,jyi ,j



Still more Kakutani

Now (t0,j , . . . , tn,j , v0,j , . . . , vn,j , y0,j , . . . , yn,j) ∈ [0, 1]n+1 ×∆2n+2,

which is a bounded subset of R2n2+3n+1. By Bolzano-Weierstrass
(1.4) there is a subsequence converging to some point
(t0,∞, . . . , tn,∞, v0,∞, vn,∞, y0,∞, yn,∞). Taking limits in the
equations

n∑
i=0

ti ,j = 1
n∑

i=0

ti ,jvi ,j =
n∑

i=0

ti ,jyi ,j

gives
n∑

i=0

ti ,∞ = 1
n∑

i=0

ti ,∞vi ,∞ =
n∑

i=0

ti ,∞yi ,∞

Because µ(K (j))→ 0 the vi ,∞ are all equal. Call their common
value x∗.



Proof of Kakutani, concluded

We now have

n∑
i=0

ti ,∞ = 1 x∗ =
n∑

i=0

ti ,∞yi ,∞.

Also,
(vi ,j , yi ,j) ∈ Graph(Ψ)

and Graph(Ψ) is closed so, taking limits,

(x∗, yi ,∞) ∈ Graph(Ψ),

i.e. yi ,∞ ∈ Ψ(x∗). But Ψ is convex valued, so

x∗ ∈ Ψ(x∗).

Finally, note that Ψ(x∗) = Φ(r(x∗)) ⊆ X , so x∗ ∈ X . This
concludes the proof.



Perron Matrices
Suppose A is an n× n matrix, that every entry in A is non-negative
and that there is some positive integer m such that every entry of
Am is positive. This condition holds in particular if all entries of A
are positive, but holds also for some matrices not all of whose
entries are positive, such as0 1 1

1 0 1
1 1 0

 .

No row or column of A can be identically zero, since otherwise the
corresponding row or column of Am would be identically zero.
We’ll be interested in the action of A on the simplex

∆w =

p ∈ Rn : p0 ≥ 0, . . . , pn ≥ 0,
n∑

j=0

wjpj = 1

 .

where wj > 0 for each j .



Action on the simplex ∆w

aik
wk
≥ min1≤j≤n

aij
wj

so

n∑
k=1

aikpk ≥
n∑

k=1

min
1≤j≤n

aij
wj

wkpk = min
1≤j≤n

aij
wj

> 0.

if p ∈ ∆w. Here we’ve used the fact that min1≤j≤n
aij
wj

is

independent of k and
∑n

k=1 wkpk = 1. We can therefore define a
function fw : ∆w → ∆w by f (p) = q, where

qi =

∑n
k=1 aikpk∑n

j=1

∑n
k=1 wjajkpk

.

qi > 0 so q belongs to the interior of ∆w.



The fixed point

The function fw just defined is continuous, so by the Brouwer
Fixed Point Theorem (5.3) there is a b ∈ ∆w such that fw(b) = b.
Equivalently,

µbi =
n∑

k=1

aikbk

where

µ =
n∑

j=1

n∑
k=1

wjajkbk > 0.

In terms of matrices, Ab = µb, i.e. b is an eigenvector of A with
eigenvalue µ. We’ve already seen that f (b) lies in the interior of
∆w, so bi > 0.



Duality

We could apply the same analysis to AT in place of A to get a c
with all entries positive and a ν > 0 such that

νck =
n∑

k=1

ciaik , ν =
n∑

j=1

n∑
k=1

cjajk .

What is the relation between µ and ν?

µ

n∑
i=1

cibi =
n∑

i=1

ci

n∑
k=1

aikbk =
n∑

i=1

n∑
k=1

ciaikbk =
n∑

k=1

n∑
i=1

ciaikbk

ν

n∑
i=1

cibi = ν

n∑
k=1

ckbk =
n∑

k=1

(
n∑

i=1

ciaik

)
bk =

n∑
k=1

n∑
i=1

ciaikbk

∑n
i=1 cibi > 0 so we can conclude that µ = ν. What is the

relation between b and c? None, in general.


