
MAU11602 Assignment 9, Due Wednesday 10 April 2024
Solutions

1. Find all the monoid homomorphisms from (𝑁, +), i.e. the monoid whose
set is natural numbers and whose operation is addition, to itself.
Hint: Describe them in terms of what value the function takes at 1. Solu-
tion: Suppose ℎ is a homomorphism. Then ℎ(𝑚) = 𝑚 · ℎ(1). This is easily
proved by induction. ℎ(0) = 0 and if ℎ(𝑚) = 𝑚 · ℎ(1) then

ℎ(𝑚 + 1) = ℎ(𝑚) + ℎ(1) = 𝑚 · ℎ(1) + ℎ(1) = (𝑚 + 1) · ℎ(1).

So all homomorphisms must be of the form ℎ(𝑚) = 𝑚 · 𝑎 for some 𝑎 ∈ 𝑁.
Conversely, if ℎ is of this form then it is a semigroup homomorphism be-
cause

ℎ(𝑗 + 𝑘) = (𝑗 + 𝑘) · 𝑎 = 𝑗 · 𝑎 + 𝑘 · 𝑎 = ℎ(𝑗) + ℎ(𝑘).
It’s a monoid homomorphism because, in addition,

ℎ(0) = 0 · 𝑎 = 0.

2. Consider the language of even integers. As with the integers we’ll nor-
malise things so that each even integer has a unique representation by
getting rid of leading zeroes, double minus signs, etc. This is a regular
language so it can be described in the following ways:

(a) a regular expression
(b) a strongly deterministic finite state automaton
(c) a regular grammar

Give an example of each.
Hint: This is the kind of problem where a bit of extra time thinking about
different ways to solve the problem can end up saving you some time.
Solution: You’re presumably familiar with the fact that the even integers
are precisely those whose last digit is even. So a string of characters is an
even integer if it is an integer and the last character is a 0, 2, 4, 6, or 8. We’ll
use this for each of the required constructions.

(a) To come up with a regular expression we mimic the procedure used
for the integers in the notes and in lecture. 0|1|2|3|4|5|6|7|8|9
matches single digits and (0|1|2|3|4|5|6|7|8|9)* represents strings
of digits. 1|2|3|4|5|6|7|8|9matches non-zero digits and 0|2|4|6|8
matches even digits. A positive even integer starts with a non-zero
digit and ends with an even digit and can have arbitrary digits in
between. This suggests the regular expression

(1|2|3|4|5|6|7|8|9)((0|1|2|3|4|5|6|7|8|9)*)(0|2|4|6|8)
but this would omit the single digit numbers 2, 4, 6 and 8, so we add
those in as another possibility:

1

(2|4|6|8)|((1|2|3|4|5|6|7|8|9)((0|1|2|3|4|5|6|7|8|9)*)(0|2|4|6|8)).
A non-zero even integer is this, with an optional minus sign, so

(|-
)((2|4|6|8)|((1|2|3|4|5|6|7|8|9)((0|1|2|3|4|5|6|7|8|9)*)(0|2|4|6|8))).
An even integer is this or 0, so

0|((|-
)((2|4|6|8)|((1|2|3|4|5|6|7|8|9)((0|1|2|3|4|5|6|7|8|9)*)(0|2|4|6|8)))).
This answer is by no means unique. There are other ways to do this.

(b) The language we’re looking for is the intersection of the language of
integers, for which I’ve already given you a strongly deterministic
finite state automaton, and the language of strings whose last char-
acter is a 0, 2, 4, 6, or 8, for which we can easily construct a strongly
deterministic finite state automaton. Oncewe have thosewe can con-
struct a strongly deterministic finite state automaton for the intersec-
tion by the product construction. Now that we have a plan it’s fairly
easy to carry it through. The finite state automaton from the integers
was

A0

A1

A4

-,0,1,...,9

A3

0,1,...,9

-

0

1,2,...,9

A2

- 1,2,...,9

-,0

 -,0,1,...,9

A simple strongly deterministic finite state automaton which recog-
nises strings ending with 0, 2, 4, 6, or 8 is

B0 B1

0,2,4,6,8

-,1,3,5,7,9

0,2,4,6,8

-,1,3,5,7,9

A strongly deterministic finite state automaton for the intersection is

2

A0B0

A1B1

A4B0

-,1,3,5,7,9

A4B1

0,2,4,6,8

A3B1

0,2,4,6,8

A3B0
1,3,5,7,9

-

0

2,4,6,8

A2B0

-

1,3,5,7,9

2,4,6,8

1,3,5,7,9

-

0

0,2,4,6,8
1,3,5,7,9

-

-,1,3,5,7,9

0,2,4,6,8
-,1,3,5,7,9

0,2,4,6,8

You could put in the states A0B1, A1B0 and A2B1 if you wanted to,
but they’re not reachable so there’s no point. The finite state automa-
ton above is not quite the simplest possible. If you constructed one
via the Myhill-Nerode Theorem, for example, you’d get one where
the states A4B0 and A4B1 are combined, but you’d have to do signif-
icantly more work to get it.

(c) It’s straightforward to get a grammar from a finite state automaton.
There’s a non-terminal for each state and an alternate for each al-
lowed transition. The initial state corresponds to the start symbol
and the accepting states are the ones where the empty list is an alter-
nate. Applying this construction to the finite state automaton above
gives the grammar

a0b0 : "-" a2b0 | "0" a1b1 | "1" a3b0 | "2" a3b1
| "3" a3b0 | "4" a3b1 | "5" a3b0 | "6" a3b1
| "7" a3b0 | "8" a3b1 | "9" a3b0

a1b1 : | "-" a4b0 | "0" a4b1 | "1" a4b0 | "2" a4b1
| "3" a4b0 | "4" a4b1 | "5" a4b0 | "6" a4b1
| "7" a4b0 | "8" a4b1 | "9" a4b0

a2b0 : "-" a4b0 | "0" a4b1 | "1" a3b0 | "2" a3b1
| "3" a3b0 | "4" a3b1 | "5" a3b0 | "6" a3b1
| "7" a3b0 | "8" a3b1 | "9" a3b0

a3b0 : "-" a4b0 | "0" a3b1 | "1" a3b0 | "2" a3b1
| "3" a3b0 | "4" a3b1 | "5" a3b0 | "6" a3b1
| "7" a3b0 | "8" a3b1 | "9" a3b0

a3b1 : | "-" a4b0 | "0" a3b1 | "1" a3b0 | "2" a3b1
| "3" a3b0 | "4" a3b1 | "5" a3b0 | "6" a3b1
| "7" a3b0 | "8" a3b1 | "9" a3b0

a4b0 : "-" a4b0 | "0" a4b1 | "1" a4b0 | "2" a4b1
| "3" a4b0 | "4" a4b1 | "5" a4b0 | "6" a4b1
| "7" a4b0 | "8" a4b1 | "9" a4b0

a4b1 : "-" a4b0 | "0" a4b1 | "1" a4b0 | "2" a4b1
| "3" a4b0 | "4" a4b1 | "5" a4b0 | "6" a4b1
| "7" a4b0 | "8" a4b1 | "9" a4b0

3

