
MAU11602 Assignment 8, Due Wednesday 3 April 2024
Solutions

1. Suppose that 𝑆 is a relation from 𝐴 to 𝐵 and 𝑅 is a relation from 𝐵 to 𝐶.

(a) Show that if 𝑅 and 𝑆 are left unique then so is 𝑅 ∘ 𝑆.
(b) Show that if 𝑅 and 𝑆 are right unique then so is 𝑅 ∘ 𝑆.
(c) Show that if 𝑅 and 𝑆 are left total then so is 𝑅 ∘ 𝑆.
(d) Show that if 𝑅 and 𝑆 are right total then so is 𝑅 ∘ 𝑆.
(e) Show that if 𝑅 and 𝑆 are functions then then so is 𝑅 ∘ 𝑆.
(f) Show that if 𝑅 and 𝑆 are injections then then so is 𝑅 ∘ 𝑆.
(g) Show that if 𝑅 and 𝑆 are surjections then then so is 𝑅 ∘ 𝑆.
(h) Show that if 𝑅 and 𝑆 are bijections then then so is 𝑅 ∘ 𝑆.

Solution:

(a) Suppose (𝑣, 𝑧) ∈ 𝑅 ∘ 𝑆 and (𝑤, 𝑧) ∈ 𝑅 ∘ 𝑆. In other words, there is an
𝑥 ∈ 𝐵 such that (𝑣, 𝑥) ∈ 𝑆 and (𝑥, 𝑧) ∈ 𝑅 and there is a 𝑦 ∈ 𝐵 such that
(𝑤, 𝑦) ∈ 𝑆 and (𝑦, 𝑧) ∈ 𝑅. 𝑅 is left unique so 𝑥 = 𝑦. 𝑆 is left unique
so 𝑣 = 𝑤. So if (𝑣, 𝑧) ∈ 𝑅 ∘ 𝑆 and (𝑤, 𝑧) ∈ 𝑅 ∘ 𝑆 then 𝑣 = 𝑤. In other
words, 𝑅 ∘ 𝑆 is left unique.

(b) Suppose (𝑢, 𝑥) ∈ 𝑅 ∘ 𝑆 and (𝑢, 𝑦) ∈ 𝑅 ∘ 𝑆. In other words, there is an
𝑣 ∈ 𝐵 such that (𝑢, 𝑣) ∈ 𝑆 and (𝑣, 𝑥) ∈ 𝑅 and there is a 𝑤 ∈ 𝐵 such
that (𝑣, 𝑤) ∈ 𝑆 and (𝑤, 𝑦) ∈ 𝑅. 𝑆 is right unique so 𝑣 = 𝑤. 𝑅 is right
unique so 𝑥 = 𝑦. So if (𝑢, 𝑥) ∈ 𝑅 ∘ 𝑆 and (𝑢, 𝑦) ∈ 𝑅 ∘ 𝑆 then 𝑥 = 𝑦. In
other words, 𝑅 ∘ 𝑆 is right unique.

(c) 𝑆 is left total so for any 𝑥 ∈ 𝐴 there is a 𝑦 ∈ 𝐵 such that (𝑥, 𝑦) ∈ 𝑆. 𝑅
is left total so there is a 𝑧 ∈ 𝐶 such that (𝑦, 𝑧) ∈ 𝑅. By the definition
of 𝑅 ∘ 𝑆 it follows that (𝑥, 𝑧) ∈ 𝑅 ∘ 𝑆. Ro for every 𝑥 ∈ 𝐴 there is a
𝑧 ∈ 𝐶 such that (𝑥, 𝑧) ∈ 𝑅 ∘ 𝑆. In other words, 𝑅 ∘ 𝑆 is left total.

(d) 𝑅 is right total so for any 𝑧 ∈ 𝐶 there is a 𝑦 ∈ 𝐵 such that (𝑦, 𝑧) ∈ 𝑅.
𝑆 is right total so there is an 𝑥 ∈ 𝐴 such that (𝑥, 𝑦) ∈ 𝑆. By the defini-
tion of 𝑅 ∘ 𝑆 it follows that (𝑥, 𝑧) ∈ 𝑅 ∘ 𝑆. Ro for every 𝑧 ∈ 𝐶 there is
an 𝑥 ∈ 𝐴 such that (𝑥, 𝑧) ∈ 𝑅 ∘ 𝑆. In other words, 𝑅 ∘ 𝑆 is right total.

(e) A function is just a relation which is left total and right unique.
(f) An injection is just a relation which is left total and left and right

unique.
(g) A surjection is just a relation which is left and right total and right

unique.
(h) A bijection is just a relation which is left and right total and left and

right unique.
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2. Show that the set of real numbers is uncountable.
Note: We haven’t formally defined the real numbers in this module, and
won’t, so you can use an informal definition, like the fact that each (pos-
sible infinite) decimal expansion corresponds to a real number and vice
versa, if we exclude the ones ending with all 9’s. You don’t need to give
much detail on the parts of the proofs which are real analysis rather than
set theory.
Hint: You may find it convenient to use the fact that subsets of countable
sets are countable.
Solution: For each subset 𝑆 of the natural numbers, i.e. member of 𝑃𝑁,
consider the sum

𝑓 (𝑆) = ∑
𝑗∈𝑆

10−𝑗.

In other words, 𝑓 (𝑆) has a 1 in the 𝑖’th digit of its decimal expansion to the
right of the decimal point, assuming we start the count at 0, and has a 0
in all other positions, including to the left of the decimal point.
If 𝑆 and 𝑇 are distinct sets, i.e. 𝑆 ≠ 𝑇, then 𝑓 (𝑆) ≠ 𝑓 (𝑇). This is kind of
obvious but if you want to prove it then note that if 𝑆 ≠ 𝑇 then 𝑆 ∖ 𝑇 or
𝑇 ∖ 𝑆 is non-empty so there is a smallest 𝑖 which is in one of them. If it’s
in 𝑆 ∖ 𝑇 then 𝑓 (𝑆) > 𝑓 (𝑇) and if it’s in 𝑇 ∖ 𝑆 then 𝑓 (𝑆) < 𝑓 (𝑇). Let 𝐴 be
the range of 𝑓 and 𝑅 the set of real numbers. 𝐴 ⊆ 𝑅 so if 𝑅 were countable
then 𝐴 would be countable. In other words there would be an injective
function 𝑔 from 𝐴 to 𝑁. 𝑔 ∘ 𝑓 would then be an injective function from
𝑃𝑁 to 𝑁. We already know there is no such function though, since 𝑃𝑁 is
uncountable.

3. A number is called algebraic if is a root of a non-zero polynomial with
rational coefficients. Using a counting argument, show that there are real
numbers which are not algebraic.
Note: You can use the result of the previous problem, even if you didn’t
manage to prove it.
Solution: We know from the previous problem that the set of all reals is
uncountable so it suffices to show that the set of algebraic reals is count-
able. There are a lot of ways to do this. The two most straightforward are
the algebraic approach and the linguistic one.
To each algebraic number we associate a list of natural numbers as fol-
lows. If a number is a root of a polynomial with rational coefficients then
it is the root of a polynomial with integer coefficients, since we can al-
ways multiply an equation by the least common multiple of the denomi-
natorswithout changing the roots. Similarlywe can divide by the greatest
common divisor to make the coefficients relatively prime. Then we mul-
tiply the coefficients by −1, if necessary, to make the leading coefficent
positive. That still doesn’t identify a polynomial uniquely unless we also
specify that it’s of the lowest possible degree. If we do that then we have
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a polynomial relation
𝑛

∑
𝑗=0

𝑐𝑗𝑟𝑛−𝑗 = 0

satisfied by the algebraic number 𝑟, where the 𝑐’s are integers and 𝑐0 > 0.
Since we’re looking for a list of natural numbers rather than a list of inte-
gers we rewrite this as

𝑛
∑
𝑗=0

𝑎𝑗𝑟𝑛−𝑗 =
𝑛

∑
𝑗=0

𝑏𝑗𝑟𝑛−𝑗

where 𝑎𝑗 is 𝑐𝑗 if 𝑐𝑗 is a natural number and 0 otherwise, while 𝑏𝑗 is −𝑐𝑗
if 𝑐𝑗 is a negative integer and 0 otherwise. The list (𝑎0, … , 𝑎𝑛, 𝑏0, … 𝑏𝑛)
isn’t quite enough information to identify 𝑟 uniquely though since there
might be multiple real roots. So we prepend the number 𝑙 to mean that
𝑟 is the 𝑙’th solution to the equation as we move from left to right along
the real line, i.e. from −∞ to +∞. So our final list of natural numbers
is (𝑙, 𝑎0, … , 𝑎𝑛, 𝑏0, … 𝑏𝑛). We now have an injective function from the real
algebraic numbers to the set of lists of natural numbers. Any set of lists
with elements chosen from a countable set is countable, i.e. there is an
injective function from it to the natural numbers. Composing, we get an
injective function from the real algebraic numbers to the natural numbers,
showing that the set of real algebraic numbers is countable.
If that proof seems to involve too much knowledge of algebra, there is
another proof which requires almost none. For any real algebraic number
there is at least one Boolean expression in the language of elementary
arithmetic which describes it. For example √3 is the unique real number
𝑟 satisfying

{(𝑟 > 0) ∧ [(𝑟 · 𝑟) = 0‴]}.
Previously we interpreted this language in such a way that the variables
were all natural numbers, but we don’t have to, and if we allow them to
be real then the expression above is obviously satisfied by √3 and by no
other number. There’s nothing special about √3. We could do the same
thing for any real algebraic number, giving an equation which it satisfies
and a set of inequalities specifying an interval in which there are no other
solutions to the equation. There may be, and indeed will be, many such
expressions for any real algebraic number so we choose the one with the
smallest encoding. Associating to each real algebraic number that small-
est encoding gives us an injective function from the real algebraic numbers
to the natural numbers, proving that the set is countable.
The advantage of the second proof is that it is easily adapted to show that
essentially any set of objects each ofwhich is uniquely describable in some
language is countable, which is certainly not true of the first proof.
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