MAU11602 Assignment 7, Due Wednesday 27 March 2024 Solutions

1. Prove the set identity $[[A \setminus [A \setminus B]] = [A \cap B]]$.

Hint: You can use the same method which was used in the notes for $[[[A \cup B] \cup C]] = [A \cup [B \cup C]]$:

- Convert the equation to a pair of inclusions.
- Write each inclusion as a substitution instance of a statement from zeroeth order logic.
- Show that those statements are tautologies.

In the example in the notes I skipped the last step, since I'd already given a number of examples of showing that statements are tautologies, but you shouldn't skip that step for this problem. A bit of preliminary work with the rules of inference for zeroeth order logic can simplify the statements you need to prove. Solution:

$$[x \in [[A \setminus [A \setminus B]]$$

if and only if

$$[[x \in A] \land [\neg [x \in [A \setminus B]]]].$$

Similarly $[x \in [A \setminus B]$ if and only if $[[x \in A] \land [\neg [x \in B]]]$. So

 $[x \in [[A \setminus [A \setminus B]]]$

if and only if

$$[[x \in A] \land [\neg [[x \in A] \land [\neg [x \in B]]]]].$$

Using one of DeMorgan's laws, this is equivalent to

$$[[x \in A] \land [[\neg [x \in A]] \lor [\neg [\neg [x \in B]]]]$$

and using the rule for double negation this is equivalent to

$$[[x \in A] \land [[\neg [x \in A]] \lor [x \in B]]].$$

Similarly, but much more easily,

$$[x \in [A \cap B]]$$

if and only if

$$[[x \in A] \land [x \in B]]$$

By Extensionality what we need to show is that $[x \in [[A \setminus [A \setminus B]]]$ if and only if $[x \in [A \cap B]]$, i.e. that

$$[[x \in [[A \setminus [A \setminus B]] \supset [x \in [A \cap B]]]$$

 $[[x \in [A \cap B]] \supset [x \in [[A \setminus [A \setminus B]]].$

By what we've shown above these are equivalent to

$$[[x \in A] \land [[\neg [x \in A]] \lor [x \in B]]] \supset [[x \in A] \land [x \in B]]]$$

and

$$[[[x \in A] \land [x \in B]] \supset [[x \in A] \land [[\neg [x \in A]] \lor [x \in B]]]].$$

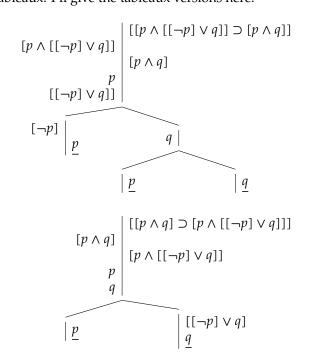
These are substitution instances of

$$[[p \land [[\neg p] \lor q]] \supset [p \land q]]$$

and

$$[[p \land q] \supset [p \land [[\neg p] \lor q]]]$$

So it suffices to show that these are tautologies. You can do this with truth tables or with tableaux. I'll give the tableaux versions here.



2. In the notes I defined a minimal member of a set *A* to be a $C \in A$ such that if $B \in A$ and $B \subseteq C$ then B = C and a maximal member of *A* to be $B \in A$ such that if $C \in A$ and $B \subseteq C$ then B = C. A related pair of notions are those of a least member and a greatest member. A least member of *A* is a $B \in A$ such that if $C \in A$ then $B \subseteq C$. A greatest member is a $C \in A$ such that if $B \in A$ then $B \subseteq C$.

I further defined a set *E* to be finite if every non-empty set of subsets of *E* has a minimal and a maximal member.

- (a) Give an example of a finite set *E* and a non-empty set *A* of subsets of *E* such that *A* has neither a least nor a greatest member.
- (b) Show if a set *A* has a least member then that member is also minimal.
- (c) Show if a set *A* has a greatest member then that member is also maximal.
- (d) Show that if a set *A* has a least member then it has no other minimal member.
- (e) Show that if a set *A* has a greatest member then it has no other maximal member.
- (f) Suppose *E* is a finite set and *A* is a non-empty set of subsets of *A*. Show that if *A* has only one minimal member then that member is a least member.

Solution:

- (a) Taking *E* to be $\{x, y\}$ where $x \neq y$ and *A* to be $\{\{x\}, \{y\}\}$ we have that $\{x\}$ and $\{y\}$ are neither least nor greatest members since we don't have either $\{x\} \subseteq \{y\}$ or $\{y\} \subseteq \{x\}$.
- (b) Suppose *C* is a least member of *A*. If $B \in A$ and $B \subseteq C$ then $C \subseteq B$, because *C* is a least member, and so B = C, since $B \subseteq C$ and $C \subseteq B$. So $B \in A$ and $B \subseteq C$ imply B = C. In other words, *C* is minimal.
- (c) Suppose *B* is a greatest member of *A*. If $C \in A$ and $B \subseteq C$ then $C \subseteq B$, because *B* is a greatest member, and so B = C, since $B \subseteq C$ and $C \subseteq B$. So $C \in A$ and $B \subseteq C$ imply B = C. In other words, *B* is maximal.
- (d) Suppose *B* is a least member of *A* and *C* is a minimal member of *A*. Then $B \subseteq C$, because $C \in A$ and *B* is a least member of *A*. But then $B \in A$ and $B \subseteq C$, so B = C, since *C* is a minimal member. So *A* has no minimal member other than *B*.
- (e) Suppose *C* is a greatest member of *A* and *B* is a maximal member of *A*. Then $B \subseteq C$, because $B \in A$ and *C* is a greatest member of *A*. But then $C \in A$ and $B \subseteq C$, so B = C, since *B* is a maximal member. So *A* has no maximal member other than *C*.
- (f) Suppose *C* is the minimal member of *A* and *H* is some other member. Let *B* be the set of all $D \in A$ such that $D \subseteq H$. Then $H \in B$ so *B* is a non-empty set of subsets of *E*. *E* is finite so *B* must have a minimal member. Let *G* be a minimal member of *B*. If $F \in A$ and $F \subseteq G$ then $F \subseteq H$, since $G \in B$ and hence $G \subseteq H$. But then $F \in B$ and therefore F = G, since *G* is a minimal member of *B*. So if $F \in A$ and $F \subseteq G$ then $F \subseteq G$. From $G \in B$ it also follows that $G \in A$. So $G \in A$ and if $F \in A$ and $F \subseteq G$ then $F \subseteq G$ then F = G. In other words *G* is a minimal member of *A*. But *C* is the only minimal member of *A*, so G = C. From $G \subseteq H$ it therefore follows that $C \subseteq H$. *H* was an arbitrary member of *A* so $C \subseteq H$ for all $H \in A$. In other words, *C* is minimal.