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Introduction
In this module we’ll talk about formal languages, computability and math-
ematical logic. Before going through each in turn it may be useful to see, in
a simplified example, how closely related they are. The simplified example
will be that of a module enrollment system.

A simplified example
Module enrollment systems take data from university staff about what
modules students are allowed to take and from students about what mod-
ules they wish to take and either enroll the student in the modules if their
choices are allowed or don’t if they aren’t, hopefully with some feedback
about why they aren’t allowed.
A real such system has to cope withmany details which we’ll ignore in this
simplified example, like the fact that a university typically has hundreds
or thousands of categories of students, depending on entry route, intended
degree, year of study, etc. and that each of these groups has different re-
strictions on the modules they can take. All of that detail is important in
a real system but in a hypothetical system intended just to illustrate some
basic ideas it would just be a distraction so we’ll assume here that all stu-
dents have the same set of choices. We’ll also ignore issues of time, such
as whether a student may have taken a prerequisite module in a previous
year. We’ll also ignore most user interface considerations.
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Rules
A very restrictive system might offer students a short list of possible com-
binations and ask them to pick one. An incredibly lax system might allow
students to pick any combination they like. Both of these are easy to imple-
ment but any real university will have something in between and in this
one way, at least, we’ll try to be realistic. The usual way to specify a set of
combinations is with rules, like “If you take Statistics you must also take
Probability” or “You must take one and only one of these three modules”.
You find rules like these in a course handbook and the system’s job is turn
those rules and turn them into an algorithm which approves or rejects a
selection.

Languages
We need to talk about languages, and the distinction between natural and
formal languages. The rules above are in a natural language, specifically
English, and natural languages are ambiguous. The rule “You must take
Probability and Statistics or Algebra and Geometry”, for example, is am-
biguous in multiple ways. There is the distinction between inclusive and
exclusive “or”, for example. Are you allowed to take both Probability and
Statistics and Algebra and Geometry or do you have to choose only one
pair? Howdo the Boolean operators “and” and “or” split the phrase “Prob-
ability and Statistics or Algebra and Geometry” into meaningful pieces?
Are there two possibilities, “Probability and Statistics” and “Algebra and
Geometry”, where you have to take one pair or the other? In other words,
does the word “or” join separate phrases, each joined by an “and”? Or is
it the other way around? In other words, do you have to take Probability,
either Statistics or Algebra, and Geometry, three modules where in one
case you have a choice between two? Are you allowed to take anymodules
beyond the ones listed? Does the phrase “Probability and Statistics” even
refer to a pair of modules named “Probability” and “Statistics” or is there
a single module named “Probability and Statistics”?
You may well be able to guess the intended meaning of the sentence but
you’re only able to do so from knowing a lot of context and you may guess
wrong. Your guesses for this rule and for others will probably give the
same word different meanings in different sentences. It’s likely, for exam-
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ple, that you interpreted the “or” in the sentence above exclusively, so that
students cannot take both pairs of modules. But in a statement of prerequi-
sites, like “Before taking Partial Differential Equations you must take Tech-
niques in Theoretical Physics or Ordinary Differential Equations” you’d
probably interpret it inclusively, so that a student who had taken both of
those modules would also be allowed to take Partial Differential Equations.
To avoid ambiguities like the ones above we need formal languages. For-
mal languages have a precisely described grammar, which then determines
how they are parsed. If you want to program to check module choices
it needs them to be expressed in a formal language. Some human will
then need to translate from the rules from the natural language they’re ex-
pressed in a course handbook to a formal language. That formal language
may look superficially like a natural language. We could, for example, con-
tinue to use “and” and “or” as logical connectives. But they’d now be used
in a way which permits purely mechanical processing rather than human
intuition, and they might therefore be interpreted in a way which doesn’t
accord with your intuition.

Statements
Rules in a course handbook are full of modal verbs like “must”, “should”,
“may”, etc. It’s possible to studywhat’s calledmodal logic, which attempts
to formalise the meaning of such verbs. We won’t do that in this module.
We also wouldn’t need to in order to build a module enrollment system.
The part of the system which actually implements the rules is a checking
procedure which takes a list of modules entered by the student and checks
whether they do or don’t satisfy the requirements. In describing such a pro-
cedure it’s more natural to express things declaratively than imperatively.
The rule which appears in course handbook as “You must take Probability
and Statistics or Algebra and Geometry” can be rewritten as the statement
“The student is taking Probability and Statistics or Algebra and Geometry”.
The checking procedure checkswhether this statement, alongwith any oth-
ers it’s been given, is true for the student whose choices it’s validating. I’ll
generally use this point of view, with statements in place of rules, from
now on.
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A formal language
Since we need a formal language anyway might as well dispense with ev-
erything superfluous and replace “The student is taking Probability and
Statistics or Algebra and Geometry” with just “Probability and Statistics
or Algebra and Geometry”. There’s no point in starting every single rule
with “The student is taking”. Our language will then consist of module
names joined by the Boolean operators “and”, “or” and “not” according to
fixed rules.
We’ll avoid the ambiguity of whether “Probability and Statistics” is one
module or two by using symbols unlikely to occur in a module name to
stand in for “and”, “or” and “not”. Specifically we’ll use ∧ for “and”, ∨ for
“or” and ¬ for “not”. So “Probability and Statistics” is a single module and
“Probability ∧ Statistics” is the two modules “Probability” and “Statistics”
joined by the logical operator ∧, with we interpret as “and”.
For a real online module enrollment system I would probably make an-
other choice, for example using module codes in place of module names,
but the choice above does have a few advantages. Module names are easier
for humans to read and write than module codes. Also, we’re less likely to
confuse the ambiguous English words with the precise meanings I’ll soon
give to the Boolean operators. The main reason I’ve chosen to use ∧, ∨ and
¬ though is that these are the stand symbols in mathematical logic, which
will be one of the main topics of this module.
What would have appeared in the course handbook as “You must take
Probability and Statistics or Algebra and Geometry” is now “Probability ∧
Statistics ∨ Algebra ∧ Geometry”. We still need to resolve the ambiguity
about how to split this up, which we’ll do by declaring that ¬ takes
precedence over ∧, which in turn takes precedence over ∨. By precedence
we mean that it binds more tightly, so given the choice between binding
the names “Probability” and “Statistics” with an ∧ or “Statistics” and
“Algebra” with an ∨ we prefer to bind “Probability” and “Statistics”
together first. Only after “Probability” and “Statistics” have been bound
together with ∧ and “Algebra” and “Geometry” with ∧ do we bind the
two larger phrases “Probability ∧ Statistics” and “Algebra ∧ Geometry”
together with ∨.
While not strictly necessary, it is convenient to allow the use of parenthe-
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ses to override these precedence rules. The alternative interpretation de-
scribed earlier could then be written as “Probability ∧ (Statistics ∨ Al-
gebra) ∧ Geometry”. This could also expressed without parentheses as
“Probability∧ Statistics∧Geometry∨Probability∧Algebra∧Geometry”,
but this is longer and harder to read than the version with parentheses.
Note that this use of the word precedence may not match your intuitions.
If you parse statements in a top down manner, which is the way humans
generally do, then you start with the operators of lowest precedence and
work your way up to those of higher precedence. The terminology above,
which is standard, assumes a bottom up parsing, starting from the smallest
units and gradually combining themuntilwe have the full statement. Most,
but not all, parsing algorithms used by computers work this way.

Logic
If the language above looks familiar, except for the role of module names,
that’s because it’s one that’s often used. With search terms in place of mod-
ule names, and with the usual English names for the Boolean operators in
place of the symbols ∧, ∨ and ¬, it’s the language used by search engines,
not just the bigweb search engines but also the one used to search for books
or articles in our library.
This formal language, with Boolean variables in place of module names,
combined with various axioms and rules of inference we’ll discuss
later, forms what’s called the predicate calculus, also known as zeroeth
order logic. Beyond zeroeth order logic there is first order logic, which
introduces new language elements like quantifiers, and axioms and rules
of inference for them. In a real module enrollment system there would
be advantages to introducing at least some elements of first order logic.
For example, suppose we want to implement the simple rule “You must
take Probability and Statistics and no other modules.” The statement
“Probability ∧ Statistics” is not a faithful translation of this rule into our
formal language because it doesn’t enforce the “and no other modules
part. The correct translation of this into our formal language would look
like”Probability ∧ Statistics ∧ ¬Algebra ∧ ¬Geometry …” where the “…”
continues on to list every other module offered. That’s awkward. It would
be much better to be able to say something like “Probability ∧ Statistics ∧
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∀ 𝑥 . (( 𝑥 = Probability ) ∨ ( 𝑥 = Statistics ) ( ∨ ¬ x ))” where ∀ is the
quantifier “for all” and = is what you think it is. 𝑥 here is a variable, which
in this context is a placeholder for an arbitrary module. The disadvantage
of using first order logic is that it complicates parsing input from staff,
which we’ll talk more about shortly, and checking input from students,
which we’ll talk about later. For purposes of this simple example we will
therefore stick to zeroeth order logic and postpone any further discussion
of first order logic until later in the module.
Most humans would not naturally write “and no other modules”, thinking
it obvious from context. It would then be implicit in “You must take Prob-
ability and Statistics”, but might not be in other uses of the word “and”.
In the sentence “Before taking Forecasting you must take Probability and
Statistics” it seems unlikely that there’s an implicit “and no othermodules”.
The word “and” in English therefore has at least two different interpreta-
tions, which we can usefully refer to as “exclusive ‘and’ ” and “inclusive
‘and’ ”. English is far from unique in failing to distinguish between these
but some other languages, like Japanese, do.

Parse trees
The process described above, splitting a statement up into successively
smaller phrases until we get to the simplest possible components, is called
parsing. A common way to describe the result, both for natural and for
formal languages, is with tree diagrams. There are two slightly different
ways to do this, which are perhaps best illustrated by examples.
The first three accompanying figures give abstract syntax trees for three dif-
ferent parsings of “Probability ∧ Statistics ∨ Algebra ∧ Geometry”. These
are followed by three parse trees for the same three parsings.
A tree has elements called nodes and has arrows from one node to another.
The nodes with no arrows going out are called the leaves of the tree. There
is a single node with no arrows coming in, which is called the root. In the
case of the syntax trees the leaves are all labelled by module names and
the other nodes are all labelled by Boolean operators. In the case of the
parse trees the leaves are labelled either by module names or by Boolean
operators and the other nodes are unlabeled.
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Figure 1: Syntax tree for ((Probability ∧ Statistics) ∨ (Algebra ∧ Geome-
try))

Figure 2: Syntax tree for ((Probability ∧ (Statistics ∨ Algebra)) ∧ Geome-
try)
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Figure 3: Syntax tree for (Probability ∧ ((Statistics ∨ Algebra) ∧ Geome-
try))

Figure 4: Parse tree for ((Probability ∧ Statistics) ∨ (Algebra ∧ Geome-
try))
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Figure 5: Parse tree for ((Probability ∧ (Statistics ∨ Algebra)) ∧ Geome-
try)

Figure 6: Parse tree for (Probability ∧ ((Statistics ∨ Algebra) ∧ Geome-
try))
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These visual representations are nice, but all computers, and many hu-
mans, are blind. It’s possible to describe the same information in a dif-
ferent way, with fully parenthesised expressions. The fully parenthesised
expressions corresponding trees above are
((Probability ∧ Statistics) ∨ (Algebra ∧ Geometry))

((Probability ∧ (Statistics ∨ Algebra)) ∧ Geometry)

(Probability ∧ ((Statistics ∨ Algebra) ∧ Geometry))
Parse trees correspond exactly to fully parenthesised expressions. Each
pair of balancedparentheses corresponds to a non-leaf node in the diagram.
The internal representation a computer would use for a tree data structure
isn’t any of these. The visual description and the parenthesised expressions
are just for humans.
The fact that there are two possible abstract syntax trees for “Probability
∧ (Statistics ∨ Algebra) ∧ Geometry”, depending on which ∧ has higher
precedence, shows that our grammar isn’t fully unambiguous, even after
specify the precedence of operators.
When parsing statements in a formal language with a program one often
wants to construct a data structurewhichmirrors this structure. For simple
enough languages though it may be possible, as we’ll see, to use simpler
data structures than a tree.

Graphs
A tree is a special case of a more general structure called a directed graph.
A graph has nodes, which in the context of graph theory are usually called
vertices, and arrows, which in this context are called edges. Note that this
usage of the word “graph” has no relation at all to the graph of a function.
There are also undirected graphs, where the edges that connect vertices
don’t have a preferred direction.
Graphs appear in a lot of contexts, and we’ll see them again in later chap-
ters. Here I’ll just give two examples, one of a directed graph and one of
an undirected graph.
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One common use of graphs is in understanding the structure of computer
programs. The call graph of a program shows which functions call which.
I wrote the following Racket program, for example, to solve Max Bezzel’s
classical problem of finding all configurations of 8 queens on a chessboard
such that none of them can reach any of the others in a single move.
#lang racket
(require srfi/1)
(define (id x) x)
(define (curry f arg1) (lambda (arg2) (apply f (list arg1 arg2))))
(define (rcurry f arg2) (lambda (arg1) (apply f (list arg1 arg2))))
(define (interval a b) (unfold (curry < b) id (curry + 1) a))
(define (shift slope s)

(if (null? s)
'()

(cons (car s) (map (rcurry + slope) (shift slope (cdr s))))))
(define (duplicates? s)
(any (lambda (t) (member (car t) (cdr t))) (unfold null? id cdr s)))

(define (okay? slope s) (not (duplicates? (shift slope s))))
(define (queens n)

(filter (curry okay? 1)
(filter (curry okay? -1)

(permutations (interval 1 n)))))
This in fact solves the problem for a chessboard of arbitrary size, not just
the classical one of size eight. I’m not going to explain how it works, but
there are eight functions defined and the first step towards understanding
how this works would be to see which functions call which other functions,
which is described by the call graph in the figure.
For an example of an undirected graph we consider a different classical
puzzle, first posed by Alcuin of York:

Homo quidam debebat ultra fluvium transferre lupum,
capram, et fasciculum cauli. Et non potuit aliam navem
invenire, nisi quae duos tantum ex ipsis ferre valebat. Prae-
ceptum itaque ei fuerat, ut omnia haec ultra illaesa omnino
transferret. Dicat, qui potest, quomodo eis illaesis transire
potuit?
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curry
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duplicates?
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Figure 7: Call graph of the queens program

English was in fact Alcuin’s native language but it probably wouldn’t have
helped you very much if had written this in English rather than Latin since
he died a little over twelve centuries ago and English has changed quite a
bit since then. Here’s my own rough translation:

A man needed to transport a wolf, a goat and head of cabbage
across a river. The only boat he could find could not accommo-
date two of these. The task, then, was to transport all of them
safely. Say, if you can, how they all managed to cross safely.

As with most applied problems, we are give a statement which is missing
some important information, which we will have to fill in. We must, for ex-
ample, give a precise meaning to the word “safe”. Wolves eat goats. This
practice is, from the point of view of the goat, unsafe.Goats eat cabbage.
This practice is, from the point of view of the cabbage, unsafe. Of course
we need to state all the negative assumptions as well.Of course we need
to state all the negative assumptions as well. Wolves don’t eat cabbages.
Cabbages don’t eat anything. Nothing eats wolves. Nothing eats itself. In
Alcuin’s time the vast majority of the population lived from agriculture.
These facts must have been obvious to his readers. In our modern urban
world it is better to make these assumptions explicit. There is an additional
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assumption here, which, while not necessary to the formulation of the prob-
lem, is required for it to make sense. Wolves, goats and heads of cabbage
are similar in size and shape, at least as far as fitting in boats is concerned.
This makes me suspect that Alcuin wasn’t really any more agriculturally
inclined than I am. There is another implicit requirement in the problem,
that the man and boat always travel together. We could add this also to the
statement of the problem, but there is a better option. Do we really need
both the man and the boat? Physically, of course we do. Mathematically,
one of them is redundant, precisely because they always travel together. It
doesn’t matter much which we keep, but I will choose the boat.
We can now write a more precise form of the problem:

• We have a boat, cabbage, goat and wolf on one bank of a river.
• We want the boat, cabbage, goat and wolf on the other bank of the

river.
• The allowed operations consist of transferring the boat and at most

one of the other three from either bank to the other, without leaving
the goat with either the wolf or the cabbage on opposite bank from
the boat.

We can illustrate this with an undirected graph, in the sense described
above, where the vertices represent the possible states of the system, i.e.
who is on which bank, and the edges represent the allowed transitions.
There are 24 possible ways to assign the boat, cabbage, goat and wolf to
a river bank but six of those violate our safety constraint, leaving 10 ver-
tices. Their labeling should be more or less self-explanatory. The symbol ‖
represents the river, and b, c, g, and w stand for “boat”, “cabbage”, “goat”
and “wolf”, respectively. There should be an edge connecting each pair of
vertices where the boat and at most one of the cabbage, goat or wolf move
from one bank to the other.
Once you have drawn the graph it’s easy to find a solution to the problem.
There are in fact exactly two solutions with the minimal possible number
of crossings, which is seven. Of course with more realistic assumptions the
set of solutions might be larger.
We will meet more practical applications of graphs later.
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Figure 8: Transporting cabbages, goats and wolves

Interpretation
After this digression on trees and graphs we now return to our module
enrollment problem.
If you’ve been reading very carefully you may have noticed that one of the
ambiguities discussed previously has not been resolved, the one between
inclusive and exclusive “or”. Which one does ∨ indicate? The perspec-
tive taken by the theory of formal systems is that this distinction is not
part of the language itself but rather of its interpretation. The language
is described by its grammar and determines which statements are to be re-
garded as grammatically correct and how those statements are to be parsed
but does not specify any particular interpretation of the language. The dis-
tinction between inclusive and exclusive “or” isn’t needed for determining
grammatical correctness or for parsing so it’s not part of the language.
Note that this is different from the way we normally talk about natural
languages. We regard the interpretation as part of the language for natural
languages. The terms linguists use are syntax and semantics. Syntax deter-
mines grammatical correctness andparsingwhile semantics givesmeaning
to statements which are grammatically correct. A formal language is pure
syntax.
People often refer dismissively to “arguments about semantics”, which is
odd since semantics is what gives meaning to statements.
In reality no one, except possibly as an example in a module like this one,
would create a formal language without having an intended interpretation
in mind though. One reason we make the distinction between language
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Figure 9: https://xkcd.com/1134
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and interpretation is to allow the same language to have multiple interpre-
tations.
The interpretation we’ll give to our model module enrollment language is
that ∨ is always an inclusive “or”. The interpretations of ∧ and ¬ are the
usual meanings of “and” and “not”, or at least what are usually referred to
as their usualmeanings. Asmentioned earlier “and” can also be used in En-
glish in an exclusive sense, but we will always use it inclusively. With this
interpretation the remaining ambiguity we saw earlier, concerning prece-
dence between ∧’s or between ∨’s is seen to be harmless, because ∧ and
∨ are associative operators. We’ll talk more about associativity when we
discuss semigroups, monoids and groups later. Module names are inter-
preted as meaning that the student in question is taking that module.
If the “or” in “Probability and Statistics or Algebra and Geometry” in a
course handbookwas intended exclusively then in our formal languagewe
will therefore need to replace it with something like “Probability ∧ Statis-
tics ∧ ¬ Algebra ∧ ¬ Geometry ∨ ¬ Probability ∧ ¬ Statistics ∧ Algebra
∧ Geometry” in order to achieve the desired interpretation. If the “and”’s
are also meant exclusively then we will need something even more compli-
cated.
Strictly speaking our language has multiple interpretations, one for each
student. We’ll see more interesting examples later where it’s useful for a
language to admitmultiple interpretations. We’ll also see that this unavoid-
able for all but the simplest systems.

Expressiveness
It’s possible for one language, with its intended interpretation, to be more
expressive than another language, also with its intended interpretation, in
the sense that any meaning which can be conveyed with the second can
be conveyed by the first, but not vice versa. If we, for example, dropped
the Boolean operator ¬ from our language above we would obtain a less
expressive language because there would be some module selection rules
we simply couldn’t express.
On the other hand sometimes one language is larger than another without
being more expressive. The language described above has parentheses, for
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example, but would be equally expressive without them. We’ve already
seen an example above of replacing a statement with parentheses with one
without parentheses which has the same interpretation and this can in fact
be done to any statement. Similarly our language doesn’t have an exclusive
“or” but we could add one, denoted for example by ≢, without any gain in
expressiveness. We’ve already seen an example of converting a statement
with an exclusive “or” to one without any and this also can be done in gen-
eral. A further possible addition to our language would be an “implies”
operator. The usual notation for this operator is ⊃. The statement “Statis-
tics ⊃ Probability” wouldmean that if a student is taking Statistics they are
then also taking Probability, i.e. that Probability is a prerequisite or corequi-
site of Statistics. This also gives no gain in expressiveness. An equivalent
statement without ⊃ is “¬ Statistics ∨ Probability”. If this looks wrong
then you may need to remind yourself of our precedence rules. Since ¬ is
higher precedence than ∨ the statement will be parsed as “(¬ Statistics) ∨
Probability” rather than “¬ (Statistics ∨ Probability)”.
Is it worth adding language features which don’t make a languagemore ex-
pressive? It often is, although such features are referred to dismissively as
“syntactic sugar” by some authors. The equivalent versions of statements
without the feature are often longer or harder to read than the versions
with them, as we’ve seen. But there’s a trade-off here. Adding language
features may make it easier to craft a statement with your desired interpre-
tation but it will make your language harder to parse and will also make it
harder to reason about the language.

Parsing
I haven’t given a purely formal description of our example module selec-
tion language. We’ll see how to do that later. Hopefully I have described
it in enough detail that you can recognise which statements are grammati-
cally correct andwhich, like “Probability Statistics ) ∧∨ (Geometry¬” are
not grammatically correct, even though they are built from the same pieces.
You can probably also mentally parse grammatically correct statements, at
least if they’re not too long and complicated. Whether you could write a
parser for it is another matter. We have a certain level of parsing built in
which is how even very small children can learn languages, but this pro-
cess is mostly subconscious, which is why it’s hard to write a parser even
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for a language we would have no trouble parsing intuitively.
I’m not going to construct a parser for the module enrollment language
described above. I could, but it would be quite complicated despite the
apparent simplicity of the language. It would also be largely pointless, for
reasons I’ll explain soon. I will describe a parser for a closely related lan-
guage though.

Infix, prefix and postfix
Our notation for the Boolean operators ∧ and ∨ is what’s called infix nota-
tion, where the operator is written between its operands. Alternatives are
prefix notation, where it’s written before the operands, or postfix notation,
where it’s written after them. The prefix version of “Probability ∧ Statistics
∨ Algebra ∧ Geometry” is
(∨ (∧ Probability Statistics) (∧ Algebra Geometry))
while the postfix version is
((Probability Statistics ∧) (Algebra Geometry ∧) ∨)
The prefix version may look familiar if you’ve ever seen any of the many
variants of the programming language LISP, the second oldest program-
ming language still in regular use.
The parentheses show the structure of the subphrases but aren’t really nec-
essary. There is no other way to split these statements. With prefix or
postfix notation we also don’t need precedence rules.

A parser for the prefix language
It’s much easier to write a parser for a prefix or postfix language than an in-
fix one. In fact here’s a simple parser for the prefix version of our language,
without the unnecessary parentheses.
The boring bit of the parser is the lexical analyser, the bit which separates
the input stream into the three Boolean operators ∧, ∨ and ¬ and the mod-
ule names. We’ll call these tokens. This is easy for our language, sincewe’ll
interpret any any string of characters other than ∧, ∨ and ¬ as a module
name. Checking whether the string corresponds to some actually existing

24



module is not the lexical analyser’s problem, althoughwe could havemade
it part of the lexical analyser’s job. Howmuch work, if any, the lexical anal-
yser should do is a design decision. I will talk later about how a lexical
analyser splits input into tokens but for now we’ll just assume we have a
lexical analyser and that our input is split into tokens, which the parser
reads in one at a time.
Slightly simpler than an actual parser is a grammar checker. The only data
structure this needs is a single integer, which we’ll call the counter. The
is initialised to 1. When the grammar checker reads an ∧ or an ∨ it incre-
ments the counter. When it reads amodule name it decrements the counter.
When it reads a ¬ it does nothing. If the value of the counter reaches 0 at
the end of the input, but not before, then the input is grammatically correct.
Otherwise it isn’t. Here’s the input “∨ ∧ Probability Statistics ∧ Algebra
Geometry” togetherwith the value of the counter at each point in the input:
1 ∨ 2 ∧ 3 Probability 2 Statistics 1 ∧ 2 Algebra 1 Geometry 0
In the theory of formal languages what I’ve just called a grammar checker
is called a recogniser.
We can turn this into an abstract syntax tree by scanning through for se-
quences of tokens where the value of the counter remains at least as high
as its value at the start of the sequence until the end of the sequence, where
it’s 1 lower. The seven sequences with this property in our example are
1 ∨ 2 ∧ 3 Probability 2 Statistics 1 ∧ 2 Algebra 1 Geometry 0
2 ∧ 3 Probability 2 Statistics 1
1 ∧ 2 Algebra 1 Geometry 0
3 Probability 2
2 Statistics 1
2 Algebra 1
1 Geometry 0
For each of them we have a node in our tree, which we will label with the
first token of the sequence. Whenever one sequence contains in another
we’ll draw an arrow from the first to the second, unless there’s an inter-
mediate sequence, i.e. one which contains the second and is contained in
the first. The result is the tree in the accompanying figure, which we saw
earlier for the infix version of the same statement.
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Figure 10: Syntax tree for ∨ ∧ Probability Statistics ∧ Algebra Geometry

The parse tree is similar to the one we saw earlier, but the order of the
children is different, as shown in the accompanying diagram.

Figure 11: Parse tree for ∨ ∧ Probability Statistics ∧ Algebra Geometry

A parser for the postfix language
It’s equally easy to write a parser for the postfix version. Again we’ll start
with a recogniser. The recogniser has a counter initialised to 0. When it
reads a module name it increments the counter. When it reads an ∧ or
an ∨ it decrements the counter. When it reads a ¬ it does nothing. If the
counter remains positive until the end of the input, and is equal to 1 there,
then the input is grammatically correct. Otherwise it is not.
Here is the input “Probability Statistics ∧ Algebra Geometry ∧ ∨” deco-
rated with the values of the counter at each stage:
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0 Probability 1 Statistics 2 ∧ 1 Algebra 2 Geometry 3 ∧ 2 ∨ 1
Constructing an abstract syntax tree is similar to the case of the prefix lan-
guage. The nodes correspond to sequences of tokens where the value of
the counter is 1 higher at the end than the start and is always higher in
between than at the start, and we label each node with its final token. The
abstract syntax tree for the input above is the same as for the correspond-
ing input for the prefix parser, while the parse tree again differs only in the
order in which the children of each node are listed.

Parser generators
It’s probably not obvious that the parsers described above are correct. It’s
also probably not obvious how you would construct a parser for our origi-
nal, infix, language. People realised early on that generating parsers is both
a specialised skill and one which can be automated. There are programs,
called parser generators, which take a description of a formal language and
generate a parser for it. For them to be able to do this the description needs
to be in a suitable format. In other words one needs a formal language for
the description of formal languages. If you’ve written such a parser gener-
ator you can even apply it to its own language to generate another parser
generator!
Writing a parser generator is generally harder than writing a parser, and
proving a parser generator always generates correct parsers is generally
harder than proving that any individual parser is correct, but the great
advantage is that in principle you only need to do the work once.

A simple module selection checker
If we have a parser for ourmodule enrollment language thenwe canwrite a
recursive procedure for checking a student’s module choices, starting from
the abstract syntax tree. The procedure takes as input a node of the tree and
has as output a Boolean, i.e. the value “true” or “false”. When called on a
node labelled by amodule name it checkswhether the student has selected
themodule, returning “true” if so and “false” if not. When called on a node
labelled ¬ it calls itself on the node at the end of the outgoing arrow and
returns “true” if that call returned “false” and vice versa. When called on
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a node labelled ∧ it calls itself on each of the nodes at the end of the two
outgoing arrows and returns “true” if both of those calls returned “true”
and “false” otherwise. When called on a node labelled ∨ it calls itself on
each of the nodes at the end of the two outgoing arrows and returns “false”
if both of those calls returned “false” and “true” otherwise.
Applying this procedure to the root of the abstract syntax tree for amodule
selection rule tells youwhether the student’smodule selections are allowed
by the rule.
This checker works equally well regardless of whether we chose the infix,
prefix or postfix version of our input language, since they all have parsers
which produce the same abstract syntax tree.

A simpler checker
Except for being recursive the procedure described above is fairly simple.
It does depend on having a parser though, and parsers are not simple. For
the postfix version of the language it’s possible to avoid the parsing stage
entirely and write a simple checker which works directly on the unparsed
statements.
Our simple checker needs a stack, but no other data structures. A stack is
a simple data structure with only three operations. We can push a value
onto the top of the stack or pop the value currently at the top off of the
stack. We can also check whether the stack is currently empty.
Our procedure starts with an empty stack and reads tokens one by one
from the statement expressing the module rule. When it reads a module
name it pushes a 0 onto the stack if the student has selected the module
and pushes a 1 onto the stack if the student has not. When it reads a ¬ it
pops a value from the top of the stack and pushes 1 minus that value onto
the stack. When it reads an ∧ it pops two values off of the stack and pushes
their maximum onto the stack. When it reads an ∨ it pops two values off of
the stack and pushes their minimum onto the stack. After reading all the
tokens there is one value on the stack. The student’s choices comply with
the rule if and only if that value is 0.
Here is the statement “Probability Statistics ∧Algebra Geometry ∧∨” dec-
oratedwith the state of the stack after reading each token, if the student has
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selected “Statistics” and “Algebra” but no other modules. To make things
compact the stack is written horizontally, with the left hand side being the
“top”.
Probability 1 Statistics 0 1 ∧ 1 Algebra 0 1 Geometry 1 0 1 ∧ 1 1 ∨ 1
The final value is 1, meaning the selection does not comply with the rule.
If you’ve been wondering what the counter in our recogniser for the
postfix language represented you now have an answer: it’s the size of
the stack. The contents of the stack depend on the individual student’s
module choices but its size doesn’t.
One minor comment is that this module selection checker is using 0 and 1
as substitutes for the Boolean values “true” and “false”, in that order. With
this convention “and” corresponds to a maximum and “or” to a minimum.
Using 0 for “true” and 1 for “false” might seem odd but it has the advan-
tage that ∧ corresponds to a maximum and ∨ to a minimum, which is easy
to remember because the arrow pointing upward means that we take the
higher of the two numbers and the arrow pointing downwards means we
take the lower one. Of course it would have been possible to use the re-
verse convention, with 0 for “false” and 1 for “true”, with relatively minor
modifications to the algorithm.
You could write a similar checker for the prefix version of the language but
it would have to read tokens in reverse order.

Idealised machines
It’s useful to think of various types of idealised machines, with varying
levels of complexity, and classify computations by which of these idealised
machines can perform them.
In this classification there’s a maximally powerful machine, which should
be able to perform any calculation which can be performed. This is called
a Turing machine. Those will be described much later in the module.
The simplest useful machine in this hierarchy is what’s called a finite state
automaton. It has a single state variable, which can take only finitely many
values, and must read its input one token at a time without backtracking.
Our grammar checker for the postfix version of our language barely fails to
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qualify. Its state is completely described by the counter but it can take any
non-negative integer as its value and there are infinitelymanynon-negative
integers.
A finite state automaton can be conveniently illustrated by a directed graph,
where vertices correspond to possible states and edges correspond to the
allowed state transitions. More information is needed to give a complete
description of the finite state automaton, like which state is the initial state
and which tokens in the input cause which state transitions. The accompa-
nying figure gives an example.
We’ll discuss such diagrams in more detail later but I’ll give a quick ex-
planation now. The alphabet accepted by this finite state automaton is the
symbols P, S, A and G. Each state corresponds to a vertex, indicated by a
circle or a double circle. The doubly circled vertices are accepting states,
which means that if we are in one of those states when the input ends then
the input is accepted. If the input endswhenwe’re at a singly circled vertex
then it is rejected. Each possible transition is indicated by an edge, i.e. an
arrow. These edges are labelled by the symbols which cause the transition.
The initial state is the one on the left with the arrow from nowhere. This
automaton has been constructed in such a way that it will accept any input
in which both P and S appear, or both A and G.
Intermediate in complexity between the finite state automaton and the Tur-
ingmachine is what’s called the pushdown automaton. This is an idealised
machine whose only data structure is a single stack. Like the finite state au-
tomaton it must read its input one token at a time. The state of the machine
is fully described by the contents of this stack. Our postfixmodule selection
procedure is an example of a pushdown automaton.
There are a variety of visual representations of pushdown automata but
none seem to be as standard as the one for finite state automata.

A hierarchy of languages
Corresponding to the hierarchy of idealised machine types there is a hier-
archy of languages, with languages classified by which idealised machines
are powerful enough to recognise the language, i.e. identify grammatically
correct statements in the language. Languages which can be recognised
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by a finite state automaton are called “regular”. Languages which can
be recognised by a pushdown automaton are called “context free”. Lan-
guages which can be recognised by a Turing machine are called “recur-
sively enumerable”.
We know that the prefix and postfix versions of our module enrollment
language are context free, because we’ve described an algorithm for recog-
nising them which could be implemented by a pushdown automaton.
I didn’t actually describe those algorithms in that way, instead using a non-
negative integer as a state variable, but we can simulate non-negative inte-
gers with a stack. Zero is the empty stack. We increment by pushing some-
thing onto the stack and decrement by popping something off. What we
push or pop is irrelevant. The size of the stack at each stage is what we
earlier referred to as the counter.
We may strongly suspect that those languages are not regular, but we
haven’t proved that yet. Whether the infix version of our module selection
language is context free is a question we’ll return to later.
It’s also possible to characterise these classes of languages purely in terms
of their grammar, without reference to any idealised computing machine.
This characterisation is useful because it’s usually easier to write down a
grammar for a language than to design an idealised machine to recognise
it.

Satisfiability
One rather serious problem with our rule-based approach to the module
enrollment problem is that it’s possible inadvertently to create a set of rules
which can’t be satisfied by any set of modules a student might choose. A
simple example would be the single rule “Probability ∧ ¬ Probability”. Of
course it’s unlikely anyone would create such a rule accidentally but it’s
easy to imagine a set of rules each of which individually seems fine but
which, taken together, have the unintended consequence of ruling out all
possible module selections.
It’s possible to prove that a set of rules can be satisfied by exhibiting a mod-
ule selection which satisfies them. It’s possible to prove that they can’t be
satisfied by checking all possible module selections. This works in theory
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because the set of modules, and hence the set of sets of modules, is finite.
For any university with a realistic number of modules checking all possible
module selections would never work from a practical point of view. Nev-
ertheless we say the satisfiability problem in this context is decidable, be-
causewe could construct a Turingmachinewhichwould eventually answer
the question. For more complicated languages the satisfiability problem is
often undecidable even in theory.
Since our language is essentially that of zeroeth order logic we can borrow
satisfiability checking algorithms from there. These methods are faster in
practice than checking all possibilities but their theoretical worst case com-
plexity is poorly understood.
I’ve just described satisfiability as a property of a statement in a language,
but this isn’t quite correct. It’s a property of the statement, language and in-
terpretation. Without the interpretation we wouldn’t be able to determine
when the statement is true.

Tautologies and consequences
A less serious problem is that it’s possible to specify redundant rules. The
most extreme form is a rule which is always satisfied, like “Probability ∨
¬ Probability”. These are called tautologies. The problem of identifying
tautologies is in some sense dual to that of identifying unsatisfiability. In-
stead of looking for rules which can never be satisfied we’re looking for
ones which are always satisfied.
A tautology is a special case of a consequence. One statement is a conse-
quence of others if it is always satisfied whenever they are. A tautology
is a statement which is a consequence of the empty set of statements. The
question of whether a statement in our language is a tautology is decidable,
at least in a theoretical sense. More generally, the question of whether one
statement is a consequence of a list of other statements is decidable, in the
same sense. Whether these questions are decidable in a practical sense is
another matter entirely.
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Rules of inference
The definition for a consequence given above requires checking a very large
number of possibilities. To verify that “Probability ∧ Statistics ∨ Algebra
∧ Geometry” is a consequence of “Probability ∧ Statistics” we would have
to check all possible module selections and confirm that all the ones which
satisfy the second statement also satisfy the first one. That’s tedious and
unnecessary. If A and B are grammatically correct statements then “A ∨ B”
is always a grammatically correct statement and is a consequence of A and
also a consequence of B. Transformations like this which take statements
and give you consequences are called “rules of inference”. The soundness,
or validity, of a rule of inference, the property that the statements they pro-
duce are actually consequences, depends on the interpretation. The rule
for ∨ given above is a sound rule of inference for our system with its in-
tended interpretation.
Writing down sound rules of inference can be tricky. It might seem obvious
that if A and B are each grammatically correct statements then “A ∧ B” is
a grammatically correct statement and that A and B are both consequences
of it. This unfortunately isn’t true. “Probability ∧ Statistics ∨ Algebra ∧
Geometry” is grammatically correct statement, as are “Probability” and
“Statistics ∨ Algebra ∧ Geometry”. The second of these is indeed a conse-
quence of “Probability ∧ Statistics ∨ Algebra ∧ Geometry” but the first is
not. There are module selections for which the statement “Probability ∧
Statistics ∨ Algebra ∧ Geometry” is satisfied but the statement “Probabil-
ity” is not. The student could, for example, select Algebra and Geometry,
and possibly various othermodules, but not Probability. The problem here
is that this ∧ is an unnatural place to break the expression “Probability ∧
Statistics ∨ Algebra ∧ Geometry”. It’s possible to express this in terms of
the abstract syntax tree. Breaking a statement into two pieces using an ∧
at the root of its abstract syntax tree is safe. Breaking it at an ∧ elsewhere
in the tree is dangerous.
Changes to the language can help. For the prefix version of the grammar
it is true that if A and B are grammatically correct then “∧ A B” is gram-
matically correct and they are consequences of it. The same is true for the
postfix version, except now the consequence is “A B∧”. For the fully paren-
thesised infix language it’s true that if A and B are grammatically correct
then so is “( A ∧ B )” and they are consequences of it. In none of these
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cases does the rule of inference need to refer to the abstract syntax tree.
Our choice of language, with infix notation andwith parentheses used only
where needed to override precedence rules, turns out to be a particularly
unfortunate one.

Formal systems
A formal system is a language defined by a grammar together with a set of
axioms, and a set of rules of inference. The rules of inference should refer
only to the language and grammar, not any particular interpretation. An
interpretation is sound if the axioms are true in that interpretation and the
rules of inference when applied to true statements generate only true state-
ments. Statementswhich can be derived from the axioms using the rules of
inference are called theorems and any such derivation is called a proof of
the theorem. Theorems are true in any sound interpretation. A true state-
ment in a particular sound interpretation need not be a theorem though.
This will certainly be the case if there is another sound interpretation in
which the statement is false.
The above definition of theorem and proof are the one used by logicians.
Mathematicians tend to use the terms somewhat differently. Mathemati-
cians typically refer to something as a theorem only after a proof has been
found. They refer to a proof in the logician’s sense as a formal proof. By an
informal proof theymean a convincing argument that the statement is true
in the intended interpretation or interpretations. This is necessarily some-
what vague. What’s convincing to one personmay not be to another. More
worryingly, there’s no way to compare interpretations directly. The writer
and reader of an informal proof may have subtly different interpretations
and the statementmay be true in thewriter’s interpretation and false in the
reader’s. Intermediate between formal and informal proofs we have semi-
formal proofs. A semiformal proof is a convincing argument that a formal
proof exists. This might include, for example, an algorithm for producing
such a formal proof. That’s a viable strategy in caseswhere it’s easier to ver-
ify that the algorithm is correct than actually to run it. We’ll see examples
later.
Should you have more faith in a formal proof than an informal one? Possi-
bly, but not necessarily. Formal proofs havemany advantages. They can be
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checked mechanically. They imply that the statement is true in any sound
interpretation. But mechanically checking only works if the checking algo-
rithm is correct. The interpretation is only sound if the axioms are true and
the rules of inference preserve truth. What assurance do we have on any of
these points? Usually an informal proof! Formal proofs therefore don’t re-
ally rest on any firmer philosophical foundations than informal ones. They
can still be practically useful though. Checking the soundness of an inter-
pretation or the correctness of a verification algorithm is generally a lot of
work but it only needs to be done once. In this way the situation is analo-
gous to the one we encountered earlier with parser generators.
In reality we typically start with a language and interpretation and then
look for a set of axioms and rules of inference. We shouldn’t include any
false axioms or rules of inference which allow us to derive false statements
from true ones. Otherwise we wouldn’t have a sound interpretation. It
would be nice to have finite sets of axioms and rules of inference but some-
times it’s convenient to consider systems where one or both of those sets
are infinite. We should at least insist on an algorithm for deciding whether
or not a statement is an axiom or can be derived from a list of other state-
ments via the rules of inference though.
Ideally we’d like a set of axioms and rules of inference which are large
enough so that all true statements are theorems. For our module enroll-
ment language it’s possible to accomplish this but there are many settings
where it’s not possible. In fact it’s not even possible in what’s just about the
simplest mathematical setting imaginable: the arithmetic of non-negative
integers!

Sets
I’ve referred to sets informally several times above. All of the sets involved
were finite, which is why all the questions we considered were decidable,
again in a theoretical sense. There are infinite sets lurking in the back-
ground though. The set of all possible statements in our language is in-
finite. It is in some sense only mildly infinite though. More specifically,
it is countable, a term we’ll define later. We actually considered multiple
different languages built from the same set of tokens. The infix, prefix and
postfix languages are distinct languages. How many languages are there?
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This requires a definition of language, whichwehaven’t given yet, but there
are infinitelymany, and even uncountablymany, even if we restrict to those
based on the same finite set of tokens. There are however only countably
many grammars so there are languages which cannot be described by a
grammar. There are also only countably many Turing machines so there
are languages which can’t be recognised by any Turing machine, i.e. are
not recursively enumerable.
Later we’ll see a formal language to describe the theory of sets. As we’ve
just seen though, it can’t describe each individual set, because there will
only be countably many statements and the number of sets can’t be count-
able. Set theory is nice and intuitive as long aswe restrict ourselves to finite
sets but rapidly becomes weird when we have to consider infinite sets.

A regular language
The module enrollment problem we’ve been discussing requires input
from staff, about which combinations of modules students should be able
to take, and from students, about which modules each student wants to
take. So far we only have a language for the input from staff. In reality the
students would probably select modules from some sort of web interface,
but for the implementer it would bemuch easier just to provide a language
for their input as well. The simplest such language would have statements
which are just lists of modules. The statement “Statistics Algebra”, for
example, would have the interpretation “I want to take Statistics and
Algebra and nothing else”.
If our language includes all such lists of modules then no parsing is really
needed. The lexical analyser, which splits the input into tokens, i.e. module
names, does all the work.
There’s another option though. At the point where students are entering
their module selections the staff have already entered all the information
about allowed combinations. We could define a language consisting of
precisely those module lists which are allowed. The information collected
from the staff implicitly gives this language a grammar and grammatically
correct just means allowed by the module selection rules. Of course any
change to those rules gives us a new language.
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What sort of language is this? It turns out to be regular. It is possible to cre-
ate a finite state automaton which recognises it. In fact the example of a fi-
nite state automaton I gave you earlier is essentially the one which enforces
the rule “Probability ∧ Statistics ∨ Algebra ∧ Geometry”. I just shortened
each of the module names to just their initial letter to avoid clutter in the
diagram.
One way to construct a module enrollment system would be to use the
following components:

• A parser generator. There are parser generators freely available
which efficiently generate efficient parsers so we don’t need to write
anything.

• A simple lexical analyser. It just needs to distinguish module names
from the Boolean operators ∧, ∨ and ¬ so it’s easy to write. It’s help-
ful if it has an option to throw an error whenever it sees a Boolean
operator. That way it can be used, with the option unset, for input
from staff entering module selection rules and, with the option set,
for input from students selecting modules.

• A grammar for the module rule language, which is the same as the
language of the propositional calculus, written in the languagewhich
the parser generator accepts as input. This is very easy to write since
the grammar is very simple.

• The parser generated from this grammar. This may be complicated,
but it’s generated for you by the parser generator.

• A procedure which converts parsed statements to a grammar for the
language of module selections for which those statements are true.
This is the hardest part andunfortunately is very hard to do efficiently.
It’s possible to arrange that the grammar is a regular grammar.

• The parser generated by the parser generator from that grammar.
Again, this parser will probably be complicated but it’s generated for
us by the parser generator. Since the grammar is regular it could
generate a finite state machine parser, but might choose not to. The
actual parsing isn’t really what’s needed, just the check that the mod-
ule selection is grammatically correct.

I’m not saying you should construct a module enrollment system this way,
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merely noting that you can.

Conclusion
This introduction was intended mainly to introduce a cast of characters
which will play a more prominent role later in the module. Of particular
importance are formal languages, algorithms and computability, zeroeth
and first order logic, grammars, quantifiers, variables, parsing, trees and
graphs, interpretations, extensions of languages and expressiveness, the
hierarchies of languages and idealised machines, satisfiability, tautologies
and consequences, integers and sets.
One important thing to take away from this is that formal languages do not
emerge fully formed from a vacuum. They are designed by humans. They
may be intended to be written and read by humans, by computers, or by
both. That design process involves a number of compromises, for example
between making it possible to express simple ideas with similarly simple
statements on the one hand and making statements easy to parse on the
other. Formal languages tend to be annoying toworkwith. Understanding
those design trade-offs doesn’t necessarily make them less annoying, but
it may at least make the reasons for those annoying aspects clearer.

Languages
We’ll discuss formal languages inmore detail later, after talking about logic
and set theory, but we need at least a rudimentary understanding of formal
languages in order to formalise logic and set theory.

A grammar example
bc is an arbitrary precision calculator. It’s part of the POSIX specification
for Unix operating systems. That specification not only requires a bc pro-
gram to be present but also gives a minimal grammar which it must recog-
nise, which makes it useful as an example. Even this grammar is a bit too
complex as an initial example though so I’ll only use pieces of it.
Grammars are usually specified in some variant of Backus-Naur form. The
specification uses the variant used by yacc, a parser generator. Internet
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RFC’s, the documents which govern the internet, use a different variant,
or really several different variants. I’m going to use yet a different variant,
derived from one of the parser generators used by the Racket program-
ming language, which is more concise than the others mentioned above.
All of these are similar enough that if you have experience with one you
can usually figure out any of the otherswithout even needing to consult the
documentation, unless the grammar writer has used some really obscure
features of a particular one.

Terminology
We need a bit of terminology in order to talk about this and other formal
languages.
Languages have an alphabet consisting of tokens. These might be single
characters or might be strings. Converting a list of characters into a list of
tokens is the job of the lexical analyser. The tokens belong to sets, called
terminal symbols. There are also nonterminal symbols, which we’ll get to
later.
In the example above the alphabet consists of 17 tokens, each a single char-
acter, the decimal point and 16 digits, and there’s a terminal symbol for
each of these.
In this case the lexical analyser doesn’t really have anything to do, but we
could have divided the work between the lexical analyser and the parser
differently. For example, we could have put all the digits into a single token,
DIGIT, in which case the grammar would have looked like
number : integer | "." integer | integer "." | integer "." integer
integer : DIGIT | integer DIGIT
The standard notational convention is that names of terminal symbols are
written in upper case. The parser now doesn’t need to concern itself with
which characters are digits as that’s handled by the lexical analyser.
We could shift even more work from the parser to the lexical analyser, by
deciding that uninterrupted strings of digits are tokens, with the symbol
INTEGER. The parsers grammar is then just a single line.
number : INTEGER | "." INTEGER | INTEGER "." | INTEGER "." INTEGER
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In this case, unlike the previous ones, there are infinitelymany tokens. This
is allowed, butwe’ll still insist on having only finitelymany symbols. When
there are only finitely many tokens it’s clear that we can figure out which
symbol a token belongs to just by comparing it to the finite lists for each
symbol. When we have finitely many symbols but infinitely many tokens
theremust be at least one symbolwith finitelymany tokens, sowe can’t just
examine the lists. There needs to be an algorithm for recognising tokens.
We’ll discuss what kinds of algorithms are allowed later in the chapter on
regular languages.
The symbols we’ve just discussed, the ones which are sets of tokens are
called terminal symbols or just terminals. There are other symbols, con-
veniently called nonterminal symbols or just nonterminals. In the original
grammar above number, integer, and digitwere nonterminals. In fact the
nonterminals are always precisely the things you see listed on the left hand
sides of all the grammar rules.
One of these symbols has a special status. It is called the start symbol. In
the example above number is the the start symbol. The notational conven-
tion I’m using is that the start symbol is always the one on the left hand
side of the first rule in the list.
A context free grammar is a finite set of grammar rules, also sometimes
called production rules. Each of these grammar rules describes possible
ways to build up a nonterminal symbol from other symbols, which might
be terminal or nonterminal. For example, an integer is either just a digit
or is an integer followed by a digit. The | character separates the distinct
possibilities in each case.
You can see from the rule for integer that when I wrote that “each of these
grammar rules describes possible ways to build up a nonterminal symbol
from other symbols” I didn’t mean the word “other” to exclude the possi-
bility of the same symbol occurring on both the left hand side and the right
hand side of a rule. In other words, rules can be recursive. Indeed almost
all interesting languages have recursive rules.
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Example, continued
You shouldn’t assume just because a name is familiar that it means what
you think. In our example
number : integer | "." integer | integer "." | integer "." integer
integer : digit | integer digit
digit : "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"

| "8" | "9" | "A" | "B" | "C" | "D" | "E" | "F"
ACAB is a numberwhile -7 and 5,011,400 are not. There are reasons for this.
A through F are classed as digits to allow for hexadecimal representations
of numbers. Disallowing the commas which traditionally separate groups
of three digits is a design decision. It simplifies processing and avoids the
awkward fact that most of the non-English speaking world uses dots in-
stead of commas, while India uses commas but places them differently.
The minus sign isn’t needed because bc is a calculator and part of its gram-
mar that I omitted earlier is
expression : number | "(" expression ")" | "-" expression

| expression "+" expression | expression "-" expression
| expression MUL_OP expression | expression "^" expression

This is another recursive rule. MUL_OP is in upper case so we recognise
that it must be a terminal symbol. As you might guess from the name
it includes the token * for the multiplication operator but it also includes
a couple of tokens. From this rule we see that a number is an expression
and - followed by any expression is an expression so -7 isn’t a number
but it is an expression. You might have noticed that a - appears in two
different possible expansions of expression. In addition to the expansion
"-" expression there’s also expression "-" expression, which would
allow, for example, 27-9.
In any case, lets try the generative grammar approach and generate some
NUMBERs. We’ll start from the rule for NUMBER and pick possibilities at ran-
dom each time we have to expand a nonterminal or choose a token for a
terminal. Each line will be the result of doing this to the previous line.
number
integer
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digit
7
So 7 is a number. Let’s try again.
number
. integer
. digit
. B
So .B is also a number. Another two attempts:
number
integer
digit
5

number
integer . integer
digit . integer
digit . integer digit
digit . digit digit
5 . digit digit
5 . C digit
5 . C C
So .B, 5 and 5.CC are numbers. Note that the spaces between symbols above,
and in the specification are just there to improve readability and are not
part of the string we’re generating.

Natural languages
Generative grammarwas originally developed for natural languages rather
than for formal languages. As it turns out, natural languages are rather
messy and this model doesn’t fit them fully, but you’ve been exposed to
them for larger so it may be easier to understand some of the concepts in
that context. The usual way to do this is to take words as tokens. What
people in formal languages call an “alphabet” is then not what we would
normally think of as the alphabet of the language but is in fact its full vo-
cabulary.
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The lexical analyser splits a stream of characters into words. This is easy
in a language like English, where we put spaces between words, but more
difficult in a languages like Japanese, which does not. Even for English
things are a bit more complex than just splitting at white space, but let’s
not worry about this now. The set of English words is theoretically finite,
but not in any particularly useful way. There are languages, e.g. Turkish,
where the set of words is arguably infinite. Terminal symbols represent
types of words, often called “parts of speech”, like nouns, verbs, adjectives,
etc. There is a finite, and indeed rather small, set of such terminals. In
formal language theory we generally assume that each token belongs to
one and only one terminal. Some natural languages more or less satisfy
this condition. English very much does not. The word “fast”, for example,
can be a noun, verb, adjective or adverb. Having raised these issues I will
now ignore them, and pretendwehave a lexical analyserwhich can reliably
split our input into tokens, i.e. words, and uniquely identify their terminals,
i.e. parts of speech.
A full grammar for a language like English would be very complicated
but it’s surprisingly easy to write down simplified grammars which are
nonetheless sufficient to parse even fairly complex sentences. The follow-
ing example is from Masaru Tomita:
sentence : noun_phrase verb_phrase | sentence prep_phrase
noun_phrase : NOUN | DETERMINER NOUN | noun_phrase prep_phrase
prep_phrase : PREPOSITION noun_phrase
verb_phrase : VERB noun_phrase
There are four terminals, NOUN, DETERMINER, PREPOSITION and VERB and four
nonterminals, sentence, noun_phrase, prep_phrase, and verb_phrase.
This grammar is clearly recursive, since sentence is defined in terms of
itself, as is noun phrase. Grammars for natural languages are always
recursive.
There are obviously important parts of English, like pronouns, adjectives
and adverbs, which are missing, but we can still parse sentences like
“Masaru saw a man in the apartment with a telescope” with only this
fragment of English grammar. One possible parse tree is given in the
figure. There are many more parse trees for this sentence though. You
might want to see how many you can find.
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Figure 13: Full parse tree for Tomita’s example

A formal language for linear equations
As another example, consider a language for systems of linear equations,
with the grammar
equations : equation | equations "," equation
equation : side "=" side
side : term | side operator term
term : integer | variable | integer variable
operator : "+" | "-"
variable : "w" | "x" | "y" | "z"
integer : "0" | positive_integer | "-" positive_integer
positive_integer : positive_digit | positive_integer digit
digit : "0" | positive_digit
positive_digit : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
As usual, I’ll assume that the lexical analyser strips out whitespace.
The definition of integers is borrowed from an earlier example. I’ve only al-
lowed four variables. For real applications we would probably want more.
An example of a string in this language would be 3𝑧 − 1 = 𝑥, 2𝑦 = 1. Its
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parse tree is as in the figure.

Figure 14: Full parse tree for 3 z - 1 = x , 2 y = 1

Thinking backwards
When I discussed languages earlier it was from the point of view of pars-
ing or at least recognising them. We receive a list of tokens from the lexical
analyser andwant to piece them together into larger and larger phrases un-
til we have one phrase encompassing the whole input. This process should
be entirely deterministic and should terminate at some point.
The way the grammar describes the language is completely the opposite.
Its starting point is the start symbol. It then “expands” that into a list of
other symbols, which are then further expanded. We can only expand non-
terminals. Once we reach a terminal we have to choose from among tokens
composing that terminal and no further expansion is possible. I wrote the
word “expand” in quotation marks because the “expansion” might not be
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any larger than what we started with–it could be a single symbol–and it
could even be smaller–an empty list of symbols.
You should think of the grammar as describing a method for generating
elements of our language. A list of tokens belongs to the language if and
only if this process of expansion starting from the start system could even-
tually produce it. Interesting languages tend to be infinite and the expan-
sion process described above is nondeterministic because of the multiple
possibilities for expanding each symbol, and it need not terminate, so this
isn’t a definition which is testable in any obvious way even when you have
the full grammar specification.
As an approach to linguistics this is called “generative grammar”. It was
developed by Dakṣiputra Pāṇini about two and a half millenia ago.

The language of balanced parentheses
Another interesting example language is the language of balanced paren-
theses, also known as the von Dyck language. This language has only two
tokens, “(” and “)”. It consists of those lists of tokens where we can match
open and close parentheses in such a way that they are nested and occur
in the correct order.
Every element of this language has the same number of (’s and )’s, but
that’s not sufficient. “)(”, for example, does not belong to the language.
We could also allow pairs of “[”’s and ”]”’s or “{”’s and “}”’s, in addition
to (’s and )’s, but won’t, or at least not yet.
A grammar for the language of balanced parentheses is
a : | b ;
b : "(" ")" | "(" b ")" | "(" ")" b | "(" b ")" b
Note the empty space between the : and | in the rule for a. This indicates
that an empty list of symbols is an acceptable expansion for a. We need
this because an empty string has balanced parentheses, trivially, according
to our definition.
Every list generated by these rules has balanced parentheses. Less obvi-
ously, every element of the language can be generated by these rules. Still
less obviously, it can be generated in only one way. I won’t give the proof
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but here’s the key idea: Every non-empty element of the language starts
with a (. This ( must have a matching ). The list of tokens in between has
matching parentheses, as does the list after. Either or both of those lists
could be empty.

The language of palindromes
Palindromes are words or sentences which are the unchanged by revers-
ing the letters. Usually we ignore capitalisation, spaces and punctuation,
so “Anna”, “Bob”, “Eve”, “Hannah” and “Otto” are palindromes, as are
“Cigar? Toss it in a can. It is so tragic.” and “ΝΙΨΟΝΑΝΟΜΗΜΑΤΑΜΗ
ΜΟΝΑΝ ΟΨΙΝ”.
A grammar for palindromes is
palindrome : | non_empty_p
non_empty_p : "a" non_empty_p "a" | "b" non_empty_p "b"

| ... | "z" non_empty_p "z" | "a" "a"
| "b" "b" | ... | "z" "z" | "a" | "b" | ... | "z"

This assumes that the lexical analyser strips out everything which isn’t a
letter of the English alphabet and changes every upper case letter to the
corresponding lower case letter. The “…” isn’t really part of our language
for specifying grammars. I just used it to prevent the specification from
being too long.
It’s important to realise that the following would not be a grammar for the
language of palindromes.
palindrome : | non_empty_p
non_empty_p : letter non_empty_p letter | letter letter | letter
letter : "a" | "b" | ... | "z"
The problem with this grammar is that in the expansions letter
non_empty_p letter and letter letter the two different occurrences
of letter could expand to different letters, so we wouldn’t have a
palindrome.
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More numerical examples
If you only want to allow decimal integers and you want to allow them to
be negative you could use the following grammar:
integer : "0" | pos_integer | "-" pos_integer
pos_integer : pos_digit | pos_integer digit
digit : "0" | pos_digit
pos_digit : "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
We’ve eliminated the digits needed for hexadecimal and allowed our in-
tegers to be negative. There are some further changes. 007 is a perfectly
good integer according to bc’s grammar but is now disallowed. The only
integer allowed to begin with a 0 is now 0 itself. We don’t allow -0 either.
These are design decisions, made to ensure that in this grammar there is
one any only one way to represent each integer as an integer.
It’s possible to encode some basic arithmetic in a grammar. Consider, for
example, the following grammar.
even_integer : "0" | pos_even_integer | "-" pos_even_integer
pos_even_integer : pos_even_digit | pos_integer even_digit
pos_integer : pos_digit | pos_integer digit
even_digit : 0 | pos_even_digit
pos_digit : pos_even_digit | pos_odd_digit
pos_even_digit : "2" | "4" | "6" | "8"
odd_digit : "1" | "3" | "5" | "7" | "9"
The even_integers described by this grammar are precisely the even inte-
gers. This relies on the fact that an integer is even if and only if its last digit
is even.
You can check divisibility by three as well.
multiple_of_3 : "0" | pos_integer_0_mod_3

| "-" pos_integer_0_mod_3
pos_integer_0_mod_3 : pos_digit_0_mod_3

| pos_integer_0_mod_3 digit_0_mod_3
| pos_integer_1_mod_3 digit_2_mod_3
| pos_integer_2_mod_3 digit_1_mod_3

pos_integer_1_mod_3 : digit_1_mod_3

49



| pos_integer_0_mod_3 digit_1_mod_3
| pos_integer_1_mod_3 digit_0_mod_3
| pos_integer_2_mod_3 digit_2_mod_3

pos_integer_2_mod_3 : digit_1_mod_3
| pos_integer_0_mod_3 digit_2_mod_3
| pos_integer_1_mod_3 digit_1_mod_3
| pos_integer_2_mod_3 digit_0_mod_3

digit_0_mod_3 : "0" | pod_digit_0_mod_3
pos_digit_0_mod_3 : | "3" | "6" | "9"
digit_1_mod_3 : "1" | "4" | "7"
digit_2_mod_3 : "2" | "5" | "8"
The multiple_of_3s are just the multiples of three.
How far can we go in this direction? Can we express divisibility by any
integer purely in grammatical terms? As it turns out, yes. Since we can
express divisibility can we write down a grammar for prime numbers? In
this case the answer is more complicated. We can’t construct such a gram-
mar using only rules of the type considered above but we can if we allow
more complicated rules, which replace a list of symbols with another list of
symbols rather than just replacing a single symbol with a list of symbols.

Ambiguous grammars
Almost all of the grammars we’ve considered so far have been unambigu-
ous, in the sense that there’s only one abstract syntax tree we can get from
any given input. One exception was the fragmentary grammar for English.
Grammars for natural languages are almost always ambiguous. The other
exception was the language for expressions which we extracted from the
grammar of the bc utility.
expression
expression + expression
number + expression
integer + expression
digit + expression
1 + expression
1 + expression + expression
1 + number + expression
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1 + digit + expression
1 + 2 + expression
1 + 2 + number
1 + 2 + digit
1 + 2 + 3
and another is
expression
expression + expression
expression + number
expression + digit
expression + 3
expression + expression + 3
number + expression + 3
digit + expression + 3
1 + expression + 3
1 + number + 3
1 + digit + 3
1 + 2 + 3
These differ not just in the order inwhichwe expanded symbols but in how
the expression 1 + 2 + 3 is broken up into phrases. In the first one 1 and 2
+ 3 are expressions joined by a +. In the second 1 + 2 and 3 are expressions
joined by a +.
You can see that these are in fact distinct parsings by looking at the corre-
sponding parse trees.

Figure 15: First parse tree for 1 + 2 + 3
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Figure 16: Second parse tree for 1 + 2 + 3

Strictly speaking these aren’t full parse trees, since they don’t show all the
symbols which are expanded when generating the input. The full version,
with nodes labelled by symbols, is given just for the first of these.
Ambiguous grammars are allowed. In fact there are context free languages
for which no unambiguous grammar exists. It’s also possible, and indeed
common, for an ambiguous grammar and an unambiguous grammar to
define the same language. It’s often easier to write an ambiguous grammar
for a language and often easier to analyse an unambiguous one. In fact
the specification for bc doesn’t require the particular grammar given in the
specification, merely that whatever grammar is used should recognise the
same language as this one generates. There are unambiguous grammars
for this language and an implementation which used one would still be
compliant.

Constructing a parser from a grammar
Can we construct a parser from a grammar description of the type we’ve
just described? Yes. We can even do so in a way which is reasonably effi-
cient. Unfortunately that way is also very complicated to describe. If we’re
willing to sacrifice efficiency canwe do it in awaywhich is relatively simple
to describe? Yes, but there is one way in which this parser will be unsatis-
factory.
Recognisers are easier to construct and understand than parsers so we’ll
start with a recogniser.
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Figure 17: Full parse tree for 1 + 2 + 3
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It’s helpful to think in terms of nondeterministic computation. Normally
we expect an algorithm to tell us what to do at each stage. Our grammar
rules are like an algorithm in that we proceed by steps from a well defined
initial state, one where we have a list consisting of just the start symbol.
Each step takes the first symbol from the list and replaces it with one of the
tokens corresponding to that symbol or expands it into one of the lists of
symbols on the right hand side of a grammar rule for that symbol, depend-
ing on whether it’s terminal or nonterminal. If we expanded a terminal to
a token we check whether that token matches the next input token. If it
does then we remove it and if it doesn’t, either because there are no input
tokens left or because the next one is different from the one we chose, then
the computation terminates unsuccessfully. If we ever reach a point where
there are no symbols left to process we check whether there are any input
tokens left. If there are then the computation terminates unsuccessfully. If
not then it terminates successfully.
Successful termination in the description above means that the input is
recognised as valid, i.e. that it can be generated by the given grammar.
Unsuccessful termination doesn’t mean that the input can’t be generated
though, merely that it wasn’t generated by the particular choices we made.
There might be other choices which would generate it.
This is a recogniser rather than a parser but it’s not too difficult to convert
it into a parser. Each step in the algorithm processes a symbol and we just
need to put this symbol in the correct position in the parse tree, which is
the root in the case of the start symbol or as the child of whichever symbol
we expanded to get it in the case of all the other symbols.
There’s a trick to turn nondeterministic computations into deterministic
ones. Instead of making any particular choice at each step we make all of
them. More precisely, starting from the initial statewewrite down all states
we can reach in a single step. Then we write down all states which can be
reached fromone of those states, also recording the path that led us to those
states. Then we write down all the ones we could reach in a single step
from those, again recording the path that led to each one. Whenever we
write down a state we check whether it satisfies the terminating condition.
If so then we check whether the computation terminated successfully or
unsuccessfully. If it terminated successfully then we’re done. We have the
full path which led us to that state. We’re in the same situation we would
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be in if we had a “lucky guesser”, who made the optimal choice at each
stage, except that it will have taken us longer to get there. If we’re in one
of the unsuccessful terminating states then we don’t need to, and indeed
can’t, continue looking for continuations of that computational path butwe
can consider continuations from the other states on our list, if there are any.
Only if all of our paths reach a dead end does the computation terminate
unsuccessful. Typically it doesn’t terminate at all though.
This algorithm can conveniently by represented by a tree, with the initial
state at the root andnodes for each possible computational path and arrows
from each of those to its one-step continuations, which implies branching
at each node where there are multiple choices for the next step. Unless
we specify an upper bound on the number of steps this tree could well be
infinite. It is for the parsing problem we just considered, which is why I
won’t attempt to draw the tree.
Does this work? That depends on whether the available choices at each
stage are finite and also what you mean by work. If there are only finitely
many choices available in each state and there is a solution, i.e. a computa-
tional path which terminates successfully then this method will find it. In
fact the method can be modified to cope with an infinite variety of choices,
as long as it’s not too infinite. What the method can’t be relied on for is to
tell us when there is no solution. It could tell us, if all paths have reached a
dead end. It’s certainly possible though that there is no solution but there’s
always something else to try so the algorithm will just run forever.
For the parsing problem you should not do this. There are algorithms
which aremuch faster andwhich are guaranteed to tell youwhen the prob-
lemhas no solution, i.e. when the list of tokenswhich is your input does not
belong to the language. You should use one of those instead. They aren’t
covered in this module though. Still, the idea of nondeterministic compu-
tation is one which we will meet again in this module. It’s not always this
useless.

Formal definition
Let 𝐿𝐴 be the set of lists all of whose elements are in 𝐴. We’ll define this
notion more precisely later but for now it suffices to note that lists are re-
quired to be of finite length, but could be of length 0. The set 𝐴 is called the
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alphabet of the language and its elements are called tokens. Any subset of
𝐿𝐴 is called a language.
This definition of language is broad enough to include a wide variety of
meanings which are commonly given to the word, including

• programming languages like C, Python, Rust, LISP, Haskell, etc.
• data description languages like (parts of) SQL,
• file formats like .csv or .ini,
• specialised single purpose languages like printcap config file entry

syntax,
• languages for mathematical logic like the ones we’ll use for zeroeth

and first order logic.
It may not always be clear which category a language belongs to. In the in-
troduction I introduced a single purpose language for module enrollment
but it turns out to be equivalent to one of the languages used for math-
ematical logic, namely that of the propositional calculus. Similarly you
might think of PostScript as a single purpose language for page descrip-
tion but it is also a full programming language capable of anything any
other programming language is capable of. I’ve written PostScript code to
solve ordinary differential equations and to compose Lorentz transforma-
tions. This isn’t as bizarre a thing to do as it might seem. If your aim is to
produce nice diagrams and you have a language which can describe dia-
grams in a way every modern printer can understand and which is also a
full programming language then why wouldn’t you just do everything in
that language? The answer to that question, as it turns out, is that debug-
ging PostScript code is very painful.
The definition above doesn’t really include natural languages, like English,
Irish, Arabic, Japanese, or Toki Pona, used by humans for communicating
for other humans. For those it’s often unclear whether particular lists of
tokens are valid elements of the language. Subsets of natural languages
are often used for communication between humans and computers though.
The subset of a natural language that a given computer programme emits
is almost always a language by the definition above. The subset it accepts is
always one as well. Also, many of the concepts described below were first
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developed in the context of natural languages and only later was it noticed
that they apply even better to languages used by computers.

Grammars
Some, but not all languages are describable by a grammar. Languages
which are describable by a grammar are typically describable bymore than
one grammar. According to the definition above the language is the set of
lists of tokens, not any particular way of describing which lists belong to
the subset.
Here we mean, by the term grammar, a finite set of grammar rules which
describe howmore complicated expressions are built up from simpler ones.
What we’ve considered so far are context free grammars, which always
replace a single symbol by a list of zero ormore symbols. More complicated
grammar rules might allow the replacement of one list of symbols with
another list of symbols. That takes us into the world of context sensitive
grammars, a world you are well advised to avoid if possible.
Normally we are only interested in a language if its lists of tokens have
some sort of interpretation, but it’s important to understand that that’s not
part of either the language or the grammar. In linguistic terms, we’re cur-
rently discussing only syntax, not semantics.

Hierarchy
The definition of language given above is deliberately very broad, but it
is really too broad to be useful. In this it is similar to notions like binary
relation or binary operation discussed earlier. Practically useful examples
have more structure. As in abstract algebra, there is a hierarchy of levels of
structure. The main levels of this hierarchy, from most restrictive to least,
are

1. finite
2. regular
3. deterministic context free
4. context free
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5. context sensitive
6. recursive
7. recursively enumerable
8. general

The easiest of these to define are finite, which just means a finite set of lists
of tokens, and general, which is any set of lists of tokens. The levels in
between have more complicated definitions, but are more useful.
Each level in the hierarchy above includes all the levels further on in the
list, so every finite language is regular, every regular language is context
free, etc. The step which is most likely to cause confusion is that every
context free language is context sensitive. “Context sensitive” doesn’t re-
ally mean that the language is sensitive to context, merely that it could be,
while context free means that it definitely isn’t.
This sort of terminology is often used in mathematics. In the theory of lin-
ear equations we make a distinction between homogeneous equations and
inhomogeneous equations. Homogeneous equations have zero constant
term. Inhomogeneous equations aren’t required to have zero constant term
but are certainly allowed to. This means that every homogeneous equation
is inhomogeneous. That certainly soundsweird butwe define things in this
way because there’s simply nothing of interest to be said about equations
whose constant term is non-zero which doesn’t apply equally well when
the constant term is zero. Similarly, the class of languages which are con-
text sensitive but not context free simply has no interesting properties and
therefore isn’t worth naming.
There are a number of different, but equivalent, ways to describe the vari-
ous levels in this hierarchy. We’ll discuss this in more detail in later chap-
ters, but I’ll just mention here that one of these is in terms of the types of
idealised machines which can recognise them. Regular languages, for ex-
ample, turn out to be precisely those for which it’s possible to construct
a finite state automaton recogniser. As an illustration, the figure shows a
finite state automaton which recognises the language of integer multiples
of 3, which I gave a grammar for earlier.
We could, of course, ask the same question for other languages, like the lan-
guage of palindromes. Is it possible to construct a finite state automaton
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Figure 18: A finite state automaton recogniser

which recognises the language of palindromes? The answer turns out to
be no, but how could we possibly prove this? Writing down all finite state
automata and checking that none of them work is not an option, both be-
cause there are infinitely many of them and because it’s not even obvious
howwe would check whether a single automaton recognises the language.
We’ll return to this question in a later chapter.
Other levels in the language hierarchy can also be described in terms of the
types of idealised machines which can recognise them. The most impor-
tant of these is the recursive enumerable languages, recognised by Turing
machines. Another important class is the context free languages, recog-
nised by pushdown automata. A pushdown automaton is essentially a
finite state automaton which has a stack available for storage. A Turing
machine can be thought of as a finite state automaton with a pair of stacks.
A good rule of thumb when developing a language for a specific purpose
is to choose one as early as possible in the list above, and to describe it by
a grammar at that level, or not much higher. One of the reasons for this
is that it makes automated processing of the language much easier. Most
modern programming languages are technically context sensitive, but try
to segregate their context sensitive features as much as possible. The re-
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mainder is context free, with significant parts which are regular or even
finite. When you think of automated processing of a programming lan-
guage your first thought is likely to be of an interpreter or compiler but
in fact there are many other programs which process programming lan-
guages. Most modern text editors, for example, offer syntax colouring,
which means parsing the source code of program in order to colour tokens
according to the terminal they belong to.

Back to the beginning
In the introduction I informally introduced a language formodule selection
rules. I can now provide an actual grammatical description. In fact I can
provide more than one. The typical way to do things in practice would be
with two stages, a lexical analyser and a parser. If the lexical analyser is
doing the work of breaking the input into tokens then our grammar, in the
same notation as before, is
statement : statement2

| statement "∨" statement2
statement2 : statement3

| statement2 "∧" statement3
statement3 : statement4

| "¬" statement4
statement4 : MODULE

| "(" statement ")"
The non-terminal symbols are the “∨”, “∧”, “¬”, “(” and “)”, each with
that string as the only token belonging to the symbol, and MODULE, which
is a symbol containing all possible module names. There are four differ-
ent nonterminals, the four types of statements, and statement is the start
symbol.
Separating out the input into tokens and assigning them to terminal sym-
bols is, as usual, the job of the lexical analyser. In practice we tend to give
the syntactic analyser another job as well, removing unnecessary white
space, i.e. space characters, tabs, and new lines. This allows us to write
more readable input without burdening the parser.
In fact even simpler grammars are possible but this one is unambiguous
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and always generates the correct parse tree. The different levels of state-
ments ensure this. For example, “¬ Algebra ∧ Geometry” will be parsed
as if it were “((¬ Algebra) ∧ Geometry” rather than as “(¬ (Algebra ∧
Geometry))” because “¬” can only appear before a level 4 statement. “Al-
gebra”, as a module name, is a level 4 statement but “Algebra ∧ Geometry
is a level 2 statement.
This language is simple enough that we could dispense with the separate
lexical analysis step entirely though and work directly with characters
rather than strings as tokens. A grammar which does this is
statement : statement2 | statement spaces "∨" spaces statement2
statement2 : statement3 | statement2 spaces "∧" spaces statement3
statement3 : statement4 | "¬" spaces statement4
statement4 : module | "(" statement ")" | "(" spaces statement ")"

| "(" statement spaces ")" | "(" spaces statement spaces ")"
ows : | spaces
spaces : " " | spaces " "
module : words
words : word | words spaces word
word : letter | letters letter
letter : "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I"

| "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R"
| "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "0"
| "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
| "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i"
| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r"
| "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

ows is an abbreviation for “optional white space”. For simplicity I’ve as-
sumed that this consists solely of spaces, not tabs or line breaks, and the
module names don’t use any characters other than English letters or num-
bers.

61



Zeroeth order logic
Formal vs informal proof
In the twenty three centuries since Euclidmathematical proofs have gradu-
ally become more formalised. The ultimate step in formalisation is proofs
which can be, and indeed are, checked entirely mechanically.
There are a few advantages to such proofs. Informal proofs rely on intu-
ition. Intuition is oftenwrong. More subtly, it is often correct, but only on a
particular interpretation. But theories, if formulated sufficiently generally,
may admit multiple interpretations. This can be quite useful. For example,
much of elementary algebra works equally well regardless of whether the
numbers in question are rational, real or complex. Mechanically checked
formal proofs can ensure that conclusions of theorems follow from their hy-
potheses under any interpretation which is consistent with the axioms and
rules of inference, not just a particular interpretation. They will continue
then to hold under interpretations which would never have been consid-
ered by the original writer and readers of a proof. Projective geometry,
for example, was originally developed for perspective drawing, but is now
principally used in settings like error-correcting codes with “lines” and a
“plane” with only finitely many points. This is possible because the theory
was formulated in a way which didn’t exclude this unanticipated interpre-
tation, and proofs were given for the major theorems which did not rely on
any intuition that lines or planes must be infinite.
There are, however, three disadvantages to completely formalised mathe-
matics.
The first disadvantage is that such arguments are hard for humans to read.
There is simply too much detail. The language required to remove all am-
biguities is too unfamiliar. It is too difficult to identify the important steps.
Here, for example, is a formal proof that two times two equals four, in a
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formal system we will encounter later.

1. {∀𝑥.[(𝑥 · 0) = 0]} 17. {[(0″ · 0) + 0′] = 0′}
2. [(0″ · 0) = 0] 18. {[(0″ · 0) + 0′]′ = 0″}
3. [(0″ · 0)′ = 0′] 19. {[(0″ · 0) + 0″] = 0″}
4. [(0″ · 0)″ = 0″] 20. [(0″ · 0′) = 0″]
5. [∀𝑥.(∀𝑦.{(𝑥 · 𝑦′) = [(𝑥 · 𝑦) + 𝑥]})] 21. {(0″ · 0″) = [(0″ · 0′) + 0″]}
6. (∀𝑦.{(0″ · 𝑦′) = [(0″ · 𝑦) + 0″]}) 22. (∀𝑦.{[(0″ · 0′) + 𝑦′] = [(0″ · 0′) + 𝑦]′})
7. {(0″ · 0′) = [(0″ · 0) + 0″]} 23. {[(0″ · 0′) + 0″] = [(0″ · 0′) + 0′]′}
8. (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]}) 24. {(0″ · 0″) = [(0″ · 0′) + 0′]′}
9. (∀𝑦.{[(0″ · 0) + 𝑦′] = [(0″ · 0) + 𝑦]′}) 25. {[(0″ · 0′) + 0′] = [(0″ · 0′) + 0]′})
10. {[(0″ · 0) + 0″] = [(0″ · 0) + 0′]′}) 26. {[(0″ · 0′) + 0] = (0″ · 0′)}
11. {(0″ · 0′) = [(0″ · 0) + 0′]′} 27. {[(0″ · 0′) + 0] = 0″}
12. {[(0″ · 0) + 0′] = [(0″ · 0) + 0]′} 28. {[(0″ · 0′) + 0]′ = 0‴}
13. (∀𝑥.{[𝑥 + 0] = 𝑥}) 29. {[(0″ · 0′) + 0′] = 0‴}
14. {[(0″ · 0) + 0] = (0″ · 0)} 30. {[(0″ · 0′) + 0′]′ = 0⁗}
15. {[(0″ · 0) + 0] = 0} 31. [(0″ · 0″) = 0⁗]
16. {[(0″ · 0) + 0]′ = 0′}

The second difficulty with formal proofs is that we need to know that the
formal system in which we are working, and the proof checker we use to
verify the proofs, are correctly designed. In order to have any confidence
in the results, this needs to be proved, but how? We can give an informal
proof, or we can give a formal proof, but this would have to be done in
another formal system, and checked by a different proof checker, since the
correctness of this one has yet to be established. So eventually even the
most formal of proofs has to be based on an informal foundation. The gain
fromusing formal systems is therefore not in getting rid of all appeals to hu-
man intuition, but rather in reducing those to a tightly defined core. There
is also thematter of checking that the formal statements being proved have
the desiredmeaning under the interpretationwe’ve adopted for statements
in the system, which is in fact a frequent source of error.
The third difficulty with formal proofs is that they can’t accomplish the
purpose for which they were originally intended. It was originally hoped
that one could find a formal system inwhich it would be possible to formu-
late and prove all true statements in mathematics, and of course only true
statements, since a system which proves false statements is not of much
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use. It’s now known that this can’t be accomplished even for arithmetic.
Any systemwhich is consistent, in the sense that it cannot be used to prove
contradictions, will be incomplete, in the sense that not all true statements
will be provable.
This doesn’t mean that formal proofs are useless. The exercise of giving
a formal proof that a piece of code works for all allowed inputs, for ex-
ample, will almost always reveal that it doesn’t. A large scale project was
conducted in 2009 to show that the L4 microkernel was free of bugs, in
the sense that it was proven to implement its design specification. The ex-
ercise uncovered a large number of previously unsuspected bugs, which
were then fixed. Some of these were bugs in the implementation, but oth-
ers were bugs in the specification itself, where assumptions which should
have been explicit had been left unstated.

Formal systems
The preceding section referred to formal systems without defining them.
A formal system consists of a formal language, a set of axioms and a set
of rules of inference. It does not include an interpretation, although we’re
usually interested in a formal system because it admits at least one useful
interpretation.
The language describes the elements from which statements are built and
the grammatical rules which describe how they are built from those ele-
ments. A rule of inference describes how a statement can be derived from
other statements. A proof in a formal system is a finite sequence of gram-
matically correct statements, each of which is either an axiom or is derived,
in accordance with the rules of inference, from statements earlier in the se-
quence. A statement is called a theorem if it forms the final statement in
such a sequence and that sequence is called a proof of the theorem.
The set of axioms can be empty, finite and non-empty, or infinite. All of
these cases occur in commonly used systems. In principle the set of rules
of inference can also be empty, finite and non-empty, or infinite, but sys-
tems with no rules of inference are uninteresting because the only theo-
rems in such systems are the axioms. Systems with infinitely many rules
of inference are not often used.
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The rules of grammar and rules of inference are required to be not merely
constructive, but analytic. It should be possible not just to build more com-
plicated expressions from simpler expressions but also to analyse a compli-
cated expression to determine uniquely how it was built up. This process
should be purely mechanical, relying solely on the structure of the expres-
sion andnot on any intended interpretation. Similarly the rules of inference
should enable us not just to derive statements from other statements but to
check that a statement is indeed derivable from earlier statements. If there
are infinitely many axioms then it should be possible not just to generate
axioms but to verify whether a statement is an axiom. These requirements
force us to consider questions of computability in the description of formal
languages.

A language for zeroeth order logic
The propositional calculus, often called zeroeth order logic, governs the
use of logical operators like “and”, “or” and “if … then”. It does not con-
cern itself with quantifiers, like “for all” or “there exists”, which belong to
first order logic. It does not concern itself with the meaning of the state-
ments combined with those connectives. It should be noted though that
it can only be expected to behave as expected when those statements are
either definitely true or false. It does not cope well with statements like
“this statement is false.”
Our language for zeroeth order logic will consist of variables and logical
operators. The variables are Boolean variables and the logical operators are
Boolean operators, but in this chapter we have no other type of variable
or operator so I’ll drop the word Boolean until this next chapter. We’ll
use lower case letters, starting with 𝑝 for variables and single symbols for
logical operators. In particular we’ll use ∧ for “and”, ∨ for “or”, and ¬ for
“not”. The grammarwill also allow the use of⊃ for “implies”, ⊼ for “nand”,
⊻ for “nor”, ≡ for “if and only if”, ≢ for “xor”, and ⊂ for “if”, but we’ll only
ever use the first two of those, will use the second only briefly. We’ll use an
infix notation butwe’ll use a fully parenthesised version rather than relying
on precedence and associativity rules. To make it easier to spot matching
parentheses we’ll use not just ( and ) but also [ and ] and { and }. These
are to be regarded as fully equivalent though. Anywhere they appear in
the following discussion any of the above pairs may be replaced with any
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other. We’ll use the lower case Latin letters 𝑝, 𝑞, 𝑟, 𝑠 and 𝑢 for variables. We
skip 𝑡 here to avoid confusion with the constant symbol 𝑡, meaning “true”,
which isn’t part of our language, but which we well use, along with 𝑓 for
“false”, in talking about the language.
Theweird symbols for logical operators are unfamiliar at first sight but forc-
ing all symbols to be single characters shortens formulae, makes a lexical
analyser unnecessary and allows us to dispense with whitespace as a way
of separating symbols.
For theoretical purposes it’s convenient to allow an infinite number of vari-
ables so we’ll also allow adding arbitrarily many exclamation points to
these letters to create new variables, like 𝑝, 𝑝!, 𝑝!!, etc. We’ll never actu-
ally encounter an example where we run out of Latin letters though, so
this will remain just a theoretical possibility. Some treatments of zeroeth
order logic also have constants symbols for the values “true” and “false”
but these won’t be part of our language. The letters 𝑡 and 𝑓 will appear in
various places though, like truth tables.
Our grammar is then
statement : expression
expression : variable

| "(" expression binop expression ")" | "(" "¬" expression ")"
| "[" expression binop expression "]" | "[" "¬" expression "]"
| "{" expression binop expression "}" | "{" "¬" expression "}"

variable : letter | variable "!"
letter : "p" | "q" | "r" | "s" | "u"
binop : "∧" | "∨" | "⊃" | "⊼" | "⊻" | "≡" | "≢" | "⊂"
The spaces separate symbols in the specification. They aren’t part of the
language. Quoted strings are terminal symbols. The quotes are not part of
the symbol.
binop is short for binary operator and includes the operators ∧, ∨, ⊃, ⊼, ⊻,
≡, ≢, ⊂.
This language is unambiguous. Why? Any expression longer than a single
variable is bracketed by parentheses of some type. The rules which expand
to such expressions all have a single Boolean operator joining one or two
expressions. There may be more operators in those expressions, but they
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are contained within their own set of parentheses. We can identify which
rule (alternate) was used by looking at the type of parentheses and the one
operator which is not further parenthesised. For example [(¬𝑝) ∧ (𝑞 ∨ 𝑟)]
must have been generated by
[ expression ∧ expression ]
This allows top down parsing: start with the whole statement, figure out
which rule generated it, figure out which rule generated the expression(s)
within it, repeat until we reach the level of variables.
We could have taken expression as the start symbol and dispensed with
statement entirely. It will be convenient to have the distinction when we
talk about rules of inference though. Every statement is an expression
but not every expression is a statement. When we discuss the rule of sub-
stitution, for example, it’s important that whenwe substitute an expression
for a variable in a statement that we replace all occurrences of that variable
in the the statement, not just all in some particular expression occurring in
the statement.
As an example of the language, consider the statement

{[𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]}.

This has the abstract syntax tree given in the diagram.
There are certain symbols which are not part of our language but which
we will use for talking about the language. 𝑡 and 𝑓 have been mentioned
previously. We’ll use the upper case Latin letters 𝑃, 𝑄, 𝑅, 𝑆 and 𝑈 to stand
for arbitrary expressions. This is particularly useful in stating rules of in-
ference. One commonly used rule of inference, for example, says that from
statements of the form 𝑃 and (𝑃 ⊃ 𝑄) we can deduce the statement𝑄. Here
any expression can be substituted for𝑃 and𝑄. 𝑃 and𝑄 themselves, though,
do not belong to the language. It’s understood, as discussed above, that dif-
ferent types of brackets are interchangeable so an instance of the rule above
would be that from (𝑟 ∧ 𝑠) and [(𝑟 ∧ 𝑠) ⊃ (𝑟 ∨ 𝑠)] we can deduce (𝑟 ∨ 𝑠).
This saves us from needing to repeat each rule three times, once for each
set of brackets.
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Figure 19: Syntax tree for [𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]

Interpretation(s)
The standard interpretation is that the symbols “∧”, “∨”, “¬”, and “⊃”
for “and”, “or”, “not” and “implies” mean what you think they do,
assuming you think “or” is always inclusive and you interpret “⊃” the
way mathematicians and logicians do, i.e. that the expression is true if
the hypothesis is false or the conclusion is true. As we discussed in the
introduction (𝑃 ⊃ 𝑄) has the same meaning as ((¬𝑃) ∨ 𝑄). The meaning
of “⊃” can sometimes confuse people. Under the interpretation above
[(𝑝 ⊃ 𝑞) ∨ (𝑞 ⊃ 𝑝)] is true for any 𝑝 and 𝑞. If this seems odd to you
then you are probably thinking in terms of causality rather than logical
implication.
Like “⊃” the more exotic symbols are all expressible in terms of “∧”,
“∨”, and “¬”. (𝑃 ⊼ 𝑄) has the same meaning as (¬(𝑃 ∧ 𝑄)). (𝑃 ⊻ 𝑄)
has the same meaning as (¬(𝑃 ∨ 𝑄)). (𝑃 ≡ 𝑄) has the same mean-
ing as ((𝑃 ∧ 𝑄) ∨ ((¬𝑃) ∧ (¬𝑄))). (𝑃 ≢ 𝑄) has the same meaning as
((𝑃 ∧ (¬𝑄)) ∨ ((¬𝑃) ∧ 𝑄)). It’s the exclusive or which we discussed
earlier. (𝑃 ⊂ 𝑄) has the same meaning as (𝑃 ∨ (¬𝑄)).
The variables are Boolean variables. They can take the values true or false.
Technically every possible assignment of values to the variables is a dif-
ferent interpretation of the language. Statements which are true in any
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of these interpretations, i.e. for any assignment of truth values to the vari-
ables occurring in them, are called tautologies. Statements which are true
in some interpretation, i.e. for some assignment of truth values to the vari-
ables, are said to be satisfiable. Note that it’s only interpretations of the
kind described above which are relevant. In judging whether a statement
is a tautology or is satisfiable we don’t consider, for example, interpreta-
tions where “∨” means exclusive or.

Truth tables
Having assigned truth values to the variables we can work our way up to
assign values to more and more complicated expressions. The way values
are combined is summarised in “truth tables”. The ones for the four basic
operators are

𝑃 𝑄 (𝑃 ∧ 𝑄)
𝑓 𝑓 𝑓
𝑓 𝑡 𝑓
𝑡 𝑓 𝑓
𝑡 𝑡 𝑡

𝑃 𝑄 (𝑃 ∨ 𝑄)
𝑓 𝑓 𝑓
𝑓 𝑡 𝑡
𝑡 𝑓 𝑡
𝑡 𝑡 𝑡

𝑃 (¬𝑃)
𝑓 𝑡
𝑡 𝑓

𝑃 𝑄 (𝑃 ⊃ 𝑄)
𝑓 𝑓 𝑡
𝑓 𝑡 𝑡
𝑡 𝑓 𝑓
𝑡 𝑡 𝑡

I’ve written these with expressions 𝑃 and 𝑄 rather than variables 𝑝 and 𝑞
because these can be applied to any expression in our language, not just to
variables.
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As an example of combining these to assign truth values to more compli-
cated expressions consider the expression {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}.
We have

𝑝 𝑞 𝑟 (𝑝 ⊃ 𝑞) (𝑞 ⊃ 𝑟) [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] (𝑝 ⊃ 𝑟) {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
𝑓 𝑓 𝑓 𝑡 𝑡 𝑡 𝑡 𝑡
𝑓 𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
𝑓 𝑡 𝑓 𝑡 𝑓 𝑓 𝑡 𝑡
𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
𝑡 𝑓 𝑓 𝑓 𝑡 𝑓 𝑓 𝑡
𝑡 𝑓 𝑡 𝑓 𝑡 𝑓 𝑡 𝑡
𝑡 𝑡 𝑓 𝑡 𝑓 𝑓 𝑓 𝑡
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

So the expression {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} evaluates as true no mat-
ter what truth values are assigned to 𝑝, 𝑞 and 𝑟. In the terminology intro-
duced earlier it is a tautology.
As another example, {[𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]} is also a tautology, as
shown by the following truth table

𝑝 𝑞 𝑟 (𝑞 ∨ 𝑟) [𝑝 ∨ (𝑞 ∨ 𝑟)] (𝑝 ∨ 𝑞) [(𝑝 ∨ 𝑞) ∨ 𝑟] {[𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]}
𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑡
𝑓 𝑓 𝑡 𝑡 𝑡 𝑓 𝑡 𝑡
𝑓 𝑡 𝑓 𝑡 𝑡 𝑡 𝑡 𝑡
𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
𝑡 𝑓 𝑓 𝑓 𝑡 𝑡 𝑡 𝑡
𝑡 𝑓 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡
𝑡 𝑡 𝑓 𝑡 𝑡 𝑡 𝑡 𝑡
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

We can think of {[𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]} as expressing the fact that ∨
is an associative operator, so we shouldn’t be surprised to find that it is a
tautology.
The fact that truth tables apply to expressions as well as variables has an
important consequence. If a statement in the language is a tautology, i.e. is
true for all possible values of the variables, then it must remain a tautology
when any expressions are substituted in for those variables. This is called
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the “Rule of Substitution” and a statement obtained in this way is called
a “substitution instance” of the tautology we started with. It is commonly
used as a rule of inference in formal systems for zeroeth order logic. Using
the rule of substitutionwe can see that since {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
is a tautology so is {[(𝑃 ⊃ 𝑄) ∧ (𝑄 ⊃ 𝑅)] ⊃ (𝑃 ⊃ 𝑅)} for any expressions
𝑃, 𝑄 and 𝑅.

Informal proofs in zeroeth order logic
At the moment we have a language and an interpretation, or rather a class
of interpretations of that language but we don’t have the axioms or rules
of inference necessary for a formal system so we can’t do formal proofs.
We can still do informal proofs though since our interpretation, or rather
interpretations, give us a notion of truth. One method of informal proof
is truth tables. It’s not a very efficient method though. The number of
logical operators appearing in an expression is called the “degree” of the
expression. A truth table for an expression of degree 𝑑 with 𝑛 variables
will have 𝑑 + 𝑛 columns and 2𝑛 rows. There are better methods, including
what’s called the “method of analytic tableaux’’, which is our next topic.
The method of analytic tableaux is really just a bookkeeping device for
proof by contradiction combined with a form of case by case analysis.
Truth table methods also involve a form of case by case analysis, but
analytic tableaux use a less drastic one, where the number of cases to
consider needn’t grow exponentially with the number of variables. I’ll
illustrate this with a few examples, first giving a version without tableaux
and then showing how tableaux can be used to organise the arguments.
Our first example will be the tautology {[(¬𝑝) ∧ (¬𝑞)] ⊃ [¬(𝑝 ∨ 𝑞)]}.
How could {[(¬𝑝) ∧ (¬𝑞)] ⊃ [¬(𝑝 ∨ 𝑞)]} fail to be true? It’s a statement
of the form (𝑃 ⊃ 𝑄), where 𝑃 is [(¬𝑝) ∧ (¬𝑞)] and 𝑄 is [¬(𝑝 ∨ 𝑞)]. Strictly
speaking it’s of the form {𝑃 ⊃ 𝑄}, but our convention is that different
types of parentheses are considered interchangeable, so we cat treat it
just like we treat statements of the form (𝑃 ⊃ 𝑄). We can tell that it’s
a ⊃ type expression because ⊃ is the only operator inside only one set
of parentheses. For (𝑃 ⊃ 𝑄) to be false 𝑃 would need to be true and 𝑄
would need to be false. In our case, [(¬𝑝) ∧ (¬𝑞)] needs to be true and
[¬(𝑝 ∨ 𝑞)] needs to be false. We “want” [(¬𝑝) ∧ (¬𝑞)] to be true and
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[¬(𝑝 ∨ 𝑞)] to be false. I’ve put the quotation marks in because ultimately
we want a contradiction, so we will want the opposite of what I’ve just
written, but for now we proceed as if we were trying to make this true. If
[(¬𝑝) ∧ (¬𝑞)] is true then so are (¬𝑝) and (¬𝑞). So both 𝑝 and 𝑞 are false.
If [¬(𝑝 ∨ 𝑞)] is false then (𝑝 ∨ 𝑞) is true. Then 𝑝 is true or 𝑞 is true. But
we already know both are false. So {[(¬𝑝) ∧ (¬𝑞)] ⊃ [¬(𝑝 ∨ 𝑞)]} can’t fail
to be true. In other words, it’s a tautology. Is this any faster than writing
down a truth table? Probably not, but it generalises better.
As a second example, consider the tautology {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}.
Suppose {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} were false for some value of 𝑝, 𝑞
and 𝑟. For those values [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] must be true and (𝑝 ⊃ 𝑟) must
be false. Since [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] is true so are (𝑝 ⊃ 𝑞) and (𝑞 ⊃ 𝑟). So in
our hypothetical example (𝑝 ⊃ 𝑞) and (𝑞 ⊃ 𝑟) are true and (𝑝 ⊃ 𝑟) is false.
Since it is false 𝑝 must be true and 𝑟 must be false. This is as far as we can
get without splitting the argument into cases. Since (𝑝 ⊃ 𝑞) is true 𝑝 is
false or 𝑞 is true. But we already saw that 𝑝 is true so we can exclude that
possibility and conclude that 𝑞 must be true. Since (𝑞 ⊃ 𝑟) is true 𝑞 is false
or 𝑟 is true. But we already saw that 𝑞 is true 𝑟 is false so we can exclude
both possibilities. Thus the assumption that there are 𝑝, 𝑞, and 𝑟 which
make {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} false is untenable. In other words
{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} holds for all values of 𝑝, 𝑞, and 𝑟.
As a third example, consider {[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]}. Again
we have something of the form (𝑃 ⊃ 𝑄), so for this to be false 𝑃 must be
true and 𝑄 must be false, i.e. [𝑝 ⊃ (𝑞 ⊃ 𝑟)] is true and [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]
is false. [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)] is also of the form (𝑃 ⊃ 𝑄). For it to be false we
need (𝑝 ⊃ 𝑞) to be true and (𝑝 ⊃ 𝑟) to be false. (𝑝 ⊃ 𝑟) is also of the form
form (𝑃 ⊃ 𝑄). For it to be false we need 𝑝 to be true and 𝑟 to be false. So
[𝑝 ⊃ (𝑞 ⊃ 𝑟)], (𝑝 ⊃ 𝑞) and 𝑝 are all true and 𝑟 is false. How can [𝑝 ⊃ (𝑞 ⊃ 𝑟)]
be true? It’s of the form (𝑃 ⊃ 𝑄) and so can be true if 𝑃 is false or 𝑄 is true.
In this case that means 𝑝 is false or (𝑞 ⊃ 𝑟) is true. But 𝑝 is true so (𝑞 ⊃ 𝑟)
must be true.
Where are we? We wanted to show {[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]}
is true, so we assumed it was false and have found that (𝑞 ⊃ 𝑟), (𝑝 ⊃ 𝑞)
and 𝑝 must be true and 𝑟 must be false. If (𝑝 ⊃ 𝑞) is true then 𝑝 is false
or 𝑞 is true, but 𝑝 is true so 𝑞 is true. If (𝑞 ⊃ 𝑟) is true then 𝑞 is false or
𝑟 is true, but 𝑞 is true and 𝑟 is false, so we have a contradiction. There-
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fore {[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]} must be true. Themain problem
with such arguments is keeping track of what we know and, if we need to
split things into cases, which case or subcase we’re in.

Analytic tableaux
It can be difficult in arguments like the ones above to keep track of what’s
known and what isn’t at each point in the argument. In fact the arguments
above weren’t too bad since on the two occasions we had to split the ar-
gument into cases we were immediately able to rule out one or both. We
aren’t always so fortunate.
There are several versions of tableaux. I’ll use a versionwherewewrite true
statements to the left of a vertical line and false statements to the right of
it. We use existing statements to fill in more and more lines until we reach
a point where we need to split into two cases. Then we’ll draw diagonal
lines down to a new pair of vertical lines, one for each case, and proceed
in the same way with each of them. These are called branches. We can
close off a branch whenever we have a statement which appears on both
the left and right hand side of a vertical line, i.e. a statement which is both
true and false, therefore a contradiction. We proceed in this way until all
branches are closed or until we’ve explored all possible consequences of all
statements in all branches.
The tableau corresponding to {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} is given in the
accompanying figure.
The contradictions which allow us to close off branches are indicated by
underlining the expression which has previously appeared on the other
side of the vertical line.
As another example, we can show that {[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]}
is a tautology
If you compare these to the case by case arguments given previously you
can see that they are essentially the same.
As yet another example, we can use an analytic tableau to show that
{[𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]} is a tautology.
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Figure 20: An analytic tableau for [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)

Figure 21: Analytic tableau for [𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]
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Figure 22: Analytic tableau for [𝑝 ∨ (𝑞 ∨ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ∨ 𝑟]

Tableau rules

All expressions in our language are built by joining simpler expressions
with logical operators. For each operator there is a pair of tableau rules,
one for the case where the expression appears to the left of of the vertical
line, and one for the case where it appears on the right. We’ve met both of
these for the operator ⊃. When an expression of the form (𝑃 ⊃ 𝑄) appears
to the left of the vertical bar the tableau branches into a branch with the
𝑃 on the right of the bar and one with a 𝑄 on the left, reflecting the two
ways (𝑃 ⊃ 𝑄) could be true, i.e. either 𝑃 is false or 𝑄 is true. On the other
hand when an expression of the form (𝑃 ⊃ 𝑄) appears to the right of the
bar there is no branching. We get a 𝑃 to the left of the bar and a 𝑄 to the
right, reflecting the fact that (𝑃 ⊃ 𝑄) can be false only if 𝑃 is true and 𝑄
is false. The standard way of depicting these rules is with diagrams. In
addition to the vertical bar from earlier these diagrams have a horizontal
bar. Above this horizontal bar is the statement whose consequences we’re
exploring and below the bar are those consequences, which are always one
or the other of the subexpressions from which the expression was made,
and which may appear on either side of the vertical bar. The diagrams for
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⊃ are
(𝑃 ⊃ 𝑄)

𝑃
(𝑃 ⊃ 𝑄)

𝑄

(𝑃 ⊃ 𝑄)
𝑃

𝑄
There are similar rules for ∧.

(𝑃 ∧ 𝑄)
𝑃
𝑄

(𝑃 ∧ 𝑄)
𝑃

(𝑃 ∧ 𝑄)
𝑄

The first of these rules appeared once in our example, when we split the
expression [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] on the left hand side of the vertical line to a
(𝑝 ⊃ 𝑞) and a (𝑞 ⊃ 𝑟), also on the left.
The diagrams for the remaining operators are

(𝑃 ∨ 𝑄)
𝑃

(𝑃 ∨ 𝑄)
𝑄

(𝑃 ∨ 𝑄)
𝑃
𝑄

(¬𝑃)
𝑃

(¬𝑃)
𝑃

(𝑃 ⊼ 𝑄)
𝑃

(𝑃 ⊼ 𝑄)
𝑄

(𝑃 ⊼ 𝑄)
𝑃
𝑄

(𝑃 ⊻ 𝑄)
𝑃
𝑄

(𝑃 ⊻ 𝑄)
𝑃

(𝑃 ⊻ 𝑄)
𝑄

(𝑃 ≡ 𝑄)
𝑃
𝑄

(𝑃 ≡ 𝑄)
𝑃
𝑄

(𝑃 ≡ 𝑄)
𝑃

𝑄

(𝑃 ≡ 𝑄)
𝑃

𝑄
(𝑃 ≢ 𝑄)

𝑃
𝑄

(𝑃 ≢ 𝑄)
𝑃

𝑄

(𝑃 ≢ 𝑄)
𝑃
𝑄

(𝑃 ≢ 𝑄)
𝑃
𝑄

(𝑃 ⊂ 𝑄)
𝑃

(𝑃 ⊂ 𝑄)
𝑄

(𝑃 ⊂ 𝑄)
𝑃

𝑄
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There is no need tomemorise any of these. In each case you can reconstruct
the diagram by asking yourself “How could this expression be true?” for
the ones where it appears on the left and “How could this be false?” for
the ones where it appears on the right.

Satisfiability

What happens if there’s a branch you can’t close? In otherwords, what hap-
pens if you’ve processed all consequences of all statements in the branch
and have not found any statements which appear on both the left and the
right of the line? In that case there is at least one choice of truth values
which make all the statements on the left true and make all the statements
on the right false. Finding such a choice is easy. You look for statements
of degree zero, i.e. variables on their own without logical operators. Any
which appear on the left are assigned the value true and any on the left are
assigned the value false. Any which don’t appear at all can be assigned
either value. With these choices every statement of any degree on the left
will be true and every statement of any degree on the right will be false.
Why does themethod abovework? Suppose it didn’t. Then therewould be
a statement of lowest degreewhich is assigned thewrong value. Because of
the way our grammar is defined this statement is constructed by applying
a logical operator to statements of lower degree. These statements will ap-
pear on either the left or the right hand side of the vertical line lower down
and, because they are of lower degree, they will have have been assigned
the correct truth value.
Similarly, if you start with an expression on the left hand side of the ver-
tical bar and can’t close a branch then that means there are values of the
variables for which the expression is true, i.e. that it is satisfiable. Not only
do such values exist but you can find them by assigning variables which
appear on the left the value true and variables which appear on the right
the value false.

Examples

Consider the statement {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)}. Is it a tautology,
i.e. true for all values of 𝑝 and 𝑞? Is it satisfiable, i.e. true for some values 𝑝
and 𝑞? Is it neither?
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To check whether it’s a tautology we start a tableau with the expression
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} to the right of the bar and then apply our vari-
ous rules.

Figure 23: Checking whether [(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞) is a tautology

All rules which can be applied have been applied and we can’t close ei-
ther of the two branches which were created by splitting the statement
[(¬𝑝) ⊃ (¬𝑞)] so {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is not a tautology. But the
tableau tells us more than this. We can pick an open branch, for example
the left branch, and look at which variables appear to the left and right of
the bar. In this case 𝑝 is on the left and 𝑞 is on the right so taking 𝑝 to be true
and 𝑞 to be false must make the statement {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} false.
In this case we would have got the same values for 𝑝 and 𝑞 by choosing the
other open branch, but that’s an accident of this particular statement.
We don’t, strictly speaking, need to check that assigning true to 𝑝 and false
to 𝑞 makes {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} false but we certainly can. If you
want to convince someone that {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is not a tautol-
ogy, and therefore cannot be a theorem, it suffices to provide them with
this counterexample. There’s no need to show them the whole tableau
and explain its meaning since they can check the value of the statement
for these particular values and verify for themselves that it’s false.
At this point we know that {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} for some values of
𝑝 and 𝑞 but we don’t yet know whether it’s true for other values of 𝑝 and 𝑞.
In other words, we don’t yet know whether it is satisfiable. To check this
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we start another tableau, this time with {[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} to the
left of the vertical bar.

Figure 24: Checking whether {[(¬p)⊃(¬q)]⊃(p⊃q)} is satisfiable

Once again we weren’t able to close any branches. It wouldn’t have mat-
tered if we were able to close some. As long as there is one open branch
the statement is satisfiable. We can find values of 𝑝 and 𝑞 which make the
statement true by looking at where the variables are relative to the vertical
bar on any open branch. If we take the rightmost branch, for example, then
𝑞 appears to the left and 𝑝 doesn’t appear at all. We can therefore take 𝑞 to
be true and take either value for 𝑞. For definiteness we’ll take it to be true
as well.
We don’t need to check that this works but we certainly can. More im-
portantly, so can anyone else, so to convince someone that the statement
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞)} is satisfiable it suffices to give them the exam-
ple where 𝑝 and 𝑞 are both true. In particular, there’s no need to explain
the tableau method or convince them that it’s correct, since they can just
check the given example.
In this case we would have got a different example from choosing a dif-
ferent branch. Had we chosen the leftmost branch we would have got the
example where 𝑝 is false and 𝑞 is true.
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Similarly, we can use a pair of tableaux to show that the statement
[(𝑝 ⊃ 𝑞) ⊃ (𝑞 ⊃ 𝑝)] is satisfiable but is not a tautology. To show that it’s
satisfiable we start a tableau with it on the left.

Figure 25: Checking that [(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞) is satisfiable

There’s nothing further to be done and at least one branch has failed to
close–in fact none of them have, but we only need one–so the statement is
satisfiable.
To show that it is not a tautologywe start a tableauwith the same statement
on the right.

Figure 26: Checking [(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑝 ⊃ 𝑞) isn’t tautological

Once again there’s nothing further to be done and we have a branch which
hasn’t closed. In fact there’s more than one but again we only need one.
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Since we started with our statement on the right and the tableau didn’t
close it must not have been a tautology.

Consequences

We can use the tableaux method to check whether a statement is a conse-
quence of a list of other statements as well. We just put it to the right of the
vertical bar and those statements to the left and fill in the tableau as before.
If all branches close then it is indeed a consequence. If not then by choosing
an open branch and looking at which side of the bar each variable lies on
we can find truth values for them which cause the premises to be true and
the purported consequence to be false. Our earlier method of proving, or
disproving, tautologies can be viewed as a special case since a statement is
a tautology if and only if it is a consequence of the empty list of statements.

Axiomatic systems for zeroeth order logic
The Nicod formal system

Perhaps the simplest formal system for zeroeth order logic is the Nicod
system. As its language it uses the subset of our language for zeroeth order
logic consisting of those lists where ⊼, whose truth table is

𝑃 𝑄 (𝑃 ⊼ 𝑄)
𝑓 𝑓 𝑡
𝑓 𝑡 𝑡
𝑡 𝑓 𝑡
𝑡 𝑡 𝑓

is the only logical operator appearing. There’s no loss of expressiveness in-
volved in this restriction sincewe canwrite (𝑃 ∧ 𝑄) as [(𝑃 ⊼ 𝑄) ⊼ (𝑃 ⊼ 𝑄)],
(𝑃 ∨ 𝑄) as [(𝑃 ⊼ 𝑃) ⊼ (𝑄 ⊼ 𝑄)], and (¬𝑃) as (𝑃 ⊼ 𝑃). All the other oper-
ators were expressed in terms of ∧, ∨ and ¬ so they can be expressed by
first converting the expression into one involving those three operators and
then converting them as above.
The Nicod system has a single axiom,

((𝑝 ⊼ (𝑞 ⊼ 𝑟)) ⊼ ((𝑠 ⊼ (𝑠 ⊼ 𝑠)) ⊼ ((𝑢 ⊼ 𝑞) ⊼ ((𝑝 ⊼ 𝑢) ⊼ (𝑝 ⊼ 𝑢))))).
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There is also only one rule of inference, that from two statements of the
form 𝑃 and [𝑃 ⊼ (𝑄 ⊼ 𝑅)] we can derive the statement 𝑅.
We can use truth table method to show that, no matter which of the 32
possible ways of assigning truth values to the variables 𝑝, 𝑞, 𝑟, 𝑠, and 𝑢 we
choose, the statement

((𝑝 ⊼ (𝑞 ⊼ 𝑟)) ⊼ ((𝑠 ⊼ (𝑠 ⊼ 𝑠)) ⊼ ((𝑢 ⊼ 𝑞) ⊼ ((𝑝 ⊼ 𝑢) ⊼ (𝑝 ⊼ 𝑢))))).
will always evaluate to true, i.e. that it is a tautology.
It is also possible to show that the rule of inference of the system has the
property that if applied to tautologies it leads to a tautology. This follows
from the truth table

𝑃 𝑄 𝑅 (𝑄 ⊼ 𝑅) [𝑃 ⊼ (𝑄 ⊼ 𝑅)]
𝑓 𝑓 𝑓 𝑡 𝑡
𝑓 𝑓 𝑡 𝑡 𝑡
𝑓 𝑡 𝑓 𝑡 𝑡
𝑓 𝑡 𝑡 𝑓 𝑡
𝑡 𝑓 𝑓 𝑡 𝑓
𝑡 𝑓 𝑡 𝑡 𝑓
𝑡 𝑡 𝑓 𝑡 𝑓
𝑡 𝑡 𝑡 𝑓 𝑡

There is only one case in which both 𝑃 and [𝑃 ⊼ (𝑄 ⊼ 𝑅)] are true and in
that case 𝑅 is also true.
It follows that any theorem must be a tautology, since we start from an
axiom which is true in any interpretation which assigns to the operator ⊼
the meaning described by its truth table given earlier and the rules of in-
ference can only produce true statements from true statements. In other
words any interpretation which assigns to the operator ⊼ the meaning de-
scribed by the truth table above and assigns any truth values whatever to
its variables is a sound interpretation of the Nicod system. We say that
a system is “sound” if the intended interpretation or interpretations are
sound. The Nicod system is sound in this
We could add a second rule of inference, the rule of substitution discussed
earlier. More explicitly, from any statement we can derive another state-
ment by replacing each occurrence of one of the variables with an expres-
sion. In fact we can do this for each variable in the statement. Any proof
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which uses the rule of substitution can be converted into one in the origi-
nal system by repeating the proof of the statement into which we want to
substitute, but making all of the substitutions everywhere in that proof. So
the system with this extra rule has the same set of theorems as the original
system. Rules like this are called derived rules of inference. Strictly speak-
ing, whenever we us a derived rule of inference the result is a semi-formal
proof rather than a formal proof.

The Łukasiewicz system

An alternative formal system for the propositional calculus is due to
Łukasiewicz. It uses the subset of our general language for zeroeth order
logic where the only logical operators are ¬ and ⊃. There is no loss of
expressiveness since (𝑃 ∧ 𝑄) has the same meaning as {¬[𝑃 ⊃ (¬𝑄)]}
and (𝑃 ∨ 𝑄) has the same meaning as [(¬𝑃) ⊃ 𝑄].
The axioms are

[𝑝 ⊃ (𝑞 ⊃ 𝑝)],
{[𝑝 ⊃ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)]},

and
{[(¬𝑝) ⊃ (¬𝑞)] ⊃ (𝑞 ⊃ 𝑝)}.

The rules of inference are the rule of substitution and a rule, known by the
curious name of “modus ponens” which allows us to derive 𝑄 from 𝑃 and
(𝑃 ⊃ 𝑄).
The system as introduced by Łukasiewicz differs in one respect from that
described above. Łukasiewicz used prefix notation in place of infix nota-
tion. He was, in fact, the first person to introduce prefix notation, and to
notice that it allows one to dispense with parentheses. Łukasiewicz also
used 𝑁 and 𝐶 in place of ¬ and ⊃.
A direct proof of the soundness Łukasiewicz’s system is slightly more com-
plicated than a proof the soundness ofNicod’s, because the system is larger
andmore complicated, but it can be done by the samemethod, using truth
tables.
Because Łukasiewicz’s system contains the ¬ operator we can also discuss
consistency, which is the requirement that for any statement 𝑃 at most one
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of 𝑃 and (¬𝑃) is a theorem. In other words the system is free from contra-
dictions. Unlike soundness, consistency is purely a property of the system,
not the system and its interpretation. A small bit of interpretation is smug-
gled in because it’s only the interpretation which tells us that the pair 𝑃
and (¬𝑃) form a contradiction but this is really the only aspect of the inter-
pretation which is needed to discuss consistency. If you believe that 𝑃 and
(¬𝑃) can’t simultaneously be true then consistency follows from sound-
ness because if they can’t both be true then they can’t both be tautologies
and every theorem is a tautology.
For humans, proofs in Łukasiewicz’s system are easier to read, write and
check than in Nicod’s system. This doesn’t mean they are easy. Here is a
proof of the theorem (𝑝 ⊃ 𝑝), which we can easily check is a tautology by
considering the two possible values of 𝑝:

1 (𝑝 ⊃ (𝑞 ⊃ 𝑝))
2 ((𝑝 ⊃ (𝑞 ⊃ 𝑟)) ⊃ ((𝑝 ⊃ 𝑞) ⊃ (𝑝 ⊃ 𝑟)))
3 (𝑝 ⊃ ((𝑞 ⊃ 𝑝) ⊃ 𝑝))
4 ((𝑝 ⊃ ((𝑞 ⊃ 𝑝) ⊃ 𝑝)) ⊃ ((𝑝 ⊃ (𝑞 ⊃ 𝑝)) ⊃ (𝑝 ⊃ 𝑝)))
5 (𝑝 ⊃ (𝑞 ⊃ 𝑝)) ⊃ (𝑝 ⊃ 𝑝))
6 (𝑝 ⊃ 𝑝)

Statements 1 and 2 are axioms. Statement 3 follows from 1 by substituting
(𝑞 ⊃ 𝑝) for 𝑞. Statement 4 follows from 2 by substituting (𝑞 ⊃ 𝑝) for 𝑞 and
𝑝 for 𝑟. Statement 5 follows from 3 and 4 by modus ponens. Statement 6
follows from 1 and 5 by modus ponens. More interesting theorems have,
as you might expect, even longer proofs.
Proving the completeness of Łukasiewicz’s system is easier than proving
that of Nicod’s, but I still won’t do it.

Natural deduction
Some people find proving theorems in formal systems like Nicod’s or
Łukasiewicz’s an entertaining sort of puzzle. Other people do not. What’s
undeniable is that such proofs have a very different flavour from those of
the rest of mathematics. There was a reaction against these and similar
axiomatic systems which led to what’s known as “natural deduction’’.
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One of the most important people behind this reaction was Łukasiewicz
himself. Natural deduction systems are still formal systems, but their
rules better reflect the way mathematicians typically think.

A formal system for natural deduction

There are awide variety of natural deduction systems. We’ll use one due to
Douglas Hofstadter, with a few extra rules of inference. Havingmore rules
of inference makes constructing proofs in the formal system easier, but it
comes at the expense ofmakingmost proofs of statements about the formal
system harder. The language of this system includes only the operators ∧,
∨, ¬, and ⊃. It has no axioms! In contrast it has a lot of rules of inference:

1. From statements 𝑃 and 𝑄 we can deduce the statement (𝑃 ∧ 𝑄). Also,
from any statement of the form (𝑃 ∧ 𝑄) we can deduce the statement
𝑃 and the statement 𝑄.

2. From the statement 𝑃 we can deduce the statement (𝑃 ∨ 𝑄), where
𝑄 is any expression.

3. From 𝑃 and (𝑃 ⊃ 𝑄) we can deduce 𝑄.
4. The expressions [¬(¬𝑃)] and 𝑃 are freely interchangeable. In other

words, anywhere an expression of one of these forms appears in a
statement we may deduce the statement where it has been replaced
by the other.

5. The expressions (𝑃 ⊃ 𝑄) and [(¬𝑄) ⊃ (¬𝑃)] are freely interchange-
able.

6. The expressions [(¬𝑃) ∧ (¬𝑄)] and [¬(𝑃 ∨ 𝑄)] are freely inter-
changeable.

7. The expressions [(¬𝑃) ∨ (¬𝑄)] and [¬(𝑃 ∧ 𝑄)] are freely inter-
changeable.

8. The expressions (𝑃 ∨ 𝑄) and [(¬𝑃) ⊃ 𝑄] are freely interchangeable,
as are (𝑃 ⊃ 𝑄) and [(¬𝑃) ∨ 𝑄]

9. The “Rule of Fantasy”, to be described below.
10. The “Rule of Substitution”, subject to restrictions to be discussed be-

low.
The first few rules specify the behaviour of the four logical operators. They
are closely related to our tableaux rules. Half of the first rule, which is
called the rule of joining and separation, can be thought of an equivalent
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to the tableau rule
(𝑃 ∧ 𝑄)

𝑃
𝑄

for example. It reflects the fact that if (𝑃 ∧ 𝑄) is true then 𝑃 and 𝑄 are true.
It’s important to remember though that that’s a property of the intended
interpretation, or rather interpretations, of the system, while the rule above
is a rule of inference within the system. The third rule is one we’ve met
before, under the name modus ponens. The fourth rule above is related to
the tableau rule

(¬𝑃)
𝑃

(¬𝑃)
𝑃

with the first one applied with (¬𝑃) in place of 𝑃. It reflects the “fact” that
if 𝑃 is not not true then it is true. The quotation marks reflect the reality
that not everyone accepts this a logical principle. This is one of the dividing
lines between “classical” and “intuitionist” logic. It’s tableau counterpart
is more complicated. It consists of following both branches from a (𝑃 ⊃ 𝑄)
but then using the 𝑃 to immediately close off the left branch, which would
have a 𝑃 to the right of the bar.
The fifth rule is called the rule of the contrapositive, it is the basis of proofs
by contradiction. It is another dividing line between “classical” and “intu-
itionist” logic. The sixth and seventh rules are two known as De Morgan’s
laws. The eighth rule of inference is really just the observation we made
when discussing Łukasiewicz’s system that ∨ is expressible in terms of ¬
and ⊃.

Introducing and discharging hypotheses

The ninth rule, the “rule of fantasy” in Hofstadter’s terminology, is more
complicated to explain, but reflects a common practice in informal proofs.
We often say “Suppose 𝑃”. We then reason for a while under that assump-
tion and reach a conclusion 𝑄. We then conclude “So if 𝑃 then 𝑄.” There
are two common circumstances in which we do this. One is proof by con-
tradiction, where we then immediately apply the rule of the contraposi-
tive. The other is case by case analysis, which was the basis of our tableau
method. In such applications there will be a separate application of the
rule of fantasy for each possible case. Writers of informal proofs are under
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no obligation to tell you which of these two uses they have in mind and
sometimes you have to read the whole proof to find out but often a clue
is is in the verb forms used. In a proof by contradiction people are more
likely towrite “Suppose…were true” rather than “Suppose… is true”. But
this is not something you can entirely rely on.
I’ve just describedwhat the rule of fantasy is intended to do, but not the pre-
cise rules governing it. They’re just a formalised version of the rules which
mathematicians follow in informal arguments. We need some terminology.
The step of saying “Suppose 𝑃” is called introducing the assumption or hy-
pothesis 𝑃. The step of saying “So if 𝑃 then 𝑄” is called discharging this hy-
pothesis or assumption. Everything in between is called the scope of the hy-
pothesis. It’s possible, and indeed common, to introduce further hypothe-
ses within the scope of an existing one, and so have nested scopes. In argu-
ments based on tableaux this corresponds to branches within branches.
Scope determineswhich statements are accessible for use by the other rules
at any point in a proof. When you enter a new scope by introducing a hy-
pothesis you retain access to everything in the scope you were in. When
you leave that scope by discharging that hypothesis you lose access to all
statements since you entered it. The only trace of any of the reasoning
which took place within that scope is the single statement (𝑃 ⊃ 𝑄) gener-
ated by discharging the hypothesis. This restriction on the accessible state-
ments is needed to ensure that you can’t deduce a statement by introduc-
ing 𝑃 as a hypothesis unless it’s of the form (𝑃 ⊃ 𝑄). Otherwise you could
prove all statements, true or false, by introducing them as a hypothesis and
then using them outside of the scope of that hypothesis. All the other rules
are to be interpreted as implicitly subject to this restriction. Sowhenwe say
that from (𝑃 ∧ 𝑄) we can deduce 𝑃 and 𝑄 we mean that in a scope where
(𝑃 ∧ 𝑄) is accessible we can deduce 𝑃 and 𝑄. It doesn’t allow us to deduce
𝑃 or 𝑄 if the statement (𝑃 ∧ 𝑄) appeared after some hypothesis but has
already been discharged.
Statements outside the scope of any hypotheses are said to have “global”
scope. Only such statements are theorems.
In informal proofs it can be difficult to spot where hypotheses are intro-
duced andwhere they’re discharged and therefore difficult to knowwhich
ones are accessible. This is particularly problematic in proofs by contradic-
tion. The whole point of a proof by contradiction is that the hypothesis

87



which is introducedwill later be shown to be false. Everything in the scope
of that hypothesis could, and usually does, depend on that false hypothesis
and therefore should never be used outside that particular proof by contra-
diction argument. This is a common source of error for students. If you
scan through a textbook looking for things which might be useful in prob-
lem you’re attempting then you may find useful statements in the proof
of a theorem. They’ll typically depend on various hypotheses which have
been introduced though and can’t safely be used in a context where those
hypotheses aren’t known to be true.
In a formal system we need some way to indicate the introduction and
discharging of hypotheses.
The safest way to do it would be to include a list of all active, i.e. not yet
discharged, hypotheses before each statement. That solves the problem
described above of using statements outside of their scope, but at the cost
of making proofs very long and repetitive.
Jaśkowski, one of the founders of the theory of natural deduction, used
boxes. A box encloses all the statements within a give scope and it’s
straightforward to see which statements are available within it. Starting
from wherever we currently are we have available any statement we can
reach by crossing zero or more box boundaries from inside to outside, but
we are not allowed to cross any from outside to inside. This notational con-
vention would probably have been more popular if it weren’t a nightmare
to typeset.
A popular alternative is to use indentation. Every time we introduce a hy-
pothesis we increase the indentation and every time we discharge one we
restore it to its previous value. The first statement after the indentation is
increased is the newly introduced hypothesis. The first statement after the
indentation has been restored is the result of discharging the hypothesis,
i.e. the statement (𝑃 ⊃ 𝑄) where 𝑃 is the hypothesis and 𝑄 is the last state-
ment before the indentation was restored. This is a very compact notation
but using spaces for indentation can cause problems. Screen readers will
generally ignore spaces. Even for sighted readers judging the number of
spaces at the start of a line is error-prone. It’s better to use a non-whitespace
character. We’ll use dots.
The “rule of fantasy” is Hofstadter’s terminology. It accurately reflects the
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use of the rule, to explore the consequences of a statement not known to be
true, but don’t expect anyone to understand you if you use the term outside
of this module.
There is some redundancy in the rules above, in the sense that there are
proper subsets of those rules with the property that any statement which
has a proof using the full set also has a proof using only the subset. But
the point of a natural deduction system is to formalise something close to
the way mathematicians actually reason rather than to have an absolutely
minimal system. If you like minimal systems then you’re better off with
Nicod.
There are, as we’ll see some restrictions needed on the rule of substitution
but I’ll get to those once we have some examples of proofs. In the interim
I will be careful not to use that rule.

Some proofs

The shortest proof in this system is

1 . 𝑝
2 (𝑝 ⊃ 𝑝)

which introduces 𝑝 as a hypothesis and immediately discharges it. The
line numbering isn’t technically part of the proof; I’ve just added it to make
it easier to refer to individual lines. This proof shows that the statement
(𝑝 ⊃ 𝑝) is a theorem in this system. We saw that it was a theorem in
Łukasiewicz’s system as well, but with a considerably longer proof.
As another example, consider this proof of the statement {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}.

1 . 𝑝
2 . . 𝑞
3 . . (𝑝 ∧ 𝑞)
4 . [𝑞 ⊃ (𝑝 ∧ 𝑞)]
5 {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}

Our first step is again to introduce a hypothesis. In this system the first step
is always to introduce a hypothesis. There are no axioms and every other
rule deduces a statement fromprevious statements, ofwhichwe have none.
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It’s not hard to guess which hypothesis to introduce. The statement we
want to prove is {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} and it starts with 𝑝 ⊃ so if we introduce
𝑝 and then manage to prove [𝑞 ⊃ (𝑝 ∧ 𝑞)] then we will be done. So we
introduce 𝑝. What next? We want to prove [𝑞 ⊃ (𝑝 ∧ 𝑞)]. It starts with
𝑞 ⊃ so try the same thing, introducing 𝑞 as a further hypothesis. If we can
prove (𝑝 ∧ 𝑞) within the scope of this hypothesis then we will have proved
[𝑞 ⊃ (𝑝 ∧ 𝑞)] within the scope of the hypothesis 𝑝 and therefore will have
proved {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} within the global scope, i.e. in the absence of
any hypotheses. At this point we have two statements available within our
current scope 𝑝 and 𝑞. We just introduced 𝑞. We inherited 𝑝 from the outer
scope. This is what I meant when I said that when you enter a new scope
by introducing a hypothesis you retain access to everything in the scope
you were in. So we have 𝑝 and 𝑞 and want (𝑝 ∧ 𝑞). Fortunately our first
rule of inference, the rule of joining and separation, does exactly this. So
the proof may look strange at first but really at each stage we do the only
thing we can and it works.
As another example, consider [𝑝 ∨ (¬𝑝)], which is often called the “law of
the excluded middle”. In this case it’s less obvious how to start. For the
reasons discussed above we must start by introducing a hypothesis, but
what hypothesis? The statement isn’t of the form (𝑃 ⊃ 𝑄) for any choice
of expressions 𝑃 and 𝑄. Looking at our rules though we see that one of
them allows us to derive [𝑝 ∨ (¬𝑝)] from [(¬𝑝) ⊃ (¬𝑝)]. That is easily
proved with the fantasy rule. We introduce the hypothesis (¬𝑝) and then
immediately discharge it. The complete proof is

1 . (¬𝑝)
2 [(¬𝑝) ⊃ (¬𝑝)]
3 [𝑝 ∨ (¬𝑝)]

A slightly more complicated example is the following proof of
{[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}. This time I’ll just indicate which rule is used in
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each line and not explain the strategy behind it.

1 . [𝑝 ∧ (¬𝑝)]
2 . 𝑝
3 . (¬𝑝)
4 . . (¬𝑞)
5 . . [¬(¬𝑝)]
6 . {(¬𝑞) ⊃ [¬(¬𝑝)]}
7 . [(¬𝑝) ⊃ 𝑞]
8 . 𝑞
9 {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}

The first line is the introduction of a hypothesis, also known as the rule
of fantasy. The hypothesis is [𝑝 ∧ (¬𝑝)]. The second and third lines
are from our first rule of inference, “From statements 𝑃 and 𝑄 we can de-
duce the statement (𝑃 ∧ 𝑄). Also, from any statement of the form (𝑃 ∧ 𝑄)
we can deduce the statement 𝑃 and the statement 𝑄.” This is second part
of it, applied to the first line. The fourth line introduces the hypothesis
(¬𝑞). The fifth line uses the fourth rule: “The expressions [¬(¬𝑃)] and
𝑃 are freely interchangeable. In other words, anywhere an expression of
one of these forms appears in a statement we may deduce the statement
where it has been replaced by the other.” This is applied to the second
line. The sixth line discharges the hypothesis (¬𝑞) from the fourth line.
The seventh line uses the fifth rule of inference: “The expressions (𝑃 ⊃ 𝑄)
and [(¬𝑄) ⊃ (¬𝑃)] are freely interchangeable.’’ Here 𝑃 is the expression
(¬𝑝) and 𝑄 is the expression 𝑞. The eighth line uses the third rule of infer-
ence:”From 𝑃 and (𝑃 ⊃ 𝑄) we can deduce 𝑄.” This is the rule known as
modus ponens. It’s applied to the third and seventh lines. The ninth and
final line discharges the hypothesis [𝑝 ∧ (¬𝑝)].
The theorem {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞} is known as the “Principle of Explosion”.
Unlike other fanciful names, like the “Rule of Fantasy”, this name is quite
standard and people should understand what you’re talking about if you
use it. This theorem shows that from a contradiction it’s possible to derive
anything at all. In a theory with contradictions all statements are theorems.
A useful substitution instance of {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞} is {[𝑝 ∧ (¬𝑝)] ⊃ 𝑝}.
Here are the proofs of some other useful theorems. It would be a good idea
to go through at least some of them and check that you can identify which
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rule of inference is being used at each step.

1 . (¬𝑝)
2 . [(¬𝑝) ∧ (¬𝑝)]
3 . [¬(𝑝 ∨ 𝑝)]
4 . {¬[(¬𝑝) ⊃ 𝑝]}
5 [(¬𝑝) ⊃ {¬[(¬𝑝) ⊃ 𝑝]}]
6 {[(¬𝑝) ⊃ 𝑝] ⊃ 𝑝}

1 . 𝑞
2 . [(¬𝑝) ∨ 𝑞]
3 . (𝑝 ⊃ 𝑞)
4 [𝑞 ⊃ (𝑝 ⊃ 𝑞)]
5 {[¬(𝑝 ⊃ 𝑞)] ⊃ (¬𝑞)]}

1 . (¬𝑝)
2 . [(¬𝑝) ∨ 𝑞]
3 . (𝑝 ⊃ 𝑞)
4 [(¬𝑝) ⊃ (𝑝 ⊃ 𝑞)]
5 {[¬(𝑝 ⊃ 𝑞)] ⊃ [¬(¬𝑝)]}
6 {[¬(𝑝 ⊃ 𝑞)] ⊃ 𝑝]}
1 . (𝑝 ⊃ 𝑞)
2 . [(¬𝑞) ⊃ (¬𝑝)]
3 . [𝑞 ∨ (¬𝑝)]
4 {(𝑝 ⊃ 𝑞) ⊃ [𝑞 ∨ (¬𝑝)]}

1 . [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)]
2 . (𝑝 ⊃ 𝑟)
3 . [(¬𝑟) ⊃ (¬𝑝)]
4 . (𝑞 ⊃ 𝑟)
5 . [(¬𝑟) ⊃ (¬𝑞)]
6 . . (¬𝑟)
7 . . (¬𝑝)
8 . . (¬𝑞)
9 . . [(¬𝑝) ∧ (¬𝑞)]
10 . . [¬(𝑝 ∨ 𝑞)]
11 . {(¬𝑟) ⊃ [¬(𝑝 ∨ 𝑞)]}
12 . [(𝑝 ∨ 𝑞) ⊃ 𝑟]
13 {[(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ⊃ 𝑟]}
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As afinal examplewe consider the tautology {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
we encountered earlier. A proof is

1 . [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)]
2 . . 𝑝
3 . . (𝑝 ⊃ 𝑞)
4 . . (𝑞 ⊃ 𝑟)
5 . . 𝑞
6 . . 𝑟
7 . (𝑝 ⊃ 𝑟)
8 {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}

Although formal proofs may look baffling when you first look at them it’s
often easy to translate them into informal proofs of a familiar type. For
example, the proof above can be translated as follows.
Suppose [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] is true. Then (𝑝 ⊃ 𝑞) and (𝑞 ⊃ 𝑟) are both
true. If 𝑝 is true then 𝑞 is true and therefore 𝑟 is true. So (𝑝 ⊃ 𝑟).
This holds under our assumption that [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] is true, so
{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}.

Substitution

This is where we should talk about the rule of substitution. A very com-
mon style of mathematical argument, and one which we formalised in the
tableau method, is case by case analysis. The simplest type of case by case
analysis is where we have only two cases, one where a certain statement is
true and one where it’s false. If we can prove a certain conclusion in both
of those cases then that conclusion must be true. Or at least it must be if
you accept the law of the excluded middle. Intuitionists don’t.
But to apply the case by case analysis aboveweneed the lawof the excluded
middle for expressions and not just for variables. In other words we need
[𝑃 ∨ (¬𝑃)] to be a theorem for every expression 𝑃. There are three ways of
accomplishing this. One is to run exactly the same argument as above with
𝑝 replaced everywhere by 𝑃. The rules we used, of which there were only
two, refer to expressions rather to variables and so no change is needed.
We could do the same with {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]}, by the way. For any ex-
pressions 𝑃 and 𝑄 we could replace every 𝑝 by the expression 𝑃 and every
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𝑞 by the expression 𝑄 in the proof of {𝑝 ⊃ [𝑞 ⊃ (𝑝 ∧ 𝑞)]} and obtain a proof
of {𝑃 ⊃ [𝑄 ⊃ (𝑃 ∧ 𝑄)]}. A disadvantage of this approach is that we need
to repeat the argument for each 𝑃 and 𝑄 we need to result for. We can’t
just do it with the letters 𝑃 and 𝑄 in place of the letters 𝑝 and 𝑞 because 𝑃
and 𝑄 aren’t even elements of our language, just elements of the language
we use to talk about our language. We have to substitute the actual expres-
sions, and so we’ll need to redo that work whenever we need the result for
a different pair of expressions.
Another option is to leave the realm of formal proof and enter the realm
of semiformal proof. The argument above shows that for any expressions
𝑃 and 𝑄 the statements [𝑃 ∨ (¬𝑃)] and {𝑃 ⊃ [𝑄 ⊃ (𝑃 ∧ 𝑄)]} are theorems.
Anything you can derive from them using our rules of inference is also
a theorem. In other words, substitution is a derived rule of inference for
this system, just as it was for the Nicod system. But now we’re not giving
proofs of statements but rather proofs that statements have proofs. That’s
a semiformal proof rather than a formal one.
The third option is to bring in the rule of substitution, which was a rule of
inference in the Łukasiewicz system. This seems redundant, since we’ve
just seen how one can get around the lack of a rule of substitution by just
substituting expressions for variables within a proof, but it’s convenient to
have and we already decided we aren’t trying for a minimal system.
There’s a subtle danger here though. Consider the following proof:

1 . 𝑝
2 . 𝑞
3 (𝑝 ⊃ 𝑞)

The first step is to introduce the hypothesis 𝑝. The second is to apply the
rule of substitution, replacing the variable 𝑝 with the expression 𝑞. Vari-
ables are expressions so this is okay. The third step is to discharge the
hypothesis. But (𝑝 ⊃ 𝑞) is not a tautology. There is an interpretation under
which it is false, namely the one where 𝑝 is assigned the value true and 𝑞 is
assigned the value false, and therefore it should not be a theorem.
What went wrong? There’s a difference in interpretation between state-
ments in the Nicod or Łukasiewicz systems and in a natural deduction
system. In the Nicod or Łukasiewicz systems every statement is meant
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to be unconditionally true. We could stop a proof at any point and have
a proof of the last statement before we stopped. This is not the case for
natural deduction systems. Only statements in global scope are meant to
be unconditionally true. All other statements are meant to be true if all the
active hypotheses for their scope are true. In other words they’re only con-
ditionally true. That’s why I had to specify that only statements in global
scope are theorems. The problem with the argument above is that once
we’ve introduced 𝑝 as a hypothesis it’s no longer just any variable. It’s the
specific variable whose truth everything will be dependent upon until we
discharge that hypothesis. Replacing it with some other variable, or some
other expression, can’t safely be allowed.
How can we repair this? We could sacrifice the rule of fantasy but the
rule of fantasy is the foundation of our system. It is literally impossible to
prove anything without it. We could limit our rule of substitution by say-
ing that only statements with global scope are available for substitution.
This is a sound rule of inference. We know it’s sound because the other
rules are sound and this one is redundant. Anything we could prove with
it we could also prove without it, by the technique we discussed earlier of
repeating the proof, but with expressions substituted in for the variables.
It’s unnecessarily restrictive though, since it can sometimes be safe to sub-
stitute for some variables in a statement within the scope of a hypothesis.
The precise rule is that in any available statement we may substitute any
expression for any variablewhich does not appear in any hypothesis which
was active in its scope. In the global scope no hypotheses are active and so
we can substitute for any variable, but elsewhere certain variables will not
be substitutable. Note that which variables are substitutable depends on
the scope of the statement intowhichwe’re substituting, not on our current
scope at the point where we want to make the substitution.
This is the first example we’ve seen of a phenomenon where not all vari-
ables are equally variable. Some have special status in a particular context
which restricts what we can do with them. It won’t be the last such exam-
ple. Something similar will happen when we move on to first order logic.
Although I’ve put in some effort above to ensure that you can substitute
into statements within the scope of a hypothesis in those cases where it’s
safe you shouldn’t generally structure your proofs in a way which makes
that necessary. If you’re going to need multiple substitution instances of a
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statement then you should prove that statement in global scope so that it’s
available everywhere. Often that means writing your proofs out of order.
Once you release you’ll need multiple instances of a statement you need to
go back and insert a proof of that statement at the start of your argument,
before introducing any hypotheses which are not needed in its proof.
When reading proofs it’s useful to know that people do this. If an author
starts by proving a bunch of random facts whose usefulness isn’t immedi-
ately apparent and which don’t reappear for several pages that’s not nec-
essarily just bad exposition. It may well be that their being proved there to
make it clear that they’re in global scope, i.e. that their truth is not contin-
gent on hypotheses which will be made later.

From tableaux to proofs

We can generate a formal proof in our natural deduction system from a
tableau. This generally won’t give a particularly efficient proof, but it will
be a formal proof.
There’s a preamble which we can use for all tableaux, consisting of proofs
of theorems we’ve already proved or easy consequences of those, whose
substitution instances we’ll find useful. This preamble is

1 . [𝑝 ∧ (¬𝑝)]
2 . 𝑝
3 . (¬𝑝)
4 . . (¬𝑞)
5 . . [¬(¬𝑝)]
6 . {(¬𝑞) ⊃ [¬(¬𝑝)]}
7 . [(¬𝑝) ⊃ 𝑞]
8 . 𝑞
9 {[𝑝 ∧ (¬𝑝)] ⊃ 𝑞}
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10 . (¬𝑝)
11 . [(¬𝑝) ∨ 𝑞]
12 . (𝑝 ⊃ 𝑞)
13 [(¬𝑝) ⊃ (𝑝 ⊃ 𝑞)]
14 {[¬(𝑝 ⊃ 𝑞)] ⊃ [¬(¬𝑝)]}
15 {[¬(𝑝 ⊃ 𝑞)] ⊃ 𝑝]}

16 . 𝑞
17 . [(¬𝑝) ∨ 𝑞]
18 . (𝑝 ⊃ 𝑞)
19 [𝑞 ⊃ (𝑝 ⊃ 𝑞)]
20 {[¬(𝑝 ⊃ 𝑞)] ⊃ (¬𝑞)]}

21 . [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)]
22 . (𝑝 ⊃ 𝑟)
23 . [(¬𝑟) ⊃ (¬𝑝)]
24 . (𝑞 ⊃ 𝑟)
25 . [(¬𝑟) ⊃ (¬𝑞)]
26 . . (¬𝑟)
27 . . (¬𝑝)
28 . . (¬𝑞)
29 . . [(¬𝑝) ∧ (¬𝑞)]
30 . . [¬(𝑝 ∨ 𝑞)]
31 . {(¬𝑟) ⊃ [¬(𝑝 ∨ 𝑞)]}
32 . [(𝑝 ∨ 𝑞) ⊃ 𝑟]
33 {[(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)] ⊃ [(𝑝 ∨ 𝑞) ⊃ 𝑟]}

34 ({[(¬𝑝) ⊃ 𝑟] ∧ (𝑞 ⊃ 𝑟)} ⊃ {[(¬𝑝) ∨ 𝑞] ⊃ 𝑟})
35 {[(¬𝑝) ⊃ 𝑟] ∧ (𝑞 ⊃ 𝑟)} ⊃ [(𝑝 ⊃ 𝑞) ⊃ 𝑟]

36 ({[(¬𝑝) ⊃ 𝑟] ∧ [(¬𝑞) ⊃ 𝑟]} ⊃ {[(¬𝑝) ∨ (¬𝑞)] ⊃ 𝑟})
37 ({[(¬𝑝) ⊃ 𝑟] ∧ [(¬𝑞) ⊃ 𝑟]} ⊃ {[¬(𝑝 ∧ 𝑞)] ⊃ 𝑟})
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38 . {(¬𝑝) ⊃ [𝑞 ∧ (¬𝑞)]}
39 . {[𝑞 ∧ (¬𝑞)] ⊃ 𝑝}
40 . ({(¬𝑝) ⊃ [𝑞 ∧ (¬𝑞)]} ∧ {[𝑞 ∧ (¬𝑞)] ⊃ 𝑝})
41 . {({(¬𝑝) ⊃ [𝑞 ∧ (¬𝑞)]} ∧ {[𝑞 ∧ (¬𝑞)] ⊃ 𝑝}) ⊃ [(¬𝑝) ⊃ 𝑝]}
42 . [(¬𝑝) ⊃ 𝑝]
43 . {[(¬𝑝) ⊃ 𝑝] ⊃ 𝑝}
44 . 𝑝
45 ({(¬𝑝) ⊃ [𝑞 ∧ (¬𝑞)]} ⊃ 𝑝)

The point of the preamble is to have lines 9, 14, 20, 33, 35, 37, and 45 avail-
able for appropriate substitutions. Most of these are previously used ex-
amples.
After copying the preamble our strategy will be to work our way through
the tableau statement by statement, with each statement in tableau even-
tually appearing, either as is, in the case of statements to the left of the
vertical line, or negated, in the case of statements to the right of the line.
To start things off we introduce the negation of the statement we want to
prove as a hypothesis. If we ignore branches for the moment then every-
thing is fairly straightforward. Every statement in the tableau is derived
from an earlier one using a tableau rule, of which there is one for each of
the Boolean operators. When it’s ¬ either there’s nothing to do or we use
our double negation rule to peel off two ¬’s. When the operator is ∧ we
can use our splitting rule. A slightlymore complicated case is ∨. Thismust
be on the right of the vertical line, since we’re still ignoring the branching
cases. In this case we use De Morgan’s laws to move the ¬ inside the ∨,
making it into an ∧, and then use splitting. The most complicated case is
⊃. For that we use a substitution instance of line 15 or 20, and then use
modus ponens.
Branches are somewhat trickier. Whenever we branch we introduce the
two possibilities as new hypotheses in turn, i.e. discharging the first one
before we introducing the second. We start from a tableau proof, mean-
ing a closed tableau, so we will eventually reach a contradiction in each
branch. This contraction will be a pair of statements of the form 𝑃 and
(¬𝑃) for some expression 𝑃. Once this happens we join the statements to
get [𝑃 ∧ (¬𝑃)] and then discharge the hypothesis. After discharging the
second hypothesis, i.e. the one from the right branch, what we do next de-

98



pends on whether there are further undischarged hypotheses. If there are
then we a substitution instance of one of lines 33, 35, or 37, depending on
whether the operator which caused the branching was an ∨, ⊃, or ∧ to get
a contradiction in our current scope. Once we are in the global scope, hav-
ing discharged all hypotheses, we can use a substitution instance of line 45
and modus ponens to get the statement we were trying to prove, which is
now in global scope and is not negated so we have a formal proof in the
natural deduction system.
I’ll illustrate thiswith the tableau for {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}, which
we saw earlier.

Figure 27: An analytic tableau for [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)

As outlined above, we start by copying the preamble and then introducing
the negation of the statement we want to prove as a hypothesis.

46 . (¬{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)})

This is then followedby a substitution instance of line 15, {[¬(𝑝 ⊃ 𝑞)] ⊃ 𝑝]},
specifically the one where we substitute [(𝑝 ⊃ 𝑟) ∧ (𝑞 ⊃ 𝑟)] for 𝑝 and
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[(𝑝 ∨ 𝑞) ⊃ 𝑟] for 𝑞, and then modus ponens

47 . {(¬{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}) ⊃ [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)]}
48 . [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)]

We can then do essentially the same thing, but with line 20 rather than line
15,

49 . {(¬{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}) ⊃ [¬(𝑝 ⊃ 𝑟)]}
50 . [¬(𝑝 ⊃ 𝑟)]

We can then apply splitting, twice, to line 48,

51 . (𝑝 ⊃ 𝑞)
52 . (𝑞 ⊃ 𝑟)

If you look at lines 46, 48, 50, 51 and 52 you’ll see that they match the first
five lines of the tableau, except that statements to the right of the verti-
cal line are negated. As explained above, this is our strategy, to follow
the tableau, using our rules of inference, and sometimes substitution in-
stances of statements from the preamble, to derive each statement from
earlier statements. We continue by deriving 𝑝 and ¬𝑟, which will take us
up to the first branch point.

53 . {[¬(𝑝 ⊃ 𝑟)] ⊃ 𝑝}
54 . 𝑝
55 . {[¬(𝑝 ⊃ 𝑟)] ⊃ (¬𝑟)}
56 . (¬𝑟)

As described earlier, the strategy for dealing with branches is to introduce
a hypothesis for each branch in turn and derive a contradiction under that
hypothesis. We start the left branch by introducing the hypothesis (¬𝑝)

57 . . (¬𝑝)
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At this point we have both 𝑝 and (¬𝑝) available within the current scope,
and can join them, and use a substitution instance of line 9, before discharg-
ing the hypothesis.

58 . . [𝑝 ∧ (¬𝑝)]
59 . . {[𝑝 ∧ (¬𝑝)] ⊃ [𝑠 ∧ (¬𝑠)]}
60 . . [𝑠 ∧ (¬𝑠)]
61 . {(¬𝑝) ⊃ [𝑠 ∧ (¬𝑠)]}

Having dealt with the left branch we now proceed to the right branch.
Again we introduce a hypothesis.

62 . . 𝑞
In the tableau there’s another branch at this point, which we deal with in
the same way as the previous one. The first step is to introduce a further
hypothesis.

63 . . . (¬𝑞)
Within the current scope we have a 𝑞 and a (¬𝑞), from the previous two
lines of the proof, which we can treat in the same way we treated 𝑝 and
(¬𝑝) earlier.

64 . . . [𝑞 ∧ (¬𝑞)]
65 . . . {[𝑞 ∧ (¬𝑞)] ⊃ [𝑠 ∧ (¬𝑠)]}
66 . . . [𝑠 ∧ (¬𝑠)]
67 . . {(¬𝑞) ⊃ [𝑠 ∧ (¬𝑠)]}

That was the left subbranch of the right branch of the tableau. The right
subbranch is handled similarly.

68 . . . 𝑟
69 . . . [𝑟 ∧ (¬𝑟)]
70 . . . {[𝑟 ∧ (¬𝑟)] ⊃ [𝑠 ∧ (¬𝑠)]}
71 . . . [𝑠 ∧ (¬𝑠)]
72 . . {𝑟 ⊃ [𝑠 ∧ (¬𝑠)]}
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Now we need to combine the two subbranches. We do this by joining lines
67 and 72, substituting in line 35, applying modus ponens twice, and then
discharging the hypothesis 𝑞.

73 . . ({(¬𝑞) ⊃ [𝑠 ∧ (¬𝑠)]} ∧ {𝑟 ⊃ [𝑠 ∧ (¬𝑠)]})
74 . . [({(¬𝑞) ⊃ [𝑠 ∧ (¬𝑠)]} ∧ {𝑟 ⊃ [𝑠 ∧ (¬𝑠)]})

. ⊃ {[¬(𝑞 ⊃ 𝑟)] ⊃ [𝑠 ∧ (¬𝑠)]}]
75 . . {[(𝑞 ⊃ 𝑟)] ⊃ [𝑠 ∧ (¬𝑠)]}]
76 . . [𝑠 ∧ (¬𝑠)]}
77 . {𝑞 ⊃ [𝑠 ∧ (¬𝑠)]}

Then we combine the two branches in a similar way.

78 . ({(¬𝑝) ⊃ [𝑠 ∧ (¬𝑠)]} ∧ {𝑞 ⊃ [𝑠 ∧ (¬𝑠)]})
79 . [({(¬𝑝) ⊃ [𝑠 ∧ (¬𝑠)]} ∧ {𝑞 ⊃ [𝑠 ∧ (¬𝑠)]}) ⊃ {[¬(𝑞 ⊃ 𝑟)]

⊃ [𝑠 ∧ (¬𝑠)]}]
80 . {[(𝑝 ⊃ 𝑞)] ⊃ [𝑠 ∧ (¬𝑠)]}]
81 . [𝑠 ∧ (¬𝑠)]}
82 {(¬{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}) ⊃ [𝑠 ∧ (¬𝑠)]}

Nowwe apply a substitution instance of line 45 and then modus ponens to
complete the proof.

83 ({(¬{[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}) ⊃ [𝑠 ∧ (¬𝑠)]}
⊃ {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)})

84 {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}

After 84 lines we’ve finally proved {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}. We
proved it earlier in 8 lines, so why give a proof which is more than ten
times longer? The point is that this proof was constructed in a purely
mechanical way from the tableau. We can use the same method on any
closed tableau to get a formal proof. The preamble will always be the
same, as will the strategies for dealing with branches and contradictions,
and the use of line 9 to complete the proof. This means tableaux can now
be regarded as semiformal proofs rather than informal proofs, since a
tableau tells us not just that a statement is true but also that it’s a theorem
in our formal system.
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Soundness, consistency and completeness
Soundness of a formal system means that the axioms are true in every in-
tended interpretation and that no rule of inference can derive a false state-
ment from true ones in any of the intended interpretations. From this it
follows that every theorem is true in every intended interpretation. Con-
sistency means that a statement and its negation cannot both be theorems.
Consistency doesn’t depend on the choice of interpretations or interpreta-
tions, except to the extent that we need to identify what negation means
in the system. Completeness means that every statement which is true in
every intended interpretation is a theorem.
The intended interpretations of our natural deduction system are the ones
discussed earlier for zeroeth order logic in general. There is an interpreta-
tion for each possible assignment of truth values to variables.
Our natural deduction system is sound. There are no axioms so it’s trivially
the case that every axiom is true in every intended interpretation. It’s also
impossible to derive a false statement from true ones in any of the intended
interpretations.
If you believe that a statement and its negation can’t simultaneously be
true then consistency follows from soundness. It’s also possible to prove
the consistency of natural deduction directly, but I won’t.
The completeness of the natural deduction system follows from two facts
proved earlier, that every tautology has a closed tableau and that any closed
tableau can be converted into a formal proof.
For the two axiomatic systems considered earlier it’s fairly easy to prove
soundness. For Łukasiewicz it’s also straightforward to prove consistency.
For Nicod the main obstacle to proving consistency is the lack of a nega-
tion operator in the language. Proving completeness of either system is
possible, but is more difficult than for natural deduction.

Non-deterministic algorithms
It’s often useful to think in terms of non-deterministic calculations. In some
sense, as we’ll see, any non-deterministic computation can be turned into
a deterministic one, but often the non-deterministic formulation is more
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natural. By non-deterministic I do not mean probabilistic. Probabilistic
computation is also often useful, but is not really relevant to this module.
Deterministic algorithms have

• a well defined initial state
• a definite rule for what action to take in each state, possibly depen-

dent on input, environment, etc.
• a termination condition
• (probably) a distinction between successful and unsuccessful termi-

nation
Non-deterministic algorithms have

• one or more initial states
• a set of possible actions to take in each state
• a termination condition, probablywith a distinction between success-

ful and unsuccessful termination
Usually we’re interested in whether a non-deterministic algorithm can ter-
minate successfully, not whether it happens to for a particular choice of
actions, so unsuccessful terminations are generally to be regarded as un-
successful only in a local sense. There may be other computational paths
which lead to successful termination.
We usually illustrate the possible computational paths with a tree diagram.
Unfortunately the terminology for trees is a mess. In keeping with the tree
metaphor we have the “root” and “leaves”. For some reason trees are usu-
ally drawn growing downwards, so the “root” is at the top of the diagram.
We also have “parents” and “children”, though. Every node has exactly
one parent, except the root, which has none. Leaves are nodes with no
children. Nodes which share the same parent are called “siblings”. Simi-
larly we talk about “ancestors” and “descendents”, which mean what you
would guess, based on the family tree metaphor, except that usually we
consider each node to be one of its own ancestors and descendents.
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Puzzles
Many combinatorial puzzles are easily formulated as non-deterministic
computations. Consider, for example, the classical eight queens problem.
The start state is an empty board. The possible actions at any point are
placing a queen in any of the squares not accessible in a single move from
those already on the board. If there are none then the computation termi-
nates, successfully, if we’ve placed eight queens, and unsuccessfully, if we
haven’t.
The problem can be made more tractable if we realise that any successful
solution must have exactly one queen in each row and the order in which
we place the queens has no bearing on whether the configuration is per-
mitted or not, so we can reformulate the problem slightly, with the permit-
ted actions at the 𝑖’s step being placing a queen somewhere in the 𝑖’th row
which is not accessible in a single move from those already on the board.
This change, for example, reduces the number of possible actions for the
first step from 64 to 8 and the number for the second step from somewhere
between 36 and 42 to either 5 or 6. The number of possibilities for the full
problem is still too many for diagrams which fit on a single page though so
we’ll consider a chessboard with four rows and columns rather than eight.
A good way to illustrate the possible computational paths is with a tree, as
in the diagram.
The lowermost two leaves of the tree, the oneswith four queens placed, rep-
resent successful computational paths. The other four leaves, with either
two or three queens placed, represent unsuccessful computational paths.
We can, of course, do the same thing in the original eight queens problem
or, more generally, in a wide variety of similar puzzles.

Linguistic examples
Generating elements of a language can be considered as a non-
deterministic computation. Specifically, we can treat the problem of
recognising whether a given list of tokens is an element of the language in
the following way.

• States correspond to lists of symbols or tokens.
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Figure 28: Solution of the four queens problem
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• The initial state is a list with just the start symbol.
• The allowed actions are replacing a terminal symbol from the list by

a token, or a non-terminal by one of its alternates.
• Successful termination happens when the list matches the input.
• Unsuccessful termination is when the list consists only of tokens, and

so no further actions are possible, but the list does not match the in-
put.

As usual, an unsuccessful termination just means that the particular
choices of actions in this computational path did not succeed. Some other
set of choices might.
Aswith the puzzle example, it’s possible, and useful, to restrict the allowed
actions in such a way that if the original problem is solvable then so is the
restricted one. In this casewe can do this by insisting that expansion is only
applied to the first symbol in the list. Using the last would work equally
well, but we’ll use the first.
As an example, consider the following grammar for the language of bal-
anced parentheses.
ok : | "(" ok ")" ok
and the input “(()())”. This has balanced parentheses and so should be
recognised. The full tree is infinite, so we’ll have to examine it in parts.

Figure 29: Recognising (()()), part 1

The first figure shows the possible states after four steps, and the computa-
tional paths which lead to each one. In this case there are only two possible
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expansions of ok, the only nonterminal symbol, so we have a binary tree,
i.e. one where each node has at most two children. There are two cases
where there are no children, the strings “” and “()”, which represent un-
successful terminations, since neither of them is our input string. We could
continue, but the tree is growing exponentially and some pruning is advis-
able. We can notice, for example, that proceeding from the root and follow-
ing the right branch and then the left leads us to “()ok”. This computation
is doomed. No matter what choices we make from this point on we can
only get strings starting with “()”, which can never match the given input
“(()())”. So we can ignore that branch. We can, of course, also ignore the
original left branch, which terminated unsuccessfully immediately. So the
only computational paths which are potentially relevant are those which
start by going right, and then right again. If we go right one more time
though then we reach “(((ok)ok)ok)ok”. Any possible continuation from
here will lead to a string starting with “(((”, which also cannot match our
input. So we need only consider the part of the tree where we choose right,
right and left initially, leading to “(()ok)ok)”. The next diagram shows
the part of the tree starting from that node.

Figure 30: Recognising (()()), part 2

In this new diagram we see another unsuccessful termination, for the
branch ending in “(())”. If fact the whole left branch is doomed, since it
can only generate strings starting with “(())”, as is the the right subbranch
of the right branch, since it can only generate strings starting with “(()((”.
We can therefore restrict our attention to the part of the tree from the left
subbranch of the right branch, starting from the state “(()()ok)ok”, which
is shown in the next diagram.
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Figure 31: Recognising (()()), part 3

On the far left of that diagram we see the string “(()())”, which matches
our input string, so this computational path succeeds and the string is
recognised.
A single successful computational path is enough so we don’t need to
worry about what would happen to any of the computations which have
not terminated, although it turns out none of them would be successful.
I’ve described this as a recogniser, but it’s not too difficult to turn it into a
parser. The only change which is needed is to keep track of the computa-
tional path which led us to each state, since this contains the information
about how each symbol was expanded, which is all we need in order to
construct a parse tree.
Whatwould have happened if the input stringwas invalid, i.e. did not have
balanced parentheses? This depends onwhetherwe prune the tree system-
atically as in the example above. If we do then eventually all computational
paths will terminate unsuccessfully. If we don’t then the computation will
simply run forever. For valid inputs pruning makes the algorithm more
efficient, and certainly easier to produce diagrams for, but isn’t essential
for it to recognise the input as valid.
In our example the tree was a binary tree. This happened for two reasons.
First, all of our non-terminal symbols, of which in fact there was only one,
had more than two alternates. Second, none of our nonterminal symbols,
which were “(” and “)” had more than one token belonging to it. In fact
they each had only one, but we would still have got a binary tree even if
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they’d had two.
If we consider other grammars the number of alternates for a non-terminal
may be larger than two, but it will always be finite. The number of tokens
belonging to a symbol could be infinite though, in which case we will have
nodes with infinitely many children. We’ll see how to deal with this later.

Zeroeth order logic as a non-deterministic computation.
The satisfiability version of the tableau method for zeroeth order logic can
be viewed as a non-deterministic algorithm.

• The initial state is one with the statement to the left of the line.
• At each step the actions are to take an unused statement, mark it used,

and write down its consequences, in the non-branching case, or one
of the two possibilities, in the branching case.

• The termination condition is running out of unused statements (suc-
cessful) or finding a contradiction (unsuccessful).

If the algorithm can terminate successfully then the statement is satisfiable.
In this case, unlike many non-deterministic computations, the algorithm
will always terminate, successfully or not.
Similar remarks apply to proving tautologies, but we start with the state-
ment to the right of the line and “success” and “failure” mean the opposite
of what you’d expect.
The Łukasiewicz formal system or, more generally, any axiomatic system
can also be considered a non-deterministic algorithm.

• The initial state is an empty list of statements.
• In each state our options are to write down an axiom or apply a rule

of inference to one or two previous statements.
• Successful termination is writing down the statement wewere trying

to prove.
• Unsuccessful termination is impossible, but non-termination is very

common.
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The given statement is a theorem if the algorithm can terminate success-
fully.
One complication is that substitution allows replacement of a variable by
any expression and there are infinitely many expressions, so again we have
to consider trees where some nodes may have infinitely many children.

Trees of trees
In some cases, like the parsing method described above or the algorithm
for constructing tableaux, we have a non-deterministic algorithm for con-
structing a tree. There is then a tree diagram for the computational paths,
where each node is a possible state of the system, which is generally are
partially filled in tree of the type the algorithm is meant to construct. In
other words we have a tree of trees. The trees associated to the nodes are
all finite trees, because they are the result of a finite computation, but the
larger tree, representing all possible computational paths, is generally infi-
nite.
Sometimes different program paths lead to identical states. You can take
advantage of this by replacing the state treewith a “directed acyclic graph”,
so instead of a tree of trees we have a directed acyclic graph of trees. There
are practical parsing algorithms which use this trick to avoid exponential
growth.

Making non-deterministic algorithms deterministic
How do we know whether the algorithm can terminate successfully? One
idea is to simulate all possible choices, so if one of them works we won’t
miss it. This is more or less what we did for zeroeth order logic. The tree
structure of the tableau keeps track of the possible choices for us. We can
apply the same trick essentially any non-deterministic algorithm, using a
tree to keep track of the choices. There are some complications though if
there are sometimes infinitely many choices.
To check whether the algorithm could successfully terminate we have to
visit every node in the tree, but there might be infinitely many. There are
two standard ways to traverse a tree, depth first or breadth first. Depth
first means visiting all of a node’s children before moving on to any of its
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siblings. Breadth first means visiting all of a node’s siblings before mov-
ing on to any of its children. The diagrams show both a depth first and a
breadth first traversal of a binary tree with seven nodes, numbered in the
order in which they are traversed. Depth first is usually easier to program,
so if you’ve used a program which traverses a tree that’s probably what it
did.

Figure 32: depth first tree traversal

Figure 33: breadth first tree traversal

Depth first traversalwill work, i.e. visit every node, on finite trees and some,
but not all, infinite trees. Breadth first traversal will work, even on infinite
trees, provided no node has infinitely many children. “Working” means
that if what we’re looking for is there we will find it. If it’s not there the
traversal will continue forever, unless the tree happened to be finite.
The trees in the tableaumethod for zeroeth order logic were finite, so either
method works. The trees for Łukasiewicz have branches of finite length,
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but infinitely many children. Neither method works for this. The trees
(of trees) for parsing usually have infinitely long branches but have only
finitely many children, unless there are symbols with infinitely many to-
kens, so breadth first generally works and depth first generally doesn’t.
There are traversal methods which work even for trees with infinite
branches and infinitely many children, provided the infinities aren’t too
bad. When there are more than two children we can group them as the
first one and the others, then create a new node for the others. The result
is a binary tree containing all the nodes of the original tree, on which we
can do breadth first traversal. This is illustrated in the two accompanying
diagrams, but infinite children are hard to draw so we’ll have to make
do with three. The first shows a non-binary tree and second shows the
corresponding binary tree, with extra nodes added.

Figure 34: a non-binary tree

First order logic
The next step after zeroeth order logic is first order logic. In fact it’s also
normally the last step. Higher order logic exists as well, but the standard
formulation of mathematics makes no use of it, using only first or logic
and set theory as its foundations. We’ll talk about set theory later and first
order logic now.
The most important thing which first order logic introduces is quantifiers,
specifically the universal quantifier “for all” and the existential quantifier
“for some”.
There are some other new elements as well. One is “predicates”. The term
is unfortunate. It’s borrowed from linguistics, but in a way which is incom-
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Figure 35: the corresponding binary tree

patible with the way it’s used there. A word which better reflects the role
they play might have been “property”, but “predicate” is standard.
First order logic can be difficult to follow though if you have no examples
in mind. We’ll use first order logic soon in discussing the integers and sets,
so it may be helpful to give some examples chosen from those.
For integer arithmetic “… is prime” is an example of a unary predicate,
i.e. one which takes a single variable. The variable in this case is an integer
and the value of the predicate is true or false depending on whether that
integer is or is not prime. One the other hand “… is less than …” is a binary
predicate, one which takes two values and is either true or false depending
on whether the first is less than the second or not. There are also ternary
predicates, with three variable, like “… is the sum of … and …”, which is
true if first variable is the sum of the second and third. For set theory an
important unary predicate is “… is finite”. A binary predicate is “… is a
member of …”. A ternary predicate is “… is the union of … and …”.
Although the examples above may be helpful in understanding what role
predicates play first order logic doesn’t concern itself with the meaning of
predicates and indeed has no way to represent any such meaning. Predi-
cates appear as letters, just as variables do. This letter is just as unspecified
in its meaning as a variable is. First order logic doesn’t care whether a
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ternary predicate represents “… is the sum of … and …” or “… is the union
of … and …” or something else entirely.
In addition to quantifiers, variables and predicates we also have “param-
eters”. It’s somewhat harder to describe what a parameter is. When we
discussed the rule of substitution in zeroeth order logic we saw that not all
variables are equally variable. Some are allowed to vary more than others.
Parameters represent instantiated variables. Suppose, for example, we’re
operating in a context where we have available the statement that for every
integer 𝑛 there is a prime number greater than 𝑛. This statement, which
has a universal quantifier in the “for every” and an existential quantifier
in the “there is”, might be available because it’s already been proved or it
might be available because we’ve introduced it as a hypothesis, as we dis-
cussed when we talked about natural deduction. In this case the statement
happens to be true but it could conceivably have appeared in a proof by
contradiction. In any case we have the statement available. Now 2024 is an
integer, so we are assured by this statement that there is a prime number
greater than 2024. We could then say “let 𝑝 be such a prime”. In that case
a logician would describe 𝑝 as a parameter. Like variables, parameters are
allowed to appear as arguments of predicates. Mathematicians tend not to
bother with such distinctions and would refer to both 𝑛 and 𝑝 as variables
but logicians are more careful and distinguish between variables and pa-
rameters because the rules of inference treat them somewhat differently,
as we’ll see.
The distinction between variables and parameters may become clearer
when we apply first order logic in other theories, like elementary arith-
metic or set theory. In arithmetic, for example, the variables will be
numerical. We will also have numerical expressions, like 𝑛 + 3. When ap-
plying first order logic we will be able to substitute numerical expressions
for parameters, but not for variables.
We’ll also retain the logical operators of zeroeth order logic along with the
parentheses but we’ll leave behind the Boolean variables. The things con-
nected by the operators will be expressions built from predicates. We still
have variables but they are not, or at least are not necessarily, Boolean vari-
ables and it will not make sense to talk about variables being true or false.
In integer arithmetic the variables will represent numbers and in set theory
they will represent sets. In neither case does it make sense to ask whether
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they are true or false.
The version of first order logic we’ll consider is “untyped”. In other words
there is only one set of variables. This isn’t the way mathematicians or
computer scientists are used to working. If we’re discussing linear algebra
we might, for example, want to have three types of variables, for scalars,
vectors and matrices. Traditional linear algebra textbooks use lower case
Greek letters for scalars, bold lower case Latin letters for vectors, and upper
case Latin letters for matrices, for example. While that’s often convenient
it’s not strictly necessary. We could accomplish the same thing by having a
single set of variables and introducing the unary predicates “… is a scalar”,
“… is a vector” and “… is amatrix”. In factwe’d be better off not introducing
the last of these and simply thinking of vectors as matrices with only one
column and of scalars as vectors with only one row. First order logic makes
no assumptions about what this one type of variable might represent.

Varieties of first order logic
There’s really one zeroeth order logic. We saw a few different languages,
differing in precisely which Boolean operators they allowed, and different
sets of axioms and rules of inference, but any statement expressible in one
of these languages was also expressible in any of the others and the trans-
lated version was a theorem in the new system if and only if the original
version was a theorem in the old system, although I don’t claim this is ob-
vious.
First order logic is not as not as unified as zeroeth order logic. There are
concepts which appear in some varieties of first order logic but which are
absent in others, and aren’t even expressible in them. An example is the
concept of equality. Some variants of first order logic have an “=” symbol
and axioms or rules of inference governing its use. Others don’t have an
“=” symbol. This isn’t like zeroeth order logic though, where some vari-
ants have a “⊃” symbol and others don’t, but can express the same mean-
ingwith a combination of other symbols. First order logic without equality
is simply incapable of expressing the notion of equality with any combina-
tion of symbols. If you want to use first order logic as the foundation for a
subject with a notion of equality, like arithmetic, then you need to add ax-
ioms or rules of inference to deal with the “=” symbol, just as you to with,
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for example, the “+” symbol. If you use first order logic with equality then
you don’t have to do this, since “=” already belongs to the logic, just like
Boolean operators or quantifiers.
Unfortunately, even where different variants of first order logic use the
same language they may differ in the interpretations they allow, and there-
fore inwhich statements are considered valid, i.e. true in all interpretations.
One important point of contention is whether all parameters are assumed
to refer to actually existing objects of the appropriate type. If you decide
that they are, and build a system for arithmetic on top of it in the way that
we will, allowing numerical expressions to be substituted for parameters
in any valid statement from first order logic, then you have to be very care-
ful to make sure that every expression your language allows you to write
down will always refer to a number no matter what numerical values are
assigned to its variables. Unfortunately that means you have to avoid intro-
ducing things like a division sign, since 𝑚/𝑛 won’t exist for some choices
of 𝑚 and 𝑛.
Most logic textbooks introduce a form of logic without equality but with
existential presuppositions, i.e. with the tacit assumption that every pa-
rameter refers to some existing object of the appropriate type. When I say
that this assumption is tacit I mean that it’s not made explicit but the ax-
ioms and rules of inference are not sound if it’s violated.
Mathematicians rarely specify the underlying logic of their systems but
if you look at what they do you’ll see that the foundation is usually a
logic with equality and without existential presuppositions. They won’t
introduce extra axioms or rules of inference for “=”, just as they don’t for
Boolean operators or for quantifiers. They will introduce symbols like “/”
despite the fact that this allows us to write down expressions which may
not refer to any existing object.
If I were writing a text where logic was the main subject of study rather
than mostly a foundation for other theories I might discuss several differ-
ent variants of first order logic and explore their differences but we don’t
have time for that and so I’ll pick one, the one closest to actualmathematical
practice: first order logic with equality and without existential presuppo-
sitions. This introduces extra complications into the logic, compared to a
logic without equality and with existential presuppositions, but makes us-
ing as a foundation for other theories both easier and safer. The specific
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system described below is in essence due to Jaakko Hintikka.

A language for first order logic
The language has been described informally above but here is a formal
grammar for it.
statement : expression
expression : atomic_expr

| "(" expression binop expression ")"
| "[" expression binop expression "]"
| "{" expression binop expression "}"
| "(" "¬" expression ")"
| "[" "¬" expression "]"
| "{" "¬" expression "}"
| "(" quantifier variable "." expression ")"
| "[" quantifier variable "." expression "]"
| "{" quantifier variable "." expression "}"

atomic_expr : "(" atom ")" | "[" atom "]" | "{" atom "}"
atom : predicate | atom individual

| individual "=" individual
individual : variable | parameter
binop : "∧" | "∨" | "⊃"
quantifier : "∀" | "∃"
predicate : pred_letter | predicate "!"
pred_letter : "f" | "g" | "h" | "i" | "j"
parameter : param_letter

| parameter "!"
param_letter : "a" | "b" | "c" | "d" | "e"
variable : var_letter

| variable "!"
var_letter : "v" | "w" | "x" | "y" | "z"
As in the zeroeth order calculus, exclamation points can be used to generate
an infinite number of predicates, variables and parameters, but we will
never actually need them in examples.
As with zeroeth order logic it’s useful to have symbols which don’t belong
to the language but which are used for talking about the language. We’ll
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continue to use 𝑃, 𝑄, etc. to represent expressions but we’ll add 𝐴, 𝐵, etc.
for parameters, 𝐹, 𝐺, etc. for predicates, and 𝑉, 𝑊, etc. for variables. The
same convention about different types of brackets being interchangeable
applies.

Free and bound variables
One of the most confusing, but also most important, parts of first order
logic is the distinction between free and bound variables, or, more prop-
erly, between free and bound occurrences of a variable in an expression.
This is easier to understand in a formal system like the one we will use
for elementary arithmetic than in first order logic so we’ll consider it there
first.
Consider the expression

𝑙 = 𝑚 + 𝑛.
This could be true or false, depending on the values of 𝑙, 𝑚 and 𝑛. Now
consider the expression

[∃𝑛.(𝑙 = 𝑚 + 𝑛)]
which is normally read “there exists an 𝑛 such that 𝑙 equals 𝑚 plus 𝑛”. This
could be true or false depending on the values of 𝑙 and 𝑚. You could substi-
tute actual natural numbers in for 𝑙 and 𝑚 and sensibly ask whether this is
a true statement for those values. In the version of elementary arithmetic
we’ll consider the variables represent natural numbers, i.e. non-negative in-
tegers so this statement will in fact be true if 𝑙 ≥ 𝑚 and false if 𝑙 < 𝑚. What
the value of the expression doesn’t depend on is 𝑛. You are not allowed to
substitute in a value for 𝑛. The result of doing so isn’t true or false but just
grammatically incorrect. 𝑛 is what’s called a bound variable in this expres-
sion, while 𝑙 and 𝑚 are free variables. In the original expression all three
variables were free.
We can add another quantifier.

{∀𝑙.[∃𝑛.(𝑙 = 𝑚 + 𝑛)]}

is normally read “for all 𝑙 there exists an 𝑛 such that 𝑙 equals 𝑚 plus 𝑛”. The
value of the expression now depends only on 𝑙. In fact it’s true if 𝑚 is zero
and is false if 𝑚 is positive. In this expression 𝑙 and 𝑛 are bound while 𝑚 is
free.
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We can add one final quantifier.

(∃𝑚.{∀𝑙.[∃𝑛.(𝑙 = 𝑚 + 𝑛)]})

Now all the variables are bound. It would not make sense to substitute
for any of them. This statement is either true or false, not depending on
anything. In fact it is true, since zero is an example of such an 𝑚. In fact its
the only example.
It’s important to note that we can only talk about whether a variable is
free or bound within a particular expression. Each of the first three ex-
pressions above forms part of the expression which follows it and there
is a variable which is free in the subexpression but bound in the whole
expression. More subtly the same variable could be free and bound in dif-
ferent places in the same expression. This doesn’t happen in any of the
expressions above and you should never write down such an expression
because they are very confusing. I will try not to either. But it’s hard to
write down grammar rules which forbid this so the standard practice is to
allow it but then not do it. Because of this though we have to talk about
free and bounded occurrences of a variable in an expression rather than
free and bound variables, since a variable could potentially occur freely in
one place and bound in another within the same expression.
The example above was taken from elementary arithmetic. The corre-
sponding example in first order logic would be the four expressions

(𝑓 𝑥𝑦𝑧),

[∃𝑧.(𝑓 𝑥𝑦𝑧)],
{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]},

and
(∃𝑦.{∀𝑥.[∃𝑧.(𝑓 𝑥𝑦𝑧)]}).

The particular predicate saying that the first argument is the sum of the
last two has been replaced by the generic symbol 𝑓 . I’ve also renamed the
variables to put themwithin the range specified by the grammar. Whether
the last of these statements is true or false depends on the meaning of 𝑓 . If
𝑓 is the sum predicate we considered earlier then the statement is true but
for other choices of 𝑓 it might be false. This is a question of interpretation,
which we’ll discuss later.
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The variable 𝑥 has a free occurrence, but no bound occurrences, in the first
and second expressions above and has a bound occurrence, but no free
occurrences, in the third and fourth. 𝑦 has free occurrences in the first
three and a bound occurrence in the fourth. 𝑧 occurs freely in the first and
bound in the last three.
The precise rules are not difficult to state. In an atomic expression all vari-
ables are free. Whenever we build an expression from a quantifier, a vari-
able, and an expression all occurrences of that variable in the combined ex-
pression are bound. Occurrences of other variables remain free or bound as
they were in the original expression. Combining expressions using logical
operators has no effect. Whatever occurrences were free in the old expres-
sions remain free in the new one and whatever occurrences were bound
remain bound.
An expression is called “open” if there is a free occurrence of some vari-
able in it and is called “closed” if all occurrences are bound. If we have
a particular interpretation where the variables are assumed to belong to
a particular set and assigned particular relations to the predicates then it
makes sense to askwhether a closed expression is true. For an open expres-
sion we can only ask that question after we’ve assigned particular values
to the variables which occur freely in the expression.
Our grammar only allows quantifiers to appear before variables so it’s not
meaningful to talk about free or bound occurrences of a parameter, only of
a variable.
A closed statement without parameters is called a “sentence”. These are
the only statements about which we can reasonably ask whether they are
true or false in an absolute sense, rather than for particular values of the
variables and parameters appearing in them.

Interpretations
Interpretations in zeroeth order logic were relatively simple. For each vari-
able we got to assign it one of two values, true or false. Technically there
were infinitely many variables and hence infinitely many interpretations
but for any particular statement, or finite set of statements, only finitely
many variables occur and so we could enumerate all the interpretations.
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This was in fact the basis of the method of truth tables.
First order logic has many more interpretations. We can, for example, con-
struct an interpretation as follows. We begin by choosing a pair of sets,
called the “inner domain” and “outer domain”, such that the inner domain
is a subset of the outer domain. Then we assign an element of the domain
to each variable and an element of the outer domain to each parameter.
To each predicate we assign a relation, which you can safely think of as
a Boolean-valued function, on the outer domain. To each unary relation
we assign a unary relation, which you should think of as a function which
takes a single argument, belonging to the domain, and gives you a Boolean
value, i.e. true or false. To each binary predicate we assign a binary rela-
tion, i.e a Boolean function of two arguments. To each ternary predicate we
assign a ternary relation, and so forth. An atomic expression is considered
true if the function associated to its predicate, when evaluated at its argu-
ments, has the value true. Then from the atomic expressions we can assign
truth values to larger and larger expressions, much as we did in zeroeth
order logic. We handle Boolean operator just as we did there. Equality
is handled in the obvious way, with (𝐴 = 𝐵) evaluating to true if the two
variables or parameters have been assigned the same value. The one com-
plication is that when we assign truth values to a quantified expression we
check only those values of the variable in the inner domain, and we substi-
tute them only for free occurrences of the variable in the inner expression.
A statement in first order logic is said to be valid if it is true for every in-
terpretation of the type described above. Valid statements play much the
same role for first order logic as tautologies did for zeroeth order logic.
There is no analogue of truth tables for first order logic because we have
no hope of listing the possible interpretations of a statement.
Some textbooks imply, or even directly state, that all interpretations are of
the type described above. They are wrong, for reasons we will discuss in
the set theory chapter.

Informal proofs
We can construct informal proofs in first order logic in much the same way
we did in zeroeth order logic, but asking how the given statement could be

122



false and trying to show that none of these ways can actually occur.
As an example, consider the statement

{[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]}.

Suppose it were false in at least one interpretation. This is of the
form (𝑃 ⊃ 𝑄), where 𝑃 is the expression [∃𝑥.(𝑓 𝑥)] is the expression
[¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]. We know that an expression of the form
(𝑃 ⊃ 𝑄) can only be false when 𝑃 is true and 𝑄 is false, so [∃𝑥.(𝑓 𝑥)]
should be true and [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})] should be false. We
also know that an expression of the form (¬𝑃) can only be false if 𝑃
is true, so (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) should be true. If [∃𝑥.(𝑓 𝑥)] is true
then there is some 𝑎 such that 𝑓 𝑎. If (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is true then
{¬[(𝑓 𝑎) ∨ (𝑔𝑎)]}. Since this is true [(𝑓 𝑎) ∨ (𝑔𝑎)] must be false. Then (𝑓 𝑎)
is also false. But we previously found (𝑓 𝑎) to be true. So the assumption
that {[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]} was false is untenable. It is
therefore a valid statement.
There was no branching in the proof above, or at least none worth making
explicit, but sometimes there will be, just as there was in zeroeth order
logic. As an example, consider the statement

{(∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) ⊃ ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})}.

Suppose itwere false in at least one interpretation. As before this is (𝑃 ⊃ 𝑄)
statement and for it to be false we’d need 𝑃 to be true and 𝑄 to be false. So
we take (∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) to be true and ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})
to be false. The second of these statements is of the form (𝑃 ∨ 𝑄). For it to
be false both 𝑃 and 𝑄 must be, so in this case {∀𝑥.(𝑓 𝑥)} and {∀𝑥.[¬(𝑓 𝑥)]}
must be false. For {∀𝑥.(𝑓 𝑥)} to be false there must be an 𝑎 such that (𝑓 𝑎)
is false. Similarly, for {∀𝑥.[¬(𝑓 𝑥)]} there must be a 𝑏 such that [¬(𝑓 𝑏)] is
false, and hence such that (𝑓 𝑏) is true.
Note that we had to use a new name for this second parameter. It wouldn’t
have been legitimate to call it 𝑎 since 𝑎 was the value that made (𝑓 𝑎) false
andwhilewe know there are valueswhichmake each expression false indi-
vidually there’s nothing to assure us that a single valuewill make (𝑓 𝑎) false
and make (𝑓 𝑏) true. If you look back at the previous proof you’ll see a su-
perficially similar situation, where we first said that if [∃𝑥.(𝑓 𝑥)] is true then
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there is some 𝑎 such that 𝑓 𝑎 and then said that if (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is
true then {¬[(𝑓 𝑎) ∨ (𝑔𝑎)]}. I used the sameparameter 𝑎 for both statements.
That was legitimate though, since the second statement was about all val-
ues and so applies in particular to the value 𝑎 chosen previously. So in that
case I was allowed to reuse the parameter. I wasn’t required to though. I
could have said that if (∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]}) is true then {¬[(𝑓 𝑏) ∨ (𝑔𝑏)]}.
That would also have been legitimate, but it wouldn’t have led to the con-
tradiction I was looking for.
After that digression let’s return to our proof. To summarise where we
are, (∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) is true, (𝑓 𝑎) is false, and (𝑓 𝑏) is true. We use
the first of these to conclude that {∀𝑦.[(𝑓 𝑏) ⊃ (𝑓 𝑦)]} is true. I’m allowed to
reuse the parameter 𝑏 here because the quantifier is universal and the state-
ment is true. I could also have reused 𝑎. That wouldn’t have accomplished
much though since (𝑓 𝑎) is false the statement [(𝑓 𝑎) ⊃ (𝑓 𝑦)] wouldn’t tell us
anything. (𝑓 𝑏) on the other hand is true, so the statement [(𝑓 𝑏) ⊃ (𝑓 𝑦)]does
tell us something. I could also have chosen an entirely new parameter and
concluded that {∀𝑦.[(𝑓 𝑐) ⊃ (𝑓 𝑦)]}. That also wouldn’t have accomplished
much though, so we’ll stick with {∀𝑦.[(𝑓 𝑏) ⊃ (𝑓 𝑦)]}. From it we can derive
[(𝑓 𝑏) ⊃ (𝑓 𝑎)]. Again I had a choice of parameters and this time I chose 𝑎 to
substitute for 𝑦. I could have chosen 𝑏 instead, or an entirely new parame-
ter. But I didn’t. It’s at this point that we need to branch the argument since
there are two ways that [(𝑓 𝑏) ⊃ (𝑓 𝑎)] could be true. (𝑓 𝑏) could be false or
(𝑓 𝑎) could be true. We’ve already seen though that (𝑓 𝑏) is true and (𝑓 𝑎) is
false. So the assumption that

{(∀𝑥.{∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]}) ⊃ ({∀𝑥.(𝑓 𝑥)} ∨ {∀𝑥.[¬(𝑓 𝑥)]})}
is false is seen to be untenable. It is therefore a valid formula.

Tableaux rules for equality and quantifiers
Even though we can’t apply the method of truth tables to first order logic
we can still apply the method of analytic tableaux. As with zeroeth order
logic these are essentially just bookkeeping devices to keep from getting
confused in formal arguments like the ones above.
The tableaux rules for the logical operators remain the same but we need
new rules for equality and for quantifiers. The rules for equality are rela-
tively straightforward.
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First, we can always write a statement of the form (𝐴 = 𝐴) to the left of the
vertical, where 𝐴 is any parameter. Second, if we have a statement of the
form (𝐴 = 𝐵) to the left of the line, where 𝐴 and 𝐵 are parameters, then in
any statement we can replace some or all 𝐴’s by 𝐵’s or vice versa.
The rules for quantifiers require a bit of notation to describe. In what fol-
lows, 𝑃 is an expression, 𝑉 is a variable, 𝐴 is a parameter, 𝐵 is a parameter
which has not appeared previously in the tableau, 𝑄 is the expression ob-
tained by substituting the parameter 𝐴 for all free occurrences of 𝑉 in 𝑃
and 𝑅 is the expression obtained by substituting the parameter 𝐵 for all
free occurrences of 𝑉 in 𝑃. In terms of these we can express the following
four rules for the two quantifiers, either of which can appear either to the
left or the right of the line.
If we have an expression of the form (∀𝑉.𝑃) to the left of the linewe branch,
with one of the branches having a [∃𝑉.(𝑉 = 𝐴)] to the right of the line and
the other having a 𝑄 to the left.
If we have a (∃𝑉.𝑃) to the left of the line we don’t branch and we put a
[∃𝑉.(𝑉 = 𝐵)] to the left of the line and an 𝑅 to the left.
If we have a (∀𝑉.𝑃) to the right of the line we don’t branch and we put a
[∃𝑉.(𝑉 = 𝐵)] to the left of the line and a an 𝑅 to the right.
If we have a (∃𝑉.𝑃) to the right of the line then we branch and, with one of
the branches having a [∃𝑉.(𝑉 = 𝐴)] to the right of the line and the other
having a 𝑄 to the right.
These may seem obscure but they are relatively easily explained. As with
the Boolean operatorswe just need to examine theways inwhich each state-
ment could occur.
For example if (∀𝑉.𝑃) is true then the statement 𝑃 holds for any value of
the variable 𝑉. If 𝐴 is a parameter then either 𝐴 is a possible or it isn’t. If it
isn’t then there is no value of 𝑉 equal to 𝐴. If there is then the statement 𝑃
with each free occurrence of 𝑉 replaced by an 𝐴 must be true.
If (∃𝑉.𝑃) is true then there is a value of 𝑉 which makes the statement 𝑃
true. We can give this value a name, but we can’t assume that it is equal
to any previously named value so we give it the new name 𝐵. Since this
name corresponds to an actually existing value we have [∃𝑉.𝑉 = 𝐵]. Since
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this value is one that when substituted for 𝑉 in 𝑃 gives a true statement we
have 𝑅.
The other two cases, the ones with statements to the right of the line can be
analysed similarly.
The restriction to names which have never appeared in the tableau for the
two rules where we made such a restriction is in fact unnecessarily drastic.
It would have been enough to require that the parameter does not appear
anywhere in that branch rather than in the tableau as a whole.

Example tableaux
The tableaux corresponding to the two informal proofs above are given
below.

Figure 36: Tableau to check that [∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.¬[(𝑓 𝑥) ∨ (𝑔𝑥)])] is
valid

If you look at the corresponding informal proofs you’ll see some extra
branching here, reflecting checks on whether various parameters actually
refer to anything. They do, since they were introduced as names for things
whose existence was asserted by an existential quantifier. In the informal
proof this was regarded as so obvious that it didn’t require a comment, but
in the tableau this gives rise to branches which we are able to close imme-
diately.
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Figure 37: Tableau to check that (∀𝑥.∀𝑦.[(𝑓 𝑥) ⊃ (𝑓 𝑦)]) ⊃ (∀𝑥.(𝑓 𝑥) ∨ ∀𝑥.[¬(𝑓 𝑥)])
is valid

As a third example, consider the tableau proof of

[([∀𝑥.(𝑓 𝑥)] ∧ {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]}) ⊃ (∃𝑥.{𝑔𝑥})].

The one corresponds to the following informal argument: For

[([∀𝑥.(𝑓 𝑥)] ∧ {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]}) ⊃ (∃𝑥.{𝑔𝑥})]

[([∀𝑥.(𝑓 𝑥)] ∧ {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]}) ⊃ (∃𝑥.{𝑔𝑥})] to be false in some interpre-
tation [([∀𝑥.(𝑓 𝑥)] ∧ {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]})] would need to be true in that in-
terpretation and (∃𝑥.{𝑔𝑥}) would need to be false. Then [∀𝑥.(𝑓 𝑥)] and
{∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]} would both be true. {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]} asserts the ex-
istence of at least one 𝑥 such that [(𝑓 𝑥) ⊃ (𝑔𝑥)]. Let 𝑎 be such a value of
𝑥. Then [(𝑓 𝑎) ⊃ (𝑔𝑎)]. We have [∀𝑥.(𝑓 𝑥)], i.e. that (𝑓 𝑥) for every value
of 𝑥. That includes 𝑎 so (𝑓 𝑎). (∃𝑥.{𝑔𝑥}) is false, so (𝑔𝑎) is also false. For
[(𝑓 𝑎) ⊃ (𝑔𝑎)] to be true we need (𝑓 𝑎) to be false or (𝑔𝑎) to be true, but
we’ve already seen that (𝑓 𝑎) is true and (𝑔𝑎) is false. The assumption that
[([∀𝑥.(𝑓 𝑥)] ∧ {∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]}) ⊃ (∃𝑥.{𝑔𝑥})] is false in some interpreta-
tion leads to a contradiction, so it’s true in every interpretation, i.e. the
statement is valid.
Although the “=” sign appears in the three tableau above we never
actually used any of the equality rules for tableau. The example of
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Figure 38: A tableau for [([∀𝑥.(𝑓 𝑥)] ∧ ∃𝑥.[(𝑓 𝑥) ⊃ (𝑔𝑥)]) ⊃ (∃𝑥.𝑔𝑥)]

(∀𝑥.{∀𝑦.[(𝑥 = 𝑦) ⊃ (𝑦 = 𝑥)]}), i.e. the fact that equality is symmetric,
shows them in use. Remarkably, it has no branching at all.
In the second to last line we used the second of our equality rules and the
(𝑎 = 𝑏) on the left to replace the 𝑏 in in the (𝑏 = 𝑎) on the right with an
𝑎, giving an (𝑎 = 𝑎) to the right. The first equality rule allows us to write
(𝑎 = 𝑎) on the left as well though, so we obtain our desired contradiction
and close the branch.

Tableaux as nondeterministic computations
As in zeroeth order logic themethod of analytic tableaux in first order logic
can be thought of in terms of nondeterministic computation. There the or-
der in which the rules are applied turned out to be relevant only in the
sense that some orders gave an answer faster than others. Here the situa-
tion is unfortunately more complicated. There’s no guarantee, for example
that the method ever terminates. In zeroeth order logic this was guaran-
teed by two facts: that all tableaux rules result in statements of lower de-
gree than what we start with and that only finitely many–in fact at most
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Figure 39: A tableau for (∀𝑥.∀𝑦.[(𝑥 = 𝑦) ⊃ (𝑦 = 𝑥)])

two–statements can be derived from any statement. The first of these is
still true for tableaux in first order logic but the second is not. Our rules for
quantifiers can be used to derive infinitely many statements from a single
one, just by using a different parameter each time.
Even when the tableau can be made to terminate after finitely many steps
a poor set of choices can result in it not terminating. In our first example
we derived (𝑓 𝑎) from [∃𝑥.(𝑓 𝑥)], for example. Instead of proceeding as I did
above I could then have derived (𝑓 𝑏) and then (𝑓 𝑥), etc., never arriving at
a contradiction.
The tableaux method for first order logic is more like the parsing prob-
lem where we first met nondeterministic computation than it is like the
tableaux method for zeroeth order logic. As happened in that problem
we can replace the nondeterministic computation by a deterministic one
by calculating all paths the nondeterministic calculation could take. As
happened there, this deterministic calculation will terminate successfully
in finite time if the nondeterministic one could terminate successfully in
finite time. Also as happened there, there is no guarantee that it will termi-
nate unsuccessfully in finite time if it can’t terminate successfully. It could
just run forever.
There is one complication here that we didn’t meet in the parsing problem.
There there were only finitelymany options at each step. Here therewill be
infinitely many if we are able to apply our quantifier rules, since there are
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always infinitely many parameters to choose from. This problem is more
apparent than real though. If we choose a new parameter then it doesn’t
really matter which one we choose. If we choose a different one then the
rest of the computation will proceed exactly the same, just with some pa-
rameters replaced by others. Whether it terminates, and if so whether it
terminates successfully, will remain unchanged. So instead of following
all possible substitutions by a parameter we can follow just a single new
parameter and, in the two cases where it’s allowed, substitution of a pa-
rameter already used in the tableau, of which there are only finitely many
at each stage.
In this way we obtain an algorithm which is guaranteed to prove any valid
statement in finite time. It can prove some invalid statements invalid in
finite time as well, but is not guaranteed to do so.

Natural deduction for first order logic
It’s possible to extend the natural deduction system we built for zeroeth
order logic to first order logic by introducing new rules of inference, to
include quantifiers. Writing down sound rules is more difficult than you
might expect. At least one textbook, which I will not name, went through
multiple editions, each with a different unsound set of rules, before finally
finding a correct set.
The rules for equality are relatively straightforward, reflecting the familiar
properties of reflexivity, symmetry and transitivity of the = sign.

• For any parameter 𝐴 we can derive a statement of the form (𝐴 = 𝐴).
• From any statement of the form (𝐴 = 𝐵), where 𝐴 and 𝐵 are parame-

ters, we can derive (𝐵 = 𝐴).
• From any statements of the form (𝐴 = 𝐵) and (𝐵 = 𝐶), where 𝐴, 𝐵

and 𝐶 are parameters, we can derive (𝐴 = 𝐶).
• From any statement of the form (𝐴 = 𝐵), where 𝐴 and 𝐵 are param-

eters, and 𝑃, where 𝑃 is an expression, we can deduce 𝑄, where 𝑄 is
the result of replacing one or more occurrences of 𝐴 in 𝑃 with 𝐵 or
one or more occurrences of 𝐵 with 𝐴.
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In the last rule, note that we aren’t required to replace all occurrences, un-
like in some of our substitution rules.
It’s the rules for quantifiers which tend to cause trouble.

• The expressions [¬(∃𝑉.𝑃)] and [∀𝑉.(¬𝑃)] are freely interchange-
able, where 𝑉 is a variable and 𝑃 is an expression.

• The expressions [¬(∀𝑉.𝑃)] and [∃𝑉.(¬𝑃)] are freely interchange-
able, where 𝑉 is a variable and 𝑃 is an expression.

• Froma statement of the form (∀𝑉.𝑃)wecandeduce {[∃𝑉.(𝑉 = 𝐴)] ⊃ 𝑄},
where 𝑉 is a variable, 𝑃 is an expression, 𝐴 is a parameter, and 𝑄 is
the result of replacing all free occurrences of 𝑉 in 𝑃 by 𝐴.

• From a statement of the form {[∃𝑉.(𝑉 = 𝐴)] ∧ 𝑄} we can deduce
(∃𝑉.𝑃), where 𝑉 is a variable, 𝑃 is an expression, 𝐴 is a parameter,
and 𝑄 is the result of replacing all free occurrences of 𝑉 in 𝑃 by 𝐴.

• The expressions (∃𝑉.𝑃) and {[∃𝑉.(𝑉 = 𝐵)] ∧ 𝑅} are freely inter-
changeable, where 𝑉 is a variable, 𝑃 is an expression, 𝐵 is a parameter
not appearing in any statement available in the current scope, and 𝑅
is the result of replacing all free occurrences of 𝑉 in 𝑃 by 𝐵.

• The expressions (∀𝑉.𝑃) and {[∃𝑉.(𝑉 = 𝐵)] ⊃ 𝑅} are freely inter-
changeable, where 𝑉 is a variable, 𝑃 is an expression, 𝐵 is a parameter
not appearing in any statement available in the current scope, and 𝑅
is the result of replacing all free occurrences of 𝑉 in 𝑃 by 𝐵.

Besides adding these three rules for equality and six rules for quantifiers
we can remove one of our rules of inference from zeroeth order logic,
the rule of substitution. It deals with the substitution of expressions for
Boolean variables, but we have no Boolean variables in our language for
first order logic so we would never be able to apply it. This is the only one
of our original rules of inference which referred to Boolean variables so no
other rule of inference is similarly affected.
We don’t need a replacement for the rule of substitution, but there are two
useful ruleswe can add. Anythingwhich could be provedwith them could
also be proved without them, but they are sound rules of inference and
make some proofs considerably shorter.
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• In any expression we can replace all occurrences of any variable with
no free occurrences in that expression with any variable not appear-
ing in that expression.

• In any available statement we may substitute any variable for any
variable which does not appear in any hypothesis which was active
in that statement’s scope, provided the substitution doesn’t convert
free occurrences to bound ones.

• If 𝑆 is a tautology of zeroeth order logic then we can derive any state-
ment in which replace each Boolean variable in 𝑆 by an expression
in first order logic, provided each occurrence of a Boolean variable is
replaced by the same expression.

These mimic some uses of the rule of substitution from zeroeth order logic,
to rename variables and to avoid repeating proofs for different substitution
instances of the same tautology.
The limitation in the second rule to variables not appearing in active hy-
potheses is familiar from zeroeth order logic, and is needed for the same
reason as there. The requirement that no free instances become bound is
new, since we didn’t have free and bound occurrences in zeroth order logic.
It’s there to ensure that we can, for example, deduce

(∀𝑣.{∀𝑤.[∃𝑥.(𝑓 𝑣𝑤𝑥)]})

from
(∀𝑥.{∀𝑦.[∃𝑧.(𝑓 𝑥𝑦𝑧)]})

but can’t deduce
(∀𝑧.{∀𝑦.[∃𝑧.(𝑓 𝑧𝑦𝑧)]})

from it. To see why that would be a problem, consider the interpretation
of first order logic where the domain is the natural numbers and 𝑓 is sum
relation, if 𝑓 𝑥𝑦𝑧 means 𝑥 + 𝑦 = 𝑧. In this case

(∀𝑥.{∀𝑦.[∃𝑧.(𝑓 𝑥𝑦𝑧)]})

means
(∀𝑥.{∀𝑦.[∃𝑧.(𝑥 + 𝑦 = 𝑧)]}),
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which simply expresses the fact that the sum of any two natural numbers
is a natural number. This is a true statement on this interpretation. On the
other hand

(∀𝑧.{∀𝑦.[∃𝑧.(𝑓 𝑧𝑦𝑧)]})
would mean

(∀𝑧.{∀𝑦.[∃𝑧.(𝑧 + 𝑦 = 𝑧)]}).
The inner expression 𝑧 + 𝑦 = 𝑧 means that adding 𝑦 to 𝑧 leaves 𝑧 un-
changed, which is true for 𝑦 = 0 but not for any other 𝑦. The larger
expression [∃𝑧.(𝑧 + 𝑦 = 𝑧)] is therefore also true for 𝑦 = 0. Since it’s not
true for all 𝑦 the larger expression {∀𝑦.[∃𝑧.(𝑧 + 𝑦 = 𝑧)]} is false. It’s false
no matter what natural number is substituted for all free occurrences of 𝑧
since there are no free occurrences of 𝑧 in {∀𝑦.[∃𝑧.(𝑧 + 𝑦 = 𝑧)]}. The full
statement is therefore false. So the rule without this restriction would be
unsound, since it would allow us to deduce a false statement from a true
one in at least one intended interpretation. The phenomenon we’re ruling
out is called “variable capture”, since it causes a free variable to become
bound.
Although we haven’t formalised this yet, and can’t until we have a proper
definition of computability, one of our requirements for a formal system
is that questions of whether a statement follows from previous statements
by a rule of inference must always be decidable. The second rule above
satisfies this requirement because we’ve already introduced a procedure
to check whether a statement in zeroeth order logic is a tautology.

Soundness, consistency and completeness of first order logic
Our natural deduction system for first order logic is sound, in the sense that
the axioms are true in any of the interpretations considered earlier and it’s
not possible to derive a false statement true statements in any of those inter-
pretations using any of our rules of inference. In fact there are no axioms,
so that part, at least is easy. Of course if you look closely the statement
of soundness above you’ll see a few quantifiers appearing explicitly, like
“in any of those interpretations” and a few more which are implicit. So
any system in which we might hope to prove the soundness of first order
logic will have to include first order logic in its foundations, so a formal
proof doesn’t really accomplish anything. It’s still possible to give infor-
mal proofs though. If you stare at the rules of inference you should be able
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to convince yourself that they are all reasonable. Of course people have
convinced themselves of the reasonableness of unsound rules of inference
in the past so there’s a limit to how far you should trust your intuition in
these matters.
Consistency will follow from completeness, so we don’t need to consider it
separately.
The system can be proved complete by roughly the same method as was
used previously for zeroeth order logic. Either we can find a tableauwhich
closes or we can’t. If we can then there is an algorithm for converting that
tableau into a formal proof, and so the statement is a theorem of the system.
Unfortunately though the tableau method doesn’t need to terminate, even
when presented with a valid statement.
One important property of zeroth order tableaux, that every statement is
shorter than the statement it was derived from, no longer holds. We might
get stuck performing tableau operations forever without ever completing
the tableau. We can still think of the infinite tableau that would result from
this procedure though, even though we can’t produce it in finite time. A
further complication comes from the variety of choices we have to make at
each step. If we choose particularly badly we could continue forever even
though other choices might cause the tableau to close. This is a solvable
problem though. The idea, roughly, is to view the tableaumethod as a non-
deterministic computation and use one of the hybrid traversal methods to
ensure that if some set of choices has a desired property, like causing the
tableau to close, then we will eventually find it. With a bit more care we
can also ensure that in the case where it doesn’t close the open branches,
which may be infinite, contain enough information to generate a counter-
example, i.e. an interpretation which makes the statement we started with
false. In that case the statement must be invalid.
The above arguments show that every statement is a theorem or is invalid.
Equivalently, every valid statement is a theorem, which is completeness.

Elementary arithmetic
Logic has been described as “the subject in which nobody knows what one
is talking about, nor whether what one is saying is true.” This means in
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logic we don’t analyse the content of statements, or even have a way of
expressing that content, we’re just concerned with how those statements
are connected.
It’s time to startmaking statementswith actual content. We’ll do this in two
settings, elementary arithmetic and set theory. We’ll start with elementary
arithmetic because it’smore familiar, although formal proofs in elementary
arithmetic may not be.

A language for arithmetic
Our language for this is given by the grammar
statement : bool_exp
bool_exp : bndd_exp

| "(" "¬" bool_exp ")" | "(" bool_exp b_operator bool_exp ")"
| "(" quantifier variable "." bool_exp ")"
| "(" quantifier variable "<" bound ":" bool_exp ")"

| "[" "¬" bool_exp "]" | "[" bool_exp b_operator bool_exp "]"
| "[" quantifier variable "." bool_exp "]"
| "(" quantifier variable "<" bound ":" bool_exp "]"

| "{" "¬" bool_exp "}" | "{" bool_exp b_operator bool_exp "}"
| "{" quantifier variable "." bool_exp "}"
| "{" quantifier variable "<" bound ":" bool_exp "}"
| comparison

bndd_exp : "(" "¬" bndd_exp ")" | "(" bndd_exp b_operator bndd_exp ")"
| "(" quantifier variable "<" bound ":" bndd_exp ")"

| "[" "¬" bndd_exp "]" | "[" bndd_exp b_operator bndd_exp "]"
| "(" quantifier variable "<" bound ":" bndd_exp "]"

| "{" "¬" bndd_exp "}" | "{" bndd_exp b_operator bndd_exp "}"
| "{" quantifier variable "<" bound ":" bndd_exp "}"
| comparison

comparison : "(" num_exp c_relation num_exp ")"
| "[" num_exp c_relation num_exp "]"
| "{" num_exp c_relation num_exp "}"

b_operator : "∧" | "∨" | "⊃"
quantifier : "∀" | "∃"
variable : letter | variable "!"
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variable : "v" | "w" | "x" | "y" | "z"
c_relation : "=" | "<" | ">" | "≤" | "≥"
bound : const_exp | variable
num_exp : bound | num_exp "'"

| "(" num_exp a_operator num_exp ")"
| "[" num_exp a_operator num_exp "]"
| "{" num_exp a_operator num_exp "}"

const_exp : "0" | const_exp "'"
| "(" const_exp a_operator const_exp ")"
| "[" const_exp a_operator const_exp "]"
| "{" const_exp a_operator const_exp "}"

a_operator : "+" | "-" | "·"

Interpretation
The logical symbols, i.e. the Boolean operators and quantifiers, have the
same meaning as in logic. There are two types of quantifiers though. The
bounded quantifiers are just a useful shorthand.

{∀𝑥 < 𝑐 ∶ 𝑃}

means the same as
{∀𝑥.[(𝑥 < 𝑐) ⊃ 𝑃]}

and similarly for the existential quantifier.
The arithmetic operators + and − mean addition and multiplication, re-
spectively. 0 means 0. The apostrophe is the successor operator, that is the
operator which takes a natural number and increments it. The successor
operator occurs so often that I’ve broken with my usual practice of allow-
ing only fully parenthesised expressions. This won’t cause any problems
because it’s the only exception.
This language doesn’t allow the usual decimal notation for natural num-
bers so the way to represent the natural numbers we’d normally call 0, 1, 2,
3, … is as 0, 0’, 0’‘, 0’’‘, etc. We can also add and multiply numerical expres-
sions, which gives us a few more options. So we don’t have to represent
2023 as a 0 followed by 2023 apostrophes, for example. We could also write
it as

(0‴ + {[0′ + ({0″ + [(0‴ + {[0‴ + (0′ · 0⁗)] · 0⁗}) · 0⁗]} · 0⁗) · 0⁗)] · 0⁗}).
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If you’rewonderingwhere this came from it’s just the base 4 representation

(3 + {[1 + ({2 + [(3 + {[3 + (1 · 4)] · 4}) · 4]} · 4)] · 4})

with 1, 2, 3 and 4 replaced by 0’, 0’‘, 0’’‘, and 0’’’‘. There’s nothing special
about 4. We could have used decimal instead but it’s hard to look at 0’’’’’’’’’’
and see what number it is. We could also have used binary but then the
expression would be quite long, though not nearly as long as a 0 followed
by 2023 apostrophes!
Note that some expressions are of numerical type, which in this casemeans
they should be though of as natural numbers, and some are of Boolean
type.
Numerical expressions include const_exps, variables and num_exps.
const_exps, i.e. constant expressions, are those constructed without the
use of variables. Every const_exp is a num_exp, but not every num_exp is
a const_exp. The expression

(0‴ + {[0′ + ({0″ + [(0‴ + {[0‴ + (0′ · 0⁗)] · 0⁗}) · 0⁗]} · 0⁗) · 0⁗)] · 0⁗}).

for 2023 considered earlier is a const_exp, and therefore also a num_exp.
(𝑥 + 𝑦′) is a num_exp which is not a const_exp.
Boolean expressions include comparison, bndd_exp and bool_exp. Every
comparison is a bndd_exp and every bndd_exp is a bool_exp but not ev-
ery bool_exp is a bndd_exp and not every bndd_exp is a comparison. com-
parisons have to be constructed without the use of Boolean operators or
quantifiers. bndd_exps can use Boolean operators and quantifiers, but only
bounded quantifiers.
The point of bounded expressions is that for any given value of the free
variables occurring in them we can, at least in principle, check whether
they’re true. Whenever we see a quantifier we only need to check those
numbers up to the given bound. With an ordinary quantifier we might
need to check all natural numbers, which cannot be done in finite time.
It would have been possible to use decimal or binary representations as
part of the language but then we’d have build much of elementary arith-
metic into the axioms and rules of inference. This can be done, as we saw
when we considered languages expressing divisibility properties. In addi-
tion to requiring a very complicated set of rules of inference that approach

137



would miss the point. We want to build a formal system in which to prove
statements in elementary arithmetic. If we need to assume large parts of
elementary arithmetic to show that our rules of inference are sound then
what’s the point? It’s better to assume as little prior knowledge of arith-
metic as we can get away with.
Note that there Boolean operators, which combine Boolean expressions
to give a Boolean expression, and there are arithmetic operators, which
combine numerical expressions to give a numerical expression, and there
are comparison relations, which combine numerical expressions to give a
Boolean expression, but there is no way of combining Boolean expressions
to get a numerical expression.

Redundancy and ambiguity
There is some redundancy in this language. As already mentioned, the
bounded quantifier expressions are just shorthand for longer expressions
involving ordinary quantifiers.
Also we would suffer no loss of expressiveness if we removed the ≤ rela-
tion, for example. The statement

(𝑥 ≤ 𝑧),

for example, has the same meaning as

{∃𝑦.[(𝑥 + 𝑦) = 𝑧]},

since 𝑥 ≤ 𝑧 if and only if there is a natural number 𝑦 such that 𝑥 + 𝑦 = 𝑧.
Alternatively, we could remove = and write

(𝑥 = 𝑧)

as
[(𝑥 ≤ 𝑧) ∧ (𝑧 ≤ 𝑥)].

In fact it’s possible to express any four of our relations in terms of the re-
maining one.
We also have more non-terminal symbols in our grammar than are strictly
necessary to specify this language. We don’t really need to consider con-
stant expressions separately from other numerical expressions, for exam-
ple, or bounded expressions separately from other Boolean expressions.
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In fact you can safely ignore those distinctions for most of this chapter, but
it will sometimes be useful to have them available.
One thing conspicuouslymissing fromour language is any notation for sets
of natural numbers. We can still talk about at least some sets, by specifying
conditions for membership, but we can’t name sets, we can’t assert the ex-
istence of a set with given properties and we can’t assert that all sets have
a given property. This is the “elementary” in “elementary arithmetic”.
The grammar above is ambiguous, but not very ambiguous. For example
(0″ + 0″), i.e. 2 + 2, is a num_exp. We can see this either by using the fact
that it’s a const_exp and every const_exp is a num_exp, or by using the
fact that 0'' is a num_exp and that joining two num_exps with a + gives a
num_exp. Strictly speaking these are different parsings of the expression but
they have the same meaning and there won’t be any cases where it matters
which parsing we choose. It is possible to disambiguate the grammar, but
it doesn’t really seem worthwhile.
A more minimalist version of the language, while it would make proving
theorems in our formal systemmore painful, would be useful if were going
to prove a number of theorems about it, but I’m rarely going to do that,
although I will state a number of them and give a rough idea of the proof
of some.

Expressing more complex ideas
All of elementary arithmetic can be expressed in this language, but
sometimes a bit of ingenuity is required. We can, for example, compensate
for the lack of subtraction and division signs. 𝑥 = 𝑧 − 𝑦 can be expressed
as [(𝑥 + 𝑦) = 𝑧]. The second statement implies (𝑦 ≤ 𝑧), without which
the first wouldn’t make sense. Similarly, 𝑥 = 𝑧/𝑦 can be expressed as
[(𝑥 · 𝑦) = 𝑧].
Knowing that statements about division can be expressed via statements
about multiplication we can see how to express divisibility. The condition
that 𝑧 is divisible by 𝑥, i.e. that 𝑥 is a divisor of 𝑧, for example, can be ex-
pressed as {∃𝑦.[(𝑥 · 𝑦) = 𝑧]}.
We can also express primality. The following sentence is one way of saying
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that 𝑧 is prime:

{[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})] ∧ (0′ < 𝑧)}.

As with all statements, this one is best understood by breaking it into
smaller phrases. Starting with

[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})]

we can peel off the universal quantifiers and and ask when

{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]}

is true. This means if [(𝑥 · 𝑦) = 𝑧], i.e. if 𝑧 is the product of 𝑥 and 𝑦, then
[(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)], i.e. at least one of 𝑥 or 𝑦 is equal to 𝑧. Since the only
way to write a prime as a product of natural numbers is 1 times itself, in
either order, the statement

[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})]

is true whenever 𝑧 is prime. There are two non-prime values of 𝑧 for which
the statement above is true though, 0 and 1. To exclude these we add the
additional condition

(0″ ≤ 𝑧),
which ensures that 𝑧 is greater than 1.
We can express even more complicated thoughts. We can say, for example,
that there are infinitely many primes. It’s not immediately obvious how to
do this. We’ve just seen how to express the fact that any particular number
is prime but how can we make a statement about infinitely many numbers
in language which doesn’t have a notation for sets or infinity? There is a
standard trick for this. To say that there are infinitely many primes we say
that for every number 𝑤 there is a prime number 𝑧 greater than 𝑤. In our
language this is

{∀𝑤.[∃𝑧.({𝑤 < 𝑧}∨{[∀𝑥.(∀𝑦.{[(𝑥·𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧)∨(𝑦 = 𝑧)]})]∧(0′ < 𝑧)})]}.

As you can see, our expressions are starting to get unwieldy. It’s helpful to
introduce a notational convention. I’ll use capital letters to refer to substi-
tution instances of particular expressions and follow those letters with the
particular expressions to be substituted, e.g. I’ll write

𝐷(𝑥, 𝑧) ≡ {∃𝑦.[(𝑥 · 𝑦) = 𝑧]}
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to mean that 𝐷 followed by an open parenthesis, then a numerical expres-
sion, then a comma, then another numerical expression, represents the
expression obtain by substituting the first numerical expression for the
𝑥 and the second numerical expression for 𝑧 in the Boolean expression
{∃𝑦.[(𝑥 · 𝑦) = 𝑧]}. Although this is the literal meaning of the notation, once
we understand the expression defining 𝐷 we think of 𝐷(𝑥, 𝑧) simply as “𝑥
divides 𝑧”. Note that neither 𝐷 nor ≡ is part of our language for elemen-
tary arithmetic. These are part of a notation for talking about the language
of elementary arithmetic. Similarly, we could introduce the shorthand

𝑃(𝑧) ≡ {[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})] ∧ (0′ < 𝑧)}

to express primality and then write the statement that there are infinitely
many primes as

{∀𝑤.[∃𝑧.({𝑤 < 𝑧} ∨ 𝑃(𝑧))]}.
This isn’t part of the language of elementary arithmetic, since 𝑃 isn’t part
of that language, but it uniquely identifies a statement which is part of the
language, namely the one given previously to express the same meaning.

Arithmetic subsets and relations
Some subsets of the natural numbers can be described by statements in
one or the other of our two languages. As we just saw, the set of prime
numbers can be expressed by such a statement. Some cannot be described
by any statement in our language though. A simple proof of this fact will
be presented in the set theory chapter. A set which can be described by a
statement is called arithmetic. The accent is on the third syllable, in contrast
to its use in phrases like “elementary arithmetic”, where the accent is on
the second syllable.
Note that sets of numbers are not part of our language. The closest we have
is Boolean expressions with one free variable. We can think of the set of
values of the variable which make that expression true but we can’t assign
a name to that set within our language.
An example of an arithmetic set is the set of powers of 2. Our language
doesn’t have any notation for exponentiation so we can’t just say 𝑧 is a
power of 2 if there is some 𝑦 such that 𝑧 = 2𝑦. Insteadwe can observe that if
𝑧 is a power of 2 then every divisor of 𝑧 is either 1 or is a multiple of 2, and
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conversely that every 𝑧 with this property is a power of 2. This is some-
thing we can translate into our language. “𝑥 is a divisor of 𝑧” translates
as

{∃𝑦.[(𝑥 · 𝑦) = 𝑧]}.
“𝑥 is 1” is just

(𝑥 = 0′).
“𝑥 is a multiple of 2” is

{∃𝑦.[𝑥 = (0″ · 𝑦)]}.
So “every divisor of 𝑧 is either 1 or a multiple of 2” translates as

[∀𝑥.({∃𝑦.[(𝑥 · 𝑦) = 𝑧]} ⊃ [(𝑥 = 0′) ∨ {∃𝑦.[𝑥 = (0″ · 𝑦)]}])].

Another example of an arithmetic set is the set of Fibonacci numbers, al-
though proving this will require more work. Let 𝑓𝑛 be the 𝑛’th Fibonacci
number, defined recursively by

𝑓0 = 0, 𝑓1 = 1, 𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1.

For 𝑛 = 1 we have
𝑓 2
𝑛+1 = 𝑓𝑛𝑓𝑛+2 + (−1)𝑛.

Suppose that the equation above holds for 𝑛 = 𝑚, i.e. that

𝑓 2
𝑚+1 = 𝑓𝑚𝑓𝑚+2 + (−1)𝑚.

Then
𝑓𝑚+3𝑓𝑚+1 = (𝑓𝑚+2 + 𝑓𝑚+1)𝑓𝑚+1

= 𝑓𝑚+2𝑓𝑚+1 + 𝑓 2
𝑚+1

= 𝑓𝑚+2𝑓𝑚+1 + 𝑓𝑚𝑓𝑚+2 + (−1)𝑚

= 𝑓𝑚+2(𝑓𝑚+1 + 𝑓𝑚) + (−1)𝑚

= 𝑓𝑚+2𝑓𝑚+2 + (−1)𝑚

= 𝑓 2
𝑚+2 − (−1)𝑚+1

and therefore
𝑓 2
𝑚+2 = 𝑓𝑚+3𝑓𝑚+1 + (−1)𝑚+1.

So
𝑓 2
𝑛+1 = 𝑓𝑛𝑓𝑛+2 + (−1)𝑛
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is true alsowhen 𝑛 = 𝑚 + 1. Since it holds for 𝑛 = 0 andholds for 𝑛 = 𝑚 + 1
whenever it holds for 𝑛 = 𝑚 it must hold for all 𝑛, by induction. Now

𝑓𝑛+2 = 𝑓𝑛 + 𝑓𝑛+1

so we can rewrite our relation above as

𝑓 2
𝑛+1 = 𝑓𝑛(𝑓𝑛 + 𝑓𝑛+1) + (−1)𝑛.

Consider the case where 𝑛 is even, i.e. 𝑛 = 2𝑘, and let

𝑥𝑘 = 𝑓2𝑘, 𝑦𝑘 = 𝑓2𝑘+1.

Then the equation above becomes

𝑦𝑘 = 𝑥𝑘(𝑥𝑘 + 𝑦𝑘) + 1.

Suppose 𝑧 is a Fibonacci number. Then 𝑧 = 𝑥𝑘 or 𝑧 = 𝑦𝑘 for some value of
𝑘. So, in our language for elementary arithmetic,

[∃𝑥.(∃𝑦.{(𝑦 · 𝑦 = {[𝑥 · (𝑥 + 𝑦)] + 1}) ∧ [(𝑧 = 𝑥) ∨ (𝑧 = 𝑦)]})].

We’ve just seen that if 𝑧 is a Fibonacci number then it makes this statement,
with our usual interpretation, true. The converse is true as well, although
that’s even harder to prove, and I’ll skip this part. So the Fibonacci numbers
are described by a statement in our language and so are an arithmetic set.
In addition to arithmetic sets we can also talk about arithmetic relations.
These correspond to Boolean expressions with multiple free variables. In
fact we’ve seen a few examples already. “… is divisible by …” is an arith-
metic relation.

Bounded arithmetic
There is something a bit unsatisfying about the arguments which showed
that the powers of two and the Fibonacci numbers are arithmetic. For one
thing, we seem to be puttingmore arithmetic into our language thanwe are
getting out of it. Both sequences are very easy to define but in order to show
that their elements are an arithmetic set we needed to borrow some facts
from number theory which are considerably deeper thanwe’d need for the

143



definitions. The other problem is that it’s not clear how to generalise those
arguments to other simple sequences, even very closely related ones. We
could, for example, use the argument above with only very minor changes
to show that the powers of 3 or of 5 are arithmetic sets. In fact, for any
prime 𝑝 the expression

[∀𝑥.({∃𝑦.[(𝑥 · 𝑦) = 𝑧]} ⊃ [(𝑥 = 0′) ∨ {∃𝑦.[𝑥 = (𝑝 · 𝑦)]}])]

says that 𝑧 is a power of 𝑝.
For powers of 4 we can use the fact that a number is a power of 4 if and
only if it is the square of a power of 2. What about powers of 6, though?
While it’s true that every power of 6 is the product of a power of 2 and a
power of 3 it’s not true that every such product is a power of 6.
Itwould be nice to have a general principle saying that given an initial value
and an arithmetic relation which uniquely determines the next element of
the sequence from the current one the set of all elements of the sequence
is arithmetic. This would give us a more satisfactory proof that the powers
of 2 are an arithmetic set, and indeed that any geometric progression is
arithmetic. With a bit more work it could also give us a more satisfactory
proof that the set of Fibonacci numbers is arithmetic. This turns out to
be too much to ask for, but there is a weaker principle which is true and
suffices for most applications.
Consider the set of bounded expressions. Every such expression is a
Boolean expression. We defined sets and relations to be arithmetic if
they were defined by Boolean expressions. We can similarly describe
sets or relations to be constructively arithmetic if they are defined by
bounded expressions. Then every constructively arithmetic set or relation
is arithmetic. Is the converse true? It might seem obvious that it’s not,
since there are Boolean expressions which are not bounded. That’s not a
valid argument though, since the same set or relation might be defined
by more than one expression, and some might be bounded while others
might not be. For example, our primality criterion

[∀𝑥.(∀𝑦.{[(𝑥 · 𝑦) = 𝑧] ⊃ [(𝑥 = 𝑧) ∨ (𝑦 = 𝑧)]})]

had two ordinary, unbounded, quantifiers, but there are other expressions
which identify whether 𝑧 is primewhich use only bounded quantifiers. 𝑧 is
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prime if and only if it is greater than 1 and cannot be written as the product
of two numbers less than 𝑧. In other words,

{(𝑧 > 0′) ∧ [∀𝑥 < 𝑧 ∶ (∀𝑦 < 𝑧 ∶ {¬[(𝑥 · 𝑦) = 𝑧]})]}.

Now all the quantifiers are bounded, so the set of primes is not just arith-
metic but also constructively arithmetic. It’s useful to know that primality
is a constructively arithmetic property, so I’ll now replace our earlier pri-
mality test with this one:

𝑃(𝑧) ≡ {(𝑧 > 0′) ∧ [∀𝑥 < 𝑧 ∶ (∀𝑦 < 𝑧 ∶ {¬[(𝑥 · 𝑦) = 𝑧]})]}.

Even though the argument suggested above for the existence of sets which
are arithmetic but not constructively arithmetic turned out to be invalid its
conclusion is nonetheless true. There are sets which are arithmetic but not
constructively arithmetic.
Now that we have the notion of constructively arithmetic sets and relations
we can state our substitute principle. Given an initial value and a construc-
tive arithmetic relation which uniquely determines the next element of the
sequence from the current one the set of all elements of the sequence is
arithmetic. I won’t prove this though.

Encoding
Suppose we want to encode lists of symbols as natural numbers. We don’t
necessarily need the set of symbols to be finite but it makes things easier
and that special case is sufficient for our present purposes. For applications
to languages I’m going to assume that there is only one token per terminal
symbol. If the set of tokens is finite then we can always arrange this, but
also it happens to be true already for most of the languages we’ll consider,
including the language of elementary arithmetic considered in this chapter.
One tempting idea, if we have 𝑏 tokens, is to use a base 𝑏 encoding, where
we assign one digit to each symbol and just convert a list of symbols to the
corresponding list of digits, and then convert that to the natural number
whose base 𝑏 representation is that list of digits. There’s a subtle problem
with this idea though, which is that some symbol will be assigned the digit
0 and two lists which differ only in the number of occurrences of that sym-
bol at the start of the list will give lists of digits differ only in the number
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of leading 0’s and will therefore be encoded as the same natural number.
This is therefore a lossy encoding.
There’s an easy fix to the problem above. We can use a base 𝑏 + 1 encoding,
and just not use the digit 0 for any of the symbols. This isn’t a terrible
idea but it does have one disadvantage. Unlike the previous encoding, not
every natural number will correspond to to a string of symbols. Only those
natural numbers whose base 𝑏 + 1 encoding have no 0 digits will encode
lists of symbols. That’s better than having some natural number represent
multiple lists, but it’s still somewhat inconvenient.
Following an idea of Raymond Smullyan we can modify the base 𝑏 encod-
ing as follows. Suppose that, just as with ordinary base 𝑏, we associate the
list of digits

(𝑑0, 𝑑1, … , 𝑑𝑙−2, 𝑑𝑙−1)
with the natural number

𝑑0 · 𝑏𝑙−1 + 𝑑1 · 𝑏𝑙−2 + ⋯ + 𝑑𝑙−2 · 𝑏 + 𝑑𝑙−1

but instead of choosing the digits from the set {0, 1, … , 𝑏 − 2, 𝑏 − 1 we
choose them from {1, 2, … , 𝑏 − 1, 𝑏}. Like the base 𝑏 + 1 encoding above
this encoding is lossless, since it’s fairly easy to show that no two lists give
the same natural number. It still has the minor problem that not every
natural number is the encoding of a list, but this time the only number
which is left out is 0, a problem which we can easily fix by subtracting 1
from the expression above. So our new encoding is to assign the digits
{1, 2, … , 𝑏 − 1, 𝑏} to our symbols, convert the list of symbols to a list of
digits, and then form the natural number

𝑑0 · 𝑏𝑙−1 + 𝑑1 · 𝑏𝑙−2 + ⋯ + 𝑑𝑙−2 · 𝑏 + 𝑑𝑙−1 − 1.

Now every list of symbols is represented by a natural number and every
natural number represents a list of symbols.
Once we know how to encode lists of symbols as natural numbers we can
encode sets of lists of symbols as sets of natural numbers, relations on lists
of symbols as relations on natural numbers, etc.
As an example, consider the language of balanced parentheses. Our origi-
nal grammar was

146



ok : | "(" ok ")" ok
For reasons which will become clear soon I want to allow not just strings
with balanced parentheses by finite sequences of such strings, separated
by commas, so our new language is
seq : ok | seq "," ok
ok : | "(" ok ")" ok
Strings with balanced parentheses can then be thought of as sequences
with only one element. This new grammar has five symbols, the three ter-
minals (, ) and , and the two non-terminals seq and ok. We can assign
those five symbols to the five base five digits 1, 2, 3, 4 and 5, in that order.
Then the string (()(())), for example, would be encoded as

1 · 57 + 1 · 56 + 2 · 55 + 1 · 54 + 1 · 53 + 2 · 52 + 2 · 5 + 2 − 1

This is the decimal number 100811, but there really isn’t much reason to
convert these encodings to and from decimal.
The list of symbols in the example above happened to be a member of the
language, in fact a member of both the original language and the extended
one, but this encoding scheme allows us to represent any list of symbols as
a natural number. This raises an obvious question: can we identify which
natural numbers correspond to members of the language? There are ac-
tually two languages here, the original language of strings with balanced
parentheses and the extended language of sequences of such strings. Al-
though the answer turns out to be the same for both the question we’re
really interested in is the one for the original language.
The encoding system described above has the very useful property that the
concatenation relation is arithmetic, and in fact constructively arithmetic.
If you’re not familiar with concatenation, the concatenation of the list

(𝑐0, 𝑐1, … , 𝑐𝑘−2, 𝑐𝑘−1)

and the list
(𝑑0, 𝑑1, … , 𝑑𝑙−2, 𝑑𝑙−1)

is the list
(𝑐0, … , 𝑐𝑘−1, 𝑑0, … , 𝑑𝑙−1).
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Suppose 𝑥 is the encoding of the first list above, 𝑦 is the encoding of the
second list, and 𝑧 is the encoding of their concatenation, i.e. third list. In
other words, suppose that

𝑥′ = 𝑐0 · 𝑏𝑘−1 + 𝑐1 · 𝑏𝑘−2 + ⋯ + 𝑐𝑘−2 · 𝑏 + 𝑐𝑘−1,

𝑦′ = 𝑑0 · 𝑏𝑙−1 + 𝑑1 · 𝑏𝑙−2 + ⋯ + 𝑑𝑙−2 · 𝑏 + 𝑑𝑙−1,
and

𝑧′ = 𝑐0 · 𝑏𝑘+𝑙−1 + ⋯ + 𝑐𝑘−1 · 𝑏𝑙 + 𝑑0 · 𝑏𝑙−1 + ⋯ 𝑑𝑙−1.
Then

𝑧′ = 𝑏𝑙 · 𝑥′ + 𝑦′.

Aside from the parentheses, which we can easily add, the thing which pre-
vents this from being an expression in our language is the power 𝑏𝑙. At
this point it is helpful to make the additional assumption that 𝑏 is prime.
This is avoidable but avoiding it requires considerable effort and in all the
applications we have in mind we have the option of adding more symbols
and simply not using them so there is no real loss of generality. Of course
what we’re using here is the fact that for every natural number there is a
larger number which is prime, i.e. that there are infinitely many primes,
mentioned earlier. In this case 𝑧 is a power of 𝑏 if and only if every divisor
of 𝑧 is either 1 or 𝑏. Suppose 𝑧 is positive. Then we only need to test divi-
sors between 1 and 𝑧, since there are no others. 𝑥 is a divisor if and only
if there is a 𝑦 such that 𝑥 · 𝑦 = 𝑧. Again, if 𝑧 is positive then we only need
to test values of 𝑦 between 1 and 𝑧. So 𝑥 = 𝑣′ and 𝑦 = 𝑤′ for some natural
numbers 𝑣 and 𝑤 less than 𝑧. The condition that 𝑥 = 1 is equivalent to 𝑣 = 0.
The condition that 𝑥 is a multiple of 𝑏 is that there is a 𝑦 such that 𝑏 · 𝑦 = 𝑥.
Again, we only need to consider values of 𝑦 between 1 and 𝑥, which are
therefore between 1 and 𝑧. Again, since 𝑦 is positive it must be of the form
𝑦 = 𝑤′ for some 𝑤. In this way we are led to the bounded expression

𝑄(𝑧) ≡ {(𝑧 > 0) ∧ [∀𝑣 < 𝑧 ∶ ({∃𝑤 < 𝑧 ∶ [(𝑣′ · 𝑤′) = 𝑧]}
⊃ [(𝑣 = 0) ∨ {∃𝑤 < 𝑧 ∶ [(𝑏 · 𝑤′) = 𝑣′]}])]}.

If you compare this to the earlier expression for prime powers you’ll see
that in addition to replacing 𝑝 with 𝑏 I’ve added the explicit condition 𝑧 > 0
and I’ve used 𝑣 and 𝑤 instead of 𝑥 and 𝑦. The second change isn’t a simple
substitution, since the relations between these are 𝑥 = 𝑣′ and 𝑦 = 𝑤′. Most
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importantly, I’ve bounded all the quantifiers. The trick of using 𝑣 and 𝑤
instead of 𝑥 and 𝑦 was used to get variables which are strictly less than 𝑧,
rather than merely less than or equal to it, as required for bounded quanti-
fiers. This also required ruling out the case 𝑧 = 0 explicitly, because there
is no upper bound on the divisors of 0.
𝑦′ is a number whose modified base 𝑏 representation has length 𝑙. The
smallest such number is the one where all the digits are 1, i.e.

1 · 𝑏𝑙−1 + 1 · 𝑏𝑙−2 + ⋯ + 1 · 𝑏 + 1 = 𝑏𝑙 − 1
𝑏 − 1

The largest such number is the one where all the digits are 𝑏, i.e.

𝑏 · 𝑏𝑙−1 + 𝑏 · 𝑏𝑙−2 + ⋯ + 𝑏 · 𝑏 + 𝑏 = 𝑏𝑏𝑙 − 1
𝑏 − 1

In other words,
𝑏𝑙 − 1
𝑏 − 1 ≤ 𝑦′

and
𝑦′ ≤ 𝑏𝑏𝑙 − 1

𝑏 − 1
This is equivalent to

𝑏𝑙 + 𝑦 ≤ 𝑏𝑦′

and
𝑏𝑦 + 𝑏 + 𝑏 ≤ 𝑏 · 𝑏𝑙 + 𝑦′.

In other words, 𝑤 = 𝑏𝑙 if and only if 𝑤 is a power of 𝑏 and satisfies the
inequalities

𝑤 + 𝑦 ≤ 𝑏𝑦′

and
𝑏𝑦′ + 𝑏 ≤ 𝑏 · 𝑤 + 𝑦′.

So 𝑏𝑙 is the unique 𝑤 which makes the expression

𝑆(𝑤, 𝑥, 𝑦, 𝑧) ≡ [𝑄(𝑤) ∧ ([(𝑤 + 𝑦) ≤ (𝑏 · 𝑦′)] ∧ {[(𝑏 · 𝑦) + 𝑏] ≤ [(𝑏 · 𝑤) + 𝑦′]})]

true. Nowwe can express the condition for 𝑧 to be encoding of the concate-
nation of the lists encoded by 𝑥 and 𝑦.

𝐶(𝑥, 𝑦, 𝑧) ≡ {∃𝑤 < 𝑦 ∶ [𝑆(𝑤, 𝑥, 𝑦, 𝑧) ∧ {[(𝑤 · 𝑥′) + 𝑦′] = 𝑧′}]}.
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Encoding grammar
Grammars are defined mostly in terms of concatenation. Consider, for ex-
ample, our grammar for balanced parentheses. A string belongs to the
grammar of balanced parentheses if and only if we can parse it using the
rule
ok : | "(" ok ")" ok
The string, (()(())), for example, can be parsed in the following steps.
ok
( ok ) ok
( ( ok ) ok ) ok
( ( ) ok ) ok
( ( ) ( ok ) ok ) ok
( ( ) ( ( ok ) ok ) ok ) ok
( ( ) ( ( ) ok ) ok ) ok
( ( ) ( ( ) ) ok ) ok
( ( ) ( ( ) ) ) ok
( ( ) ( ( ) ) )
This is a sequence of lists of symbols in the grammar, i.e. an element of our
extended grammar, except that I’ve used newlines instead of commas and
I’ve inserted some spaces tomake things look nicer. This sequence has four
crucial properties.

• The first list has only one element, the start symbol.
• The last list is the one we were trying to parse.
• The last list consists only only of terminal symbols.
• Each list is obtained by taking a previous list and replacing an ok by

one of its two allowed expansions.
Each of these properties can be expressed in terms of concatenation. Our
first task is to separate the one large list of symbols thatwe have into smaller
lists, separated by our separator, which I’m going to refer to as the comma,
even though I used newlines above. Note that being a sublist of another
list is a property we can describe in terms of concatenation. β is a sublist
of δ if we can write δ as the concatenation of α, β and γ. A list contains a
comma if and only if and only if it has a sublist with a single element, a
comma. The pieces we want to split our list into are the largest comma-less
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pieces, i.e. those which have no comma but are not sublists of any other
comma-less list. Having split the list in this way it’s easy to express the
first and last condition above. The second one can be handled similarly to
the problem of identifying comma-less lists before. We just need to do that,
restricted to the final part of the list, with each non-terminal in place of a
comma. The third one isn’t much harder. It’s straightforward to express
in terms of concatenation the fact that one of these maximal lists appears
before another in the sequence. β precedes δ if the whole list can bewritten
as the concatenation of α, β, γ, δ and ε. We can also express the fact that δ
is obtained from β by expanding an ok to an empty list. That means that
there are κ, λ, μ, and ν such that β is κλν, δ is κμν, λ consists of a single ok,
and μ is empty. Expressing the fact that δ is obtained from β by expanding
an ok to a list of the form ( ok ) ok is similar, but we use that list of four
symbols for μ. We’ve now expressed all the conditions above in terms of
quantifiers, Boolean operators, and concatenation.
We can now use our earlier observation that concatenation is represented
by a constructively arithmetic operation to express parsing in arithmetic
terms. Specifically we can express the fact that a given sequence is a valid
parsing for a given list of terminal symbols as an arithmetic relation be-
tween their encodings. In fact this relation is constructively arithmetic. To
see this it suffices to observe that all the lists we need to consider are sub-
lists of the given parsing list and that sublists have encodings which are
no larger than the encoding of the full list. The property of belonging to
the list of balanced parentheses is also an arithmetic property, since that
just means there exists some natural number which encodes a valid pars-
ing, so we just need to stick another quantifier on to whatever expression
we’ve constructed to express the relation of being a valid parsing for a list.
There’s one complication though. We don’t have any bound for the encod-
ing of the parsing in terms of the encoding of the original list, so this won’t
be a bounded quantifier and we can only conclude that the encodings of
members of the language form an arithmetic set. We don’t gain any infor-
mation about from this about whether it’s constructively arithmetic, but
that’s less important.

Encoding non-deterministic computations
How far can the ideas of the previous section be pushed?
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Hopefully it’s clear that we could do the same thing with any grammar of
the type we’ve been considering so far. With an encoding of this type the
set of encodings of members of the language will always be an arithmetic
set. In fact we could allow more complicated grammars, but won’t pursue
this idea for now.
Parsing can, as discussed earlier, be considered as an example of a non-
deterministic computation. From this point of view the procedure we’ve
just employed is

• Develop a language which allows us to describe the possible states of
the computation.

• Extend this language to encompass possible computational paths.
• Apply an encoding of the type described above to the extended lan-

guage.
• Create an expression to check whether the initial state is one of the

allowed ones.
• Create an expression to determine whether the final state is of the

type needed for successful termination of the computation.
• Create an expression to check whether the final state is one is the

desired one.
• Create an expression to check whether the each state is reachable

from the previous one via one of the allowed actions in that state.
• Combine the above expressions to get an expression which deter-

mines, for any state, whether there is a possible computational path
which terminates successfully in this state.

• Conclude that the set of all possible final states is an arithmetic set.
This is all fairly straightforward, except for the last step, which will only
work for certain types of actions. As we’ve seen though, the fact that con-
catenation is constructively arithmetic allows us to perform fairly sophisti-
cated pattern matching operations, so in practice the class of sets we can
prove are arithmetic by this technique is quite large.
If you compare this general procedure to the special case of the balanced
parentheses example you may notice one way in which it doesn’t quite
fit. There I described checking that each element of the sequence is obtain-
able by expanding the token ok in some previous list. The recipe given
above would require it to expand a token from the immediately previous
list. Changing it to conform to the recipe above is possible. If there’s a
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parsing of the more lenient type considered earlier than there’s one of this
more restricted type as well. The possibility to use past states as well as the
current one in determining the next state is useful though. In this case it
would allow us to write a backtracking parser, i.e. one which can explore
branches of the state tree tentatively without firmly committing to them.
We don’t even really need to limit ourselves to examining just one past state
in determining what we’re allowed to do next. The freedom to make use
of more than one previous state would be useful, for example, in showing
that the Fibonacci numbers are an arithmetic set, since each number in the
sequence depends on two previous ones. This freedomwill soon be useful
in other contexts. There’s no problem with allowing it. Our method uses
concatenation to identify previous states, and that’s just as easy to do, and
in fact slightly easier, if we allow our rules to consider all earlier states and
not just the preceding one.

Encoding formal systems
We’ve also seen that proofs in formal systems can be considered as a type of
non-deterministic computation. We can therefore try to use the recipe on
them. This will work if the axioms and rules of inference are of an appro-
priate type. We have to be able to write expressions which check whether a
number is the encoding of an axiomof the system, andwhether a number is
the encoding of a statement which follows, via the rules of inference of the
system, from one or more other statements whose encoding is given. The
pattern matching capabilities of concatenation make this fairly straightfor-
ward for most systems though. A rule like “From statements 𝑃 and 𝑄 we
can deduce the statement (𝑃 ∧ 𝑄). Also, from any statement of the form
(𝑃 ∧ 𝑄) we can deduce the statement 𝑃 and the statement 𝑄’’, for example,
is very easily expressed. Although it requires considerably more effort we
can also express fairly complicated rules, like the rules for quantifiers in
our system for first order logic, including their restrictions in certain cases
to substituting only new parameters for variables.
In this way we can show that the encoded statements of theorems of first
order logic form an arithmetic set. I didn’t exactly make this easy though.
We don’t have any axioms but we have a lot of rules of inference and some
of them are fairly complex. The task would be much easier with a more
traditional axiomatic system, like a first order version of Nicod. This is
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why those systems aren’t merely a historical relic. Although it’s painful to
prove things in them, it’s easier to prove things about them.

Encoding arithmetic in arithmetic
We know how to encode expressions in any formal language, or at least
any language with only finitely many symbols, in the formal language of
elementary arithmetic. The language of elementary arithmetic is a formal
language with only finitely many symbols. It follows that we can encode
arithmetic in arithmetic! Should we?
Encoding arithmetic in arithmetic can get somewhat confusing. Consider
a natural number. It can be expressed in the language of arithmetic. In
fact there are multiple ways to express it, but to limit confusion as much as
possible let’s restrict ourselves to its representation as a 0with apostrophes.
Then there is a unique expression in the language for each natural number.
The expression has an encoding, which is a natural number. It’s not the
same natural number we started with though. It’s generally much larger.
At this point I should perhaps give an example but our encoding is a mod-
ified base 𝑏 encoding, where 𝑏 is the number of symbols in our language,
plus a further two to get the extended language. We need 𝑏 digits and for
the language that will be slightly too many for the ordinary decimal dig-
its plus the letters of the English alphabet. I could use a language with a
less impoverished alphabet, but the unfamiliarity would probably make
the example create more confusion than it would eliminate.
We now have a binary relation between natural numbers, which we would
express in English as “… is the encoding of …”. Can we express it in the
language of arithmetic? In other words, is this relation arithmetic? In fact
it’s possible to prove that it is. One approach would be to note that find-
ing the natural number from the encoding is a relatively straightforward
computation. It’s deterministic but that doesn’t prevent us from using the
recipe we’ve already developed for non-deterministic computations. This
chapter is already quite proof-heavy though so I won’t give the details.
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Tarski’s theorem
Earlier I discussed the question of whether the encodings of the theorems
of a formal system are an arithmetic set. We don’t yet have a formal system
for arithmetic. That will come soon, but for now we do have a language
and an interpretation, so we can ask about the true sentences. By sentence
I mean a statement which is unconditionally true or false, since it has no
free variables or parameterswhich need values to be assigned to them. The
answer turns out to be no. This is a theorem of Alfred Tarski.
Tarski’s theorem is not easy to prove, but the idea behind it is fairly simple.
Suppose the set of true sentences is arithmetic, i.e. that we have an expres-
sion meaning “… is the encoding of a true statement”. We already have, or
rather know that there is, an expression meaning “… is the encoding of …”.
With a bit of cleverness we can combine these to to create a sentence which
asserts that it is false.

A formal system for arithmetic
As mentioned earlier, a formal system consists of a language, a set of ax-
ioms, and a set of rules of inference. We have a language for arithmetic but
we don’t yet have axioms or rules of inference. There are a variety of pos-
sible choices which tend to known collectively as Peano arithmetic, after
Giuseppe Peano, the first person to introduce such a system.
There are two types axioms and rules of inference, logical axioms and rules
of inference and arithmetic axioms and rules of inference.
For the logical part we’ll just borrow from the system we’ve already devel-
oped. The only change is that in place of parameters we now have numeri-
cal expressions and instead of predicateswe nowhave Boolean expressions.
In other words, in place of a first order logic statement like

{[∃𝑥.(𝑓 𝑥)] ⊃ [¬(∀𝑥.{¬[(𝑓 𝑥) ∨ (𝑔𝑥)]})]}

we have statements like

{[∃𝑥.(∃𝑦.{𝑥 = 𝑦 + 𝑦})] ⊃ [¬(∀𝑥.{¬[(∃𝑦.{𝑥 = 𝑦 + 𝑦}) ∨ (∃𝑦.{𝑥 = 𝑦′})]})]}.

We’ve replaced the generic predicates (𝑓 𝑥) and (𝑔𝑥) with the specific ex-
pressions (∃𝑦.{𝑥 = 𝑦 + 𝑦}) and (∃𝑦.{𝑥 = 𝑦′}). The first is the translation

155



into our language of the statement that 𝑥 is even and the second is the trans-
lation of the statement that 𝑥 is positive. We could have replaced themwith
any other Boolean expressions. Indeed that’s the point of logic: to deter-
mine which statements are universally true simply because of their form,
without reference to the meaning of their components.
For example, one of our arithmetic axioms will be

[∀𝑥.{∀𝑦.[(𝑥 + 𝑦)′ = (𝑥 + 𝑦′)]}]

One of our rules for quantifiers in first order logic allowed us to take a
universal quantifier followed by a variable and an expression, remove the
quantifier and variable, and replace all free occurrences of the variable in
the expression with a parameter. We can do the same in arithmetic, except
now we need to replace the variable with a numerical expression, like 0″.
So from the axiom above we can deduce

{∀𝑦.[(0″ + 𝑦)′ = (0″ + 𝑦′)]}.

The terminology may be unfamiliar but the underlying idea should not be:
since we have a statement which is true for all natural numbers 𝑥 it is true
in particular for 2, a.k.a. 0″.
The rules of inferencewhich dealwith quantifiers involve introducing elim-
inating parameters. As stated above, numerical expressions take the role of
parameters. Those expressions could be variables or could bemore compli-
cated expressions. To main soundness we need to avoid variable capture,
whichwas discussed earlier in the context of substitution in first order logic,
when an expression involving variables is substituted for a variable. Oth-
erwise we would be able to deduce the false statement

[∀𝑧.(∀𝑦.{∃𝑧.[(𝑧 + 𝑦) = 𝑧]})]

from the true statement

[∀𝑥.(∀𝑦.{∃𝑧.[(𝑥 + 𝑦) = 𝑧]})].

Other than the changes described above, for parameters andpredicates, the
logical structure is just that of first order logic. What’s new is the arithmetic
axioms and rules of inference.
We’ll use the following axioms for arithmetic:
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1. [∃𝑥.(𝑥 = 0)]
2. {∀𝑥.[∃𝑦.(𝑦 = 𝑥′)]}
3. {∀𝑥.[¬(𝑥′ = 0)]}
4. {∀𝑥.[(𝑥 + 0) = 𝑥]}
5. (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
6. {∀𝑥.[(𝑥 · 0) = 0]}
7. [∀𝑥.(∀𝑦.{(𝑥 · 𝑦′) = [(𝑥 · 𝑦) + 𝑥]})]
8. {∀𝑥.[∀𝑦.(∀𝑧.{[(𝑥 + 𝑦) = 𝑧] ⊃ [(𝑧 − 𝑦) = 𝑥]})]}.
9. {∀𝑥.[∀𝑦.(∀𝑧.{[(𝑧 − 𝑦) = 𝑥] ⊃ [(𝑥 + 𝑦) = 𝑧]})]}.

10. (∀𝑥.{∀𝑦.[(𝑥 ≤ 𝑦) ⊃ {∃𝑤.[(𝑤 + 𝑥) = 𝑦]}]})
11. (∀𝑥.{∀𝑦.[{∃𝑤.[(𝑤 + 𝑥) = 𝑦] ⊃ (𝑥 ≤ 𝑦)}]})
12. (∀𝑥.{∀𝑦.[(𝑥 ≥ 𝑦) ⊃ {∃𝑧.[𝑥 = (𝑦 + 𝑧)]}]})
13. (∀𝑥.{∀𝑦.[{∃𝑧.[𝑥 = (𝑦 + 𝑧)] ⊃ (𝑥 ≥ 𝑦)}]})
14. [∀𝑥.(∀𝑦.{(𝑥 < 𝑦) ⊃ [¬(𝑦 ≤ 𝑥)]})]
15. [∀𝑥.(∀𝑦.{[¬(𝑦 ≤ 𝑥)] ⊃ (𝑥 < 𝑦)})]
16. [∀𝑥.(∀𝑦.{(𝑥 > 𝑦) ⊃ [¬(𝑦 ≥ 𝑥)]})]
17. [∀𝑥.(∀𝑦.{[¬(𝑦 ≥ 𝑥)] ⊃ (𝑥 > 𝑦)})]

Before reading further you might find it useful to translate each of these
into words and convince yourself that it’s true.
The first axiom is the existence of 0. The second says that every natural
number has a successor. The third axiom says that 0 is not the successor
of any natural number. The fourth says that 0 is an identity element for
addition, or at least is a right identity element. The fact that it’s a left iden-
tity element as well will be a theorem rather than an axiom The fifth axiom
tells us that incrementing a sum is the same as incrementing one of the
summands, specifically the second summand. The fact that incrementing
the first summand would also work is again a theorem rather than an ax-
iom. The fourth and fifth axioms together are best thought of as a recursive
definition of addition. If we knowhow to add 0 to a number and knowhow
to add the successor of any number to a number then we know how to add
any number to it. The sixth axiom tells us that 0 multiplied by anything is
still 0. Again, there’s a counterpart with the multiplicands in the other or-
der which will be a theorem rather than an axiom. The sixth and seventh
axioms are essentially a recursive definition of multiplication. The sixth
axiom tells us how to multiply by 0 and the seventh axiom allows us to get,
one step at a time, from multiplication by 0 to multiplication by any nat-
ural number. The eighth and ninth axioms define subtraction in terms of
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addition. The remaining axioms just express the other arithmetic relations
in terms of equality.
There are also three arithmetic rules of inference.

1. From a statement of the form (𝑋 = 𝑌) we can deduce (𝑋′ = 𝑌′), and
vice versa.

2. (∀𝑉 < 𝐵 ∶ 𝑃) is freely interchangeable with ∀𝑉.(𝑉 < 𝐵) ⊃ 𝑃 and
(∃𝑉 < 𝐶 ∶ 𝑃) is freely interchangeable with ∃𝑉.(𝑉 < 𝐵) ⊃ 𝑃, where
𝑉 is a variable, 𝐵 a bound, and 𝑃 a Boolean expression.

3. Suppose 𝑉 is a variable and 𝑃 is a Boolean expression. Let 𝑄 be 𝑃
with all free occurrences of 𝑉 replaced by 0 and let 𝑅 be 𝑃 with all
free occurrences of 𝑉 replaced by 𝑉′. From 𝑄 and [∀𝑉.(𝑃 ⊃ 𝑅)] we
can deduce (∀𝑉.𝑃).

The first part of the first rule is actually redundant. It follows from one of
our equality rules in first order logic. More generally, if we have (𝑋 = 𝑌)
then we can deduce an equality between any two expressions which differ
only in that one has 𝑋 everywhere the other has 𝑌 and vice versa. The
interesting part of the first rule is therefore the “and vice versa” part. The
third rule is just says that bounded quantifiers are a shorthand notation, as
explained when they were first introduced.

Induction
The last rule of inference is the formal version of the principle of mathe-
matical induction, which we used once already informally in showing that
the Fibonacci numbers form an arithmetic set. My preferred way of think-
ing about the principle of mathematical induction is as the statement that
every non-empty set of natural numbers has a least element.
To see why this minimum principle implies the rule above consider the set
of natural numbers which, when substituted for all free occurrences of 𝑉
in 𝑃, yield a false statement. If there are any then there’s a least one. It can’t
be 0 because 𝑄 is true. If it’s not zero then it’s the successor of some natu-
ral number. Call that number 𝑥. So substituting 𝑥′ for 𝑉 in 𝑃 gives a false
statement. But 𝑥′ was the least number with this property so substituting
𝑥 would give a true statement. Substituting 𝑥′ for 𝑉 in 𝑃 is the same as sub-
stituting 𝑥 for 𝑉 in 𝑅 though and we have [∀𝑉.(𝑃 ⊃ 𝑅)]. Substituting 𝑥 for
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𝑉 in this, which we are allowed to do by one of logical rules of inference
for quantifiers, would give a contradiction, so our assumption that there is
an integer which, when substituted into 𝑃 for 𝑉 makes the statement false
is incorrect. In other words, substituting any value for 𝑉 gives a true state-
ment. But that’s the same as saying that (∀𝑉.𝑃) is true. So the minimum
principle implies the principle of mathematical induction.
The reverse implication works as well. Suppose we have a set of natural
numbers with no least element. Let 𝑃 be the statement that no natural
number less than the value represented by 𝑉 belongs to the set. This is vac-
uously true when 0 is substituted for 𝑉. Suppose it’s true for some other
value. Then this value does not belong to the given set. If it did then it
would be the least element of the set because the statement 𝑃 tells us that
no smaller number belongs to the set. Since there is no least element this
can’t happen so the value 𝑉 is not in the set. But then all numbers smaller
than the value 𝑉′ are not in the set so from 𝑃 we can deduce 𝑃 with 𝑉 re-
placed by 𝑉′, i.e. the statement we previously called 𝑅. So we now have 𝑄
and [∀𝑉.(𝑃 ⊃ 𝑅)] and therefore, by the principle of mathematical induc-
tion, (∀𝑉.𝑃). But 𝑃 is the statement that no number less than 𝑉 belongs to
the set. This holdswith 𝑉 replaced by any numerical expression, including
𝑥′, where 𝑥 is a variable. So no number less than 𝑥′; 𝑜 belongs to the set and
in particular 𝑥 does not belong to the set. This holds for all natural numbers
𝑥 so no natural number belongs to the set, which must therefore be empty.
We’ve just seen that a set of natural numbers with no least element is nec-
essarily empty. An equivalent way to say this is that every non-empty set
of natural numbers has a least element, which is our minimum principle.
The proof above is an informal one. Indeed it can’t help but be informal.
Our language for arithmetic has no notation for sets of natural numbers.
We’ve seen how to express particular sets in this language but that’s not
sufficient for the minimum principle, which is a statement about all sets
of natural numbers. So there’s no way within Peano arithmetic to state
the minimum principle, let alone prove its equivalence to the principle of
mathematical induction. Oncewehave a languagewhich includes sets, like
the one we’ll introduce in the next chapter, we can give a formal statement
of the minimum principle.
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Formal proofs
It is possible, though not very pleasant, to produce formal proofs in Peano
arithmetic.
Consider, for example, the following proof of the fact that 2 + 2 = 4, which
in the language we’re using is written as [(0″ + 0″) = 0⁗].

1. [∃𝑥.(𝑥 = 0)]
2. [∃𝑦.(𝑦 = 0)]
3. {∀𝑥.[∃𝑦.(𝑦 = 𝑥′)]}
4. {[∃𝑥.(𝑥 = 0)] ⊃ [∃𝑦.(𝑦 = 0′)]}
5. [∃𝑦.(𝑦 = 0′)]
6. [∃𝑥.(𝑥 = 0′)]
7. {[∃𝑥.(𝑥 = 0′)] ⊃ [∃𝑦.(𝑦 = 0″)]}
8. [∃𝑦.(𝑦 = 0″)]
9. [∃𝑥.(𝑥 = 0″)]

10. {∀𝑥.[(𝑥 + 0) = 𝑥]}
11. {[∃𝑥.(𝑥 = 0″)] ⊃ [(0″ + 0) = 0″]}
12. [(0″ + 0) = 0″]
13. [(0″ + 0)′ = 0‴]
14. (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
15. ([∃𝑥.(𝑥 = 0″)] ⊃ {∀𝑦.[(0″ + 𝑦′) = (0″ + 𝑦)′]})
16. {∀𝑦.[(0″ + 𝑦′) = (0″ + 𝑦)′]}
17. {[∃𝑦.(𝑦 = 0)] ⊃ [(0″ + 0′) = (0″ + 0)′]}
18. [(0″ + 0′) = (0″ + 0)′]
19. [(0″ + 0′) = 0‴]
20. [(0″ + 0′)′ = 0⁗]
21. {[∃𝑦.(𝑦 = 0′)] ⊃ [(0″ + 0″) = (0″ + 0′)′]}
22. [(0″ + 0″) = (0″ + 0′)′]
23. [(0″ + 0″) = 0⁗]

Here 1 is an axiom, and 2 is the result of substitution on 1. 3 is an axiom, 4 is
obtained from 3 by one of our quantifier rules, 5 is modus ponens applied
to 1 and 4, and 6 is substitution on 6. 7 is a quantifier rule applied to 3, 8 is
modus ponens applied to 6 and 9, and 9 is substitution on 8. 10 is an axiom,
11 is a quantifier rule applied to 10, and 12 is modus ponens on 9 and 11.
13 is derived from 12 by one of our arithmetic rules of inference. 14 is an
axiom, 15 is derive from it by a quantifier rule, and 16 is modus ponens
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on 9 and 15. 17 is a quantifier rule applied to 16 and 18 is modus ponens
on 2 and 17. 19 is derived from 13 and 18 by one of our rules of inference
for equality. 20 comes from an arithmetic rule of inference on 19. 21 is a
quantifier rule applied to 16 and 22 is modus ponens on 5 and 21. Finally,
23 is one of the rules of equality applied to 20 and 22.
Statements more complicated than 2 + 2 = 4 have correspondingly longer
proofs. The following is a proof of

[∀𝑥.(∀𝑦.{∃𝑧.[𝑧 = (𝑥 + 𝑦)]}])],

i.e. the fact that the sum of any two natural numbers is a natural number.
1. [∃𝑥.(𝑥 = 0)]
2. (0 = 0)
3. {[∃𝑥.(𝑥 = 0)] ∧ (0 = 0)}
4. [∃𝑥.(𝑥 = 𝑥)]
5. [∃𝑦.(𝑦 = 𝑦)]
6. [∃𝑧.(𝑧 = 𝑧)]
7. (𝑧 = 𝑧)
8. {[∃𝑧.(𝑧 = 𝑧)] ∧ (𝑧 = 𝑧)}
9. [∃𝑧.(𝑧 = 𝑥)]

10. [∃𝑧.(𝑧 = 𝑤)]
11. [∃𝑥.(𝑥 = 𝑤)]
12. {∀𝑥.[∃𝑦.(𝑦 = 𝑥′)]}
13. {[∃𝑥.(𝑥 = 𝑤)] ⊃ [∃𝑦.(𝑦 = 𝑤′)]}
14. [∃𝑦.(𝑦 = 𝑤′)]
15. [∃𝑧.(𝑧 = 𝑤′)]
16. {∀𝑥.[(𝑥 + 0) = 𝑥]}
17. {[∃𝑥.(𝑥 = 𝑥)] ⊃ [(𝑥 + 0) = 𝑥]}
18. [(𝑥 + 0) = 𝑥]
19. (∃𝑧.{[𝑧 = (𝑥 + 0)]})
20. . (∃𝑧.{[𝑧 = (𝑥 + 𝑦)]})
21. . ([∃𝑧.(𝑧 = 𝑤)] ∧ {[𝑤 = (𝑥 + 𝑦)]})
22. . [𝑤 = (𝑥 + 𝑦)]
23. . [𝑤′ = (𝑥 + 𝑦)′]
24. . (∀𝑥.{∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
25. . ([∃𝑥.(𝑥 = 𝑥)] ⊃ {∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]})
26. . {∀𝑦.[(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]}
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27. . {[∃𝑦.(𝑦 = 𝑦)] ⊃ [(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]}
28. . [(𝑥 + 𝑦′) = (𝑥 + 𝑦)′]
29. . [(𝑥 + 𝑦)′ = (𝑥 + 𝑦′)]
30. . [𝑤′ = (𝑥 + 𝑦′)]
31. . {[∃𝑧.(𝑧 = 𝑤′)] ∧ [𝑤′ = (𝑥 + 𝑦′)]}
32. . {∃𝑧.[𝑧 = (𝑥 + 𝑦′)]}
33. {∃𝑧.[𝑧 = (𝑥 + 𝑦)]} ⊃ {∃𝑧.[𝑧 = (𝑥 + 𝑦′)]})
34. {∃𝑧.[𝑧 = (𝑥 + 𝑦)]}
35. {¬[∃𝑦.(𝑦 = 𝑦)]} ∨ {∃𝑧.[𝑧 = (𝑥 + 𝑦)]}
36. [∃𝑦.(𝑦 = 𝑦)] ⊃ {∃𝑧.[𝑧 = (𝑥 + 𝑦)]}
37. (∀𝑦.{∃𝑧.[𝑧 = (𝑥 + 𝑦)]})
38. [{¬[∃𝑥.(𝑥 = 𝑥)]} ∨ (∀𝑦.{∃𝑧.[𝑧 = (𝑥 + 𝑦)]}])
39. {[∃𝑥.(𝑥 = 𝑥)] ⊃ (∀𝑦.{∃𝑧.[𝑧 = (𝑥 + 𝑦)]}])}
40. [∀𝑥.(∀𝑦.{∃𝑧.[𝑧 = (𝑥 + 𝑦)]}])]

This one is somewhat more complicated than the previous one. A hypoth-
esis is introduced at 20 and then discharged at 33. This, together with 19,
allows us to use induction at 34.
Had we used a logic with existential presuppositions the proof could have
been reduced to four lines. That’s largely because such a logic assumes that
any expression we can write down refers to something in the domain, so
the fact that we have a notation for addition already essentially assumes
that the sum of any two natural numbers is a natural number. That’s very
convenient, but unfortunately the same would apply to subtraction. If we
introduce a notation for subtraction into a system based on such a logic
then we can give a four line proof of

[∀𝑥.(∀𝑦.{∃𝑧.[𝑧 = (𝑥 − 𝑦)]}])],
but unfortunately this statement is false. The difference of natural numbers
need not be a natural number. Formal systems for elementary arithmetic
based on first order logic with existential suppositions avoid this problem
by not having a notation for subtraction. But then there are important facts
about elementary arithmetic which they can’t express. For example, the
correct version of the statement above is

(∀𝑥.{∀𝑦.[(𝑥 ≥ 𝑦) ⊃ {∃𝑧.[𝑧 = (𝑥 − 𝑦)]}]}),
which says that 𝑥 − 𝑦 is a natural number if 𝑥 ≥ 𝑦. This is a theorem in our
system but can’t even be stated in a system with existential suppositions.
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As we saw earlier, it’s possible to give a fairly concise statement within the
language of Peano arithmetic of the fact that there are infinitely primes.
It’s possible to give a formal proof as well, but it’s hardly an enjoyable ex-
ercise. Logicians, though, are generally much more interesting in figuring
out what can or can’t be proved within a formal system than with actually
supplying proofs. In other words, they tend to live in the world of semifor-
mal proofs rather than formal proofs.

Gödel’s theorem
Now that we have a formal system for arithmetic we can do what we dis-
cussed earlier and show that the set of theorems is arithmetic. If we’ve
already done this for first order logic, which I haven’t but I did mention
that this can be done, it’s not even particularly difficult. The axioms and
the first rule of inference present no problems. The second rule of inference
is more complicated but recognising instances of this rule is essentially a
matter of pattern matching, and we’ve seen how to do pattern matching
within arithmetic. Not every theorem is a sentence, but recognising which
ones are is also a pattern matching problem and so the set of sentences
which are theorems is also arithmetic.
Tarski’s theorem, that true sentences are not an arithmetic set, is interest-
ing in itself, but it’s particularly interesting in combination with the ob-
servation that the set of provable sentences is arithmetic. This leads to the
conclusion, first proved by Kurt Gödel, that these two sets are not the same,
i.e. that there must either be a sentence which is true but cannot be proved,
or a sentence which is false but can be proved!
The formulation above is somewhat sloppy. For simplicity I’ve referred to
sets of sentences as being arithmetic or not, but arithmeticity is a property
which applies to sets of natural numbers rather than sentences. What I
really mean is that the sets of encodings of those sentences are arithmetic
or not. But the set of encodings determines the set of sentences uniquely,
so if the sets of encodings are different then so are the sets of sentences. So
our final conclusion doesn’t reference the encodings.
If this were restricted to the formal system above then it wouldn’t have
much interest. After all, the precise formal system above appears in these
notes and nowhere else, so finding out that it’s incapable of proving all true
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statements in arithmetic isn’t terribly interesting. Perhaps I just need to add
a new axiomor strengthen one of the rules of inference? The argument that
led us to this point is quite a general one, though. Tarski’s theorem didn’t
depend on the choice of formal system at all. The proof that theorems are
an arithmetic set didn’t use any properties of this particular formal system.
I haven’t defined the notion of a formal system precisely, but under any
definition inwhichwe canmechanically checkwhether proofs are validwe
will get the same conclusion. So Gödel’s theorem is not a theorem about
a particular formal system for arithmetic but rather a theorem about all
possible formal systems for arithmetic.

Rosser’s theorem
Gödel did not prove his theorem as a consequence of Tarski’s theorem,
which wasn’t proved until a couple of years later. In fact Tarski’s proof
of his theorem was inspired by Gödel’s proof of his.
One way to think about Gödel’s theorem is that it says a formal system for
arithmetic can be sound or semantically complete, but not both. Equiva-
lently, every sound system is semantically incomplete. A sound system
which is semantically complete is syntactically complete, so an alternate
approach would be to prove first that every sound system is syntactically
incomplete, and then derive semantic incompleteness as a result. This is
roughly what Gödel tried to do. What he got wasn’t quite syntactic incom-
pleteness but was sufficient to prove semantic incompleteness. A few years
after Tarski proved his theorem Barkley Rosser succeeded in constructing
a proof along the lines which Gödel had initially attempted, showing that
a system for arithmetic can be consistent or syntactically complete, but not
both. The main interest of this result is that the interpretation of the sys-
tem now plays only a very minor role, since consistency and syntactic com-
pleteness require from the interpretation only a concept of negation. The
interpretation is still lurking in one other place though. For any of these
theorems to apply we need a certain level of descriptive completeness of
our system; it has to be capable of describing enough of elementary arith-
metic to be able to carry out an encoding in such a way that concatenation
is representable within the system.
One final historical note is that Gödel’s first goal was not to prove any of
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the theorems mentioned above but rather to prove that Peano arithmetic
is inconsistent! We now know that it’s at most consistent or complete but
we don’t knowwhich. Most logicians and mathematicians assume it’s con-
sistent and therefore not complete, which is why Gödel’s theorem is re-
ferred to as Gödel’s first incompleteness theorem–there is also a second
theorem–rather than Gödel’s first inconsistency theorem. We could be
wrong though. Gödel himself, at least at some point, must have thought
that we were or he wouldn’t have set out to prove inconsistency. Gödel
was very clever so even though he didn’t actually succeed in proving Peano
arithmetic’s inconsistency we should perhaps be more cautious in assum-
ing its consistency.

Set theory
Elementary arithmetic is arithmetic without sets, or, more precisely, arith-
metic with no notation for sets. We can refer to sets indirectly, by means of
the expressions which could be used to define them, but we can’t name a
set and we can’t quantify over sets. This prevents us expressing concepts
like our minimum principle, that every non-empty set of natural numbers
has a least member.
We nowmove on to set theory. Set theory, like first order logic, is generally
used as a base for other, more interesting theories. Just as in first order logic
we didn’t enquire too closely into themeanings of variables and predicates,
in pure set theory we mostly avoid the question “sets of what?” Sets are
sets of members. For now that’s all we need to know.
Set theory is weird. To be more precise, it’s weird in two ways. One is that
various statements each of which individually seem to be intuitively obvi-
ous turn out to be logically inconsistent when combined. This means that
any choice of axioms for set theory will necessarily have some unexpected
consequences. The other way that it’s weird is that the particular set of ax-
iomswhich themathematical world has converged on has somewhat more
unexpected consequences than strictly necessary.
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A language for set theory
As usual, we’ll start with a language, and that language will be based on
first order logic. This language is described by the following phrase struc-
ture grammar.
statement : bool_exp
bool_exp | "[" "¬" bool_exp "]" | "[" bool_exp b_operator bool_exp "]"

| "[" quantifier variable "." bool_exp "]"
| "[" quantifier variable "∈" set_exp : bool_exp "]"
| "[" variable relation variable "]"

b_operator : "∧" | "∨" | "⊃"
quantifier : "∀" | "∃"
relation : "∈" | "=" | "⊆"
set_exp : "∅" | variable | "[" "⋂" set_exp "]" | "[" "⋃" set_exp "]"

| "[" set_exp "∩" set_exp "]" | "[" set_exp "∪" set_exp "]"
| "[" set_exp "∖" set_exp "]" | "[" set_exp "×" set_exp "]"
| "[" "P" set_exp "]" | "{" list "}" | "(" list ")"
| "{" variable "∈" set_exp : bool_exp "}"

list : | sequence
sequence : set_exp | set_exp "," sequence
variable : letter | variable "!"
letter : "v" | "w" | "x" | "y" | "z" | "A" | "B" | "C" | "D" | "E"

| "F" | "G" | "H" | "I" | "J" | "R" | "S" | "T" | "U" | "V"
Some of these symbols and rules are familiar from earlier chapters while
others are new, or are used in new ways. The following remarks refer to
the intended interpretation of the language and are not strictly part of the
language.
The symbols (, ), {, and } are no longer used for grouping expressions but
have special meanings. Only [ and ] are used for grouping expressions as
in previous chapters. { and } are used in two different ways of constructing
sets. We write {𝑥, 𝑦, 𝑧} for the set whose only members are 𝑥, 𝑦 and 𝑧, for
example, and {𝑥 ∈ 𝐴∶ [¬[𝑥 ∈ 𝐵]]} for the set of 𝑥 which are members of
𝐴 but not of 𝐵. The ∈ sign denotes set membership. ( and ) are used in
two ways. One is to construct lists. (𝑥, 𝑦, 𝑧) is the list whose first element is
𝑥, whose second element is 𝑦 and whose third element is 𝑧. This is unlike
{𝑥, 𝑦, 𝑧}, where 𝑥 happens to have beenwritten first, 𝑦 happens to have been
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written second, and 𝑧 happens to have been written third, but the ordering
is not significant. {𝑥, 𝑦, 𝑧} is the same set as {𝑦, 𝑧, 𝑥} but (𝑥, 𝑦, 𝑧) is not the
same list as (𝑦, 𝑧, 𝑥) unless 𝑥, 𝑦 and 𝑧 are all equal.
In addition to the old notation for quantifiers there is a new notation. We
have expressions like [∀𝑥 ∈ 𝐴 ∶ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]]. This is to under-
stood as a shorthand for [∀𝑥.[[𝑥 ∈ 𝐴] ⊃ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]]]. This, and
the corresponding notation for ∃, are convenient because we often want to
state that all members of a set have some property or that some member
has that property. Such quantifiers are called bounded quantifiers. We
met similar bounded quantifiers in constructive elementary arithmetic.
It’s possible to do first order logic with bounded quantifiers as if they were
ordinary quantifiers, provided all quantifiers are over the same set, at least
with the version of first order logic we’re using, onewithout existential pre-
suppositions. In a logic with existential presuppositions we would need to
add the additional requirement that the set is known in advance to be non-
empty. It’s easy, but dangerous, to forget the non-emptiness requirement.
We have a new relation ⊆ as well. This is the subset relation. Note that this
is not necessarily a proper subset. Each set is a subset of itself. The distinc-
tion between ∈ and ⊆ was a source of confusion in the early development
of set theory. It’s still often a source of confusion for students. 𝐴 ∈ 𝐵 means
that 𝐴 is a member of 𝐵 while 𝐴 ⊆ 𝐵 means that every member of 𝐴 is a
member of 𝐵.
∅ is the empty set, i.e. the set with no members. There are two versions
of the intersection and union operators. The unary operators ⋂ and ⋃
indicate intersection and union, respectively, and are not preceded by a
set expression. ⋃ takes a set and gives you its union, i.e. the set whose
members are the members of its members. In other words, [𝑥 ∈ [⋃ 𝐴]] if
and only if there is some 𝐵 such that 𝑥 is a member of 𝐵 and 𝐵 is a member
𝐴. The most common case of unions is one where the set of sets has two
member so we have a special notation for this. We write [𝐵 ∪ 𝐶] to mean
[⋃{𝐵, 𝐶}], i.e. the set of all members of 𝐵 which are in 𝐶. Similar remarks
apply to the intersection. If 𝐴 is a non-empty set then [𝑥 ∈ [⋂ 𝐴]] if and
only if 𝑥 is amember of 𝐵 for every 𝐵 in 𝐴. The restriction to non-empty sets
will be explained later. Againwe have a special notation for the intersection
of a pair of sets. [𝐵 ∩ 𝐶] means [⋂{𝐵, 𝐶}]. If you have trouble visually
distinguishing ⋂ from ∩, or ⋃ from ∪, or if you’re using a screen reader
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which reads them the same, you needn’t worry too much. The grammar is
designed in such a way that they can always be distinguished by context,
specifically by whether or not they are preceded by a set expression.
Our other two set operations are ∖ for the relative complement and × for
the Cartesian product. [𝐴 ∖ 𝐵] is the set of members of 𝐴 which are not in
𝐵, i.e. {𝑥 ∈ 𝐴∶ [¬[𝑥 ∈ 𝐵]]}. [𝐴 × 𝐵] is the set of pairs (𝑥, 𝑦) where 𝑥 is an
member of 𝐴 and 𝑦 is a member of 𝐵. [𝑃𝐴] is the power set of 𝐴, i.e. the set
of all subsets of 𝐴, while [𝐿𝐴] is the set of lists all of whose elements are
members of 𝐴.
You may notice that I’ve dropped practice of using separate symbols, out-
side the language, for expressions of various types. Occasionally it will be
convenient to introduce an ad hoc notation but I’llmostly dowhat I’ve done
above, and use a particular variable to stand for any variable, or sometimes
any set expression. Hopefully this will not cause confusion.

Simple set theory
We’ll start with a subset of set theory which is almost sufficient for almost
all of mathematics and computer science. Aswe didwith elementary arith-
metic we’ll borrow first order logic. We won’t borrow elementary arith-
metic itself. In particular we will not assume that numbers exist. You may
have noticed that the language I’ve introduced has no notation for them.

Axioms (informal version)

Our axioms are
• Extensionality: Suppose 𝐴 and 𝐵 are sets and every member of 𝐴 is

a member of 𝐵 and vice versa then 𝐴 = 𝐵.
• Elementary sets: There is a set ∅ such that for all 𝑥 we have

[¬[𝑥 ∈ ∅]]. For all 𝑥 we have a set {𝑥}, of which 𝑥 is a member
and there are no other members. Similarly, for all 𝑥 and 𝑦 we have
a set {𝑥, 𝑦} such that 𝑥 and 𝑦 are members and there are no other
members.

• Separation: For every variable 𝑥, set 𝐴 and Boolean expression 𝜃 the
set {𝑥 ∈ 𝐴 ∶ 𝜃}, whose members are those members of 𝐴 for which 𝜃
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is true, exists.
• Power set: For any set 𝐴 the power set [𝑃𝐴] exists. [𝐵 ∈ [𝑃𝐴]] if and

only if every member of 𝐵 is a member of 𝐴.
• Union: For every set 𝐴 the set [⋃ 𝐴] exists. This is the set of all mem-

bers of members of 𝐴.
These are informal statements of the axioms. Their formal equivalents will
be given shortly, but they are hard to read if you don’t know what they’re
trying to express. Before doing that, there are a few things to notice about
these axioms.

Discussion

The Axiom of Extensionality tells us that sets are characterised purely by
their members. This is something which often causes confusion. We have
many ways of describing sets, but the set is not its description. In terms of
our language, there could be multiple set expressions which describe the
same set. There could also be no set expressionwhichdescribes a particular
set.
The Axiom of Elementary Sets has some redundancy. The only parts we
really need are are the existence of some set and the fact that for all 𝑥 and
𝑦 there is a set of which 𝑥 and 𝑦 are members. If 𝐴 is such a set then
{𝑤 ∈ 𝐴 ∶ [[𝑤 = 𝑥] ∨ [𝑤 = 𝑦]]} is a set of which they are the only members.
There can only be one such set, by the Axiom of Extensionality. This is
the set we called {𝑥, 𝑦}. We don’t really need to state the existence of {𝑥}
separately. It’s the same as {𝑥, 𝑥}. Also, if 𝐴 is a set {𝑥 ∈ 𝐴 ∶ [¬[𝑥 = 𝑥]]} is
a set, by the Axiom of Separation, and has no members. By the Axiom of
Extensionality there can only be one such set. This is the set we called ∅. So
if there are any sets at all then there is an empty set. What about sets with
more than twomembers? We can show that those exist using this axiom to-
gether with the Axiom of Union. {𝑥, 𝑦, 𝑧}, for example, is [⋃{{𝑥, 𝑦}, {𝑦, 𝑧}}].
The Axiom of Separation is not an axiom. Instead it’s what’s called an ax-
iom schema, i.e. a common pattern for a family, indeed an infinite family,
of axioms, one for each choice of variable, set and expression. It would
have been better to make this into a rule of inference rather than an axiom
but for historical reasons it is called an axiom. Note that the axiom doesn’t
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allow us to use an expression to construct a set of everything which makes
that expression true, only to construct a set of those members of a given
set which make the expression true. In other words, it carves out a subset
from a set which is already known to exist. It can’t create sets from nothing.
If you’ve been reading carefully you’ll have realised that there’s something
wrongwithmy informal description of the Axiom of Separation. I referred
to members for which a statement is true. Truth has no place in a formal
system. The formal version of the axiom, or rather axiom schema, does not
refer to the concept of truth.
The Axiom of Separation is useful for constructing particular subsets but
it doesn’t assure us that the subsets of a given set form a set. For that we
need the Power Set Axiom. I haven’t actually said what a subset is but you
can probably guess. 𝐴 is a subset of 𝐵, written [𝐴 ⊆ 𝐵] if every member of
𝐴 is a member of 𝐵. As with various other axioms, instead of assuming the
existence of the power set itself we could just assume the existence of some
set such that all the subsets of 𝐴 are members of it and then use the Axiom
of Separation to remove any members which aren’t subsets of 𝐴.
The Axiom of Union is used to create unions. That’s straightforward
enough. As with most other axioms we could just assume the existence of
some set such that every member of every member of 𝐴 is a member of it,
and then use the Axiom of Separation to remove any other members.
What may seem odd is the absence of any Axiom of Intersection. We don’t
need one. We can define [⋂ 𝐴] as

{𝑥 ∈ [⋃ 𝐴] ∶ [∀𝐵 ∈ 𝐴 ∶ [𝑥 ∈ 𝐵]]}.

In other words, 𝑥 belongs to [⋂ 𝐴] if and only if it is a member of some
member of 𝐴 which is also a member of all members of 𝐴. If 𝐴 is a non-
empty set then the condition that it’s amember of all members of 𝐴 implies
that it’s a member of some member of 𝐴. We couldn’t just have defined it
as

{𝑥.[∀𝐵 ∈ 𝐴 ∶ [𝑥 ∈ 𝐵]]}
though. The Axiom of Separation requires us to restrict 𝑥 to a set. If 𝐴 is
not a non-empty set then the definition abovewould give [[⋂ 𝐴] = ∅]. This
would have some unfortunate consequences. For example, it would not be
true that [𝐴 ⊆ 𝐵] implies [[⋂ 𝐵] ⊆ [⋂ 𝐴]]. For this reason it’s better just
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not to define [⋂ 𝐴] unless 𝐴 is a non-empty subset. This okay because our
version of first order logic allows expressions which don’t refer to anything.
The axioms above mix assumptions about the existence of sets with nota-
tions for them. Strictly speaking the axioms are just the part which assert
the existence of a set. One important point to understand is that having a
notation for something doesn’t mean it exists. Mathematics is full of nota-
tions for things which don’t exist, like 1/0. The axioms of set theory are
arranged in such a way that everything we have a notation for will in fact
exist, but it exists as a consequence of the axioms, not just because we hap-
pen to have included it in our language. We have a number of notations for
which there are no axioms. The intersection symbol, which we just consid-
ered, is such a notation. Others are the notations for set differences, lists
and Cartesian products. We’ll need to give definitions for those, just as we
did for the intersection.

Axioms (formal version)

Here are the formal versions of the axioms.
• Extensionality:

[∀𝐴.[∀𝐵.[[∃𝑥.[𝑥 ∈ 𝐴]]
⊃ [[∀𝑦.[[[𝑦 ∈ 𝐴] ⊃ [𝑦 ∈ 𝐵]] ∧ [[𝑦 ∈ 𝐵] ⊃ [𝑦 ∈ 𝐴]]]] ⊃ [𝐴 = 𝐵]]]]]

• Elementary Sets:
[∀𝑥.[¬[𝑥 ∈ ∅]]]

and
[∀𝑥.[∀𝑦.[∃𝐴.[[𝑥 ∈ 𝐴] ∧ [𝑦 ∈ 𝐴]]]]]

• Separation:

[∃𝐵.[∀𝑥.[[[𝑥 ∈ 𝐵] ⊃ [[𝑥 ∈ 𝐴] ∧ 𝜃]] ∧ [[[𝑥 ∈ 𝐴] ∧ 𝜃] ⊃ [𝑥 ∈ 𝐵]]]]]

Here 𝑥 can be replaced by any variable, 𝐴 by any set expression and
𝜃 by any Boolean expression in which 𝐵 has no free occurrences.

• Power Set:

[∀𝐴.[∃𝐵.[∀𝐶.[[∀𝑥.[[𝑥 ∈ 𝐶] ⊃ [𝑥 ∈ 𝐴]]] ⊃ [𝐶 ∈ 𝐵]]]]]
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• Union:
[∀𝐴.[∃𝐵.[∀𝐶 ∈ 𝐴 ∶ [∀𝑥 ∈ 𝐶 ∶ [𝑥 ∈ 𝐵]]]]]

These aren’t quite the axioms as they appeared initially. Instead I have in-
corporated some of the observations from the discussion section to shorten
the axioms. For example, the formal version of the Axiom of Elementary
Sets just says that∅ is the empty set and that for all 𝑥 and 𝑦 there is a setwith
both 𝑥 and 𝑦 as members, not that there is a set with only those members,
and doesn’t say anything about sets with only one member. The axiom
above is therefore also known as Axiom of Pairing.

Non-sets

There is no set of all sets. This follows directly from the axioms. Suppose
there were a set 𝐴 such that every set is a member of 𝐴. By the Axiom of
Separation then we can form the set

𝐵 = {𝐶 ∈ 𝐴 ∶ [¬[𝐶 ∈ 𝐶]]}.

In other words 𝐶 is the set of all sets which are not members of themselves.
Is 𝐵 amember of 𝐵? If not then 𝐵 is a set which is not amember of itself, but
then by the definition of 𝐵 it is a member of 𝐵. Similarly, if 𝐵 is a member of
𝐵 then it doesn’t satisfy the definition of 𝐵 and so isn’t a member of 𝐵. So
the assumption that there is a set of all sets leads to a contradiction.
𝐴 is a set if and only if it’s the empty set or has at least one member. In
other words, sets are characterised by the Boolean expression

[[𝐴 = ∅] ∨ [∃𝑥.[𝑥 ∈ 𝐴]]].

In the Axiom of Separation we weren’t allowed to define sets with just a
Boolean expression; we needed a Boolean expression and some other set.
In otherwords, expressionswere used to define subsets of a given set, not to
define sets directly. Now we can see why. If we could just use expressions
to define sets then we could define the set of all sets as

{𝐴 ∶ [[𝐴 = ∅] ∨ [∃𝑥.[𝑥 ∈ 𝐴]]]}.

But we’ve just seen that this set can’t exist, so an axiom which allowed us
to define it would necessarily be unsound.
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More generally, there is no such thing as the complement of a set. The
complement of the empty set would be the set of all sets, andwe’ve already
seen that that doesn’t exist. The same holds for any set though. Suppose
the complement of 𝐴 existed, i.e. that there was a set 𝐶 such that every
member of 𝐴 is not a member of 𝐶, and vice versa. By the Axiom of Pairing
there is then a set 𝐵 with both 𝐴 and 𝐶 as members. By the Axiom of
Union there’s then a set 𝐷 such that every member of every member of 𝐵
is a member of 𝐷, and in particular every member of 𝐴 or 𝐶 is a member
of 𝐷. Everything is either in 𝐴 or 𝐶 though and therefore in 𝐷. I’ve been
deliberately rather vague about whether our language is meant to include
objects which are not sets, a point we’ll need to return to later, but in either
case we can use the Axiom of Separation to define

𝐸 = {𝑥 ∈ 𝐷 ∶ [[𝑥 = ∅] ∧ [∃𝑦.[𝑦 ∈ 𝑥]]]}.

This 𝐸 is the set of those members of 𝐷 which are sets, and so is the set of
all sets, which we’ve already seen doesn’t exist. So there can be no such set
𝐵.
Relative complements are meaningful though. [𝐴 ∖ 𝐵] is easily defined as

[𝐴 ∖ 𝐵] = {𝑥 ∈ 𝐴 ∶ [¬[𝑥 ∈ 𝐵]]}.

In some contexts we’re only concerned with subsets of one given set. We
might, for example, be discussing subsets of the natural numbers, and only
subsets of the natural numbers. In such a case it’s common to drop the
word “relative” and just say “complement”. This is just shorthand though
and the set described in this way is still a relative complement.
In the discussion of first order logic I described a class of interpretations
where the variables were to be understood as members of a set and men-
tioned that these were not the only interpretations. We can now see why.
We’re applying first order logic to set theory, and the variables are allowed
to range over all sets, but there is no set of all sets, so this cannot be an
interpretation of the type described earlier.
The non-existence of the set of all sets has some other awkward conse-
quences. We’ve already met one of them. It’s what prevented us from
defining [⋂ ∅] to be the union of all sets, which might otherwise have
seemed like away to extend the unary intersection operator to all setswhile
maintaining the property that if [𝐴 ⊆ 𝐵] then [[⋂ 𝐵] ⊆ [⋂ 𝐴]].
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Set operations and Boolean operations

We can derive a number of set theory identities from zeroeth order logic
identities. The basis for this is the following facts.

• [𝐴 ⊆ 𝐵] if and only if [[𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]]. Indeed this is just the def-
inition of the ⊆ relation.

• If [𝐴 ⊆ 𝐵] and [𝐵 ⊆ 𝐴] then [𝐴 = 𝐵]. This is a consequence of Exten-
sionality.

• [[𝑥 ∈ [𝐴 ∩ 𝐵]] if and only if [[𝑥 ∈ 𝐴] ∧ [𝑥 ∈ 𝐵]]. This is more or less
the definition of the ∩ operator.

• [[𝑥 ∈ [𝐴 ∪ 𝐵]] if and only if [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]]. This is more or less
the definition of the ∪ operator.

• [[𝑥 ∈ [𝐴 ∖ 𝐵]] if and only if [¬[[𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]]]. This is more or
less the definition of the ∖ operator.

So the three set operators ∩, ∪ and ∖ are expressible in terms of the four
Boolean operators ∧, ∨, ¬, and ⊃. ∩ corresponds to ∧ and ∪ corresponds
to ∨, which is fairly easily to remember. ∖ corresponds to a particular
combination of ¬ and ⊃, but no set operator corresponds to ¬ or ⊃ indi-
vidually. In some sense the complement operator, if there were one, would
correspond to ¬.
As an example, consider the associativity of the union operation, i.e. the
identity [[[𝐴 ∪ 𝐵] ∪ 𝐶] = [𝐴 ∪ [𝐵 ∪ 𝐶]]]. [[𝑝 ∨ [𝑞 ∨ 𝑟]] ⊃ [[𝑝 ∨ 𝑞] ∨ 𝑟]] is
a tautology in zeroeth order logic. Substituting [𝑥 ∈ 𝐴] for 𝑝, [𝑥 ∈ 𝐵] for 𝑞,
and [𝑥 ∈ 𝐶] for 𝑟 gives

[[[𝑥 ∈ 𝐴] ∨ [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]] ⊃ [[[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]] ∨ [𝑥 ∈ 𝐶]]].

Wecan replace [[𝑥 ∈ 𝐵] ∨ [𝑥 ∈ 𝐶]]with [𝑥 ∈ [𝐵 ∪ 𝐶]] and [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ 𝐵]]
with [𝑥 ∈ [𝐴 ∪ 𝐵]], so

[[[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ [𝐵 ∪ 𝐶]]] ⊃ [[[𝑥 ∈ [𝐴 ∪ 𝐵]]] ∨ [𝑥 ∈ 𝐶]]].

Thenwe can replace [[𝑥 ∈ 𝐴] ∨ [𝑥 ∈ [𝐵 ∪ 𝐶]]] by [𝑥 ∈ [𝐴 ∪ [𝐵 ∪ 𝐶]]] and
[[[𝑥 ∈ [𝐴 ∪ 𝐵]]] ∨ [𝑥 ∈ 𝐶]] by [𝑥 ∈ [[𝐴 ∪ 𝐵] ∪ 𝐶]], so

[[𝑥 ∈ [𝐴 ∪ [𝐵 ∪ 𝐶]]] ⊃ [𝑥 ∈ [[𝐴 ∪ 𝐵] ∪ 𝐶]]]
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and hence
[[𝐴 ∪ [𝐵 ∪ 𝐶]] ⊆ [[𝐴 ∪ 𝐵] ∪ 𝐶]].

Similarly, [[[𝑝 ∨ 𝑞] ∨ 𝑟] ⊃ [𝑝 ∨ [𝑞 ∨ 𝑟]]] is a tautology so

[[[𝐴 ∪ 𝐵] ∪ 𝐶] ⊆ [𝐴 ∪ [𝐵 ∪ 𝐶]]].

Combining that with the inclusion already obtained gives

[[[𝐴 ∪ 𝐵] ∪ 𝐶] = [𝐴 ∪ [𝐵 ∪ 𝐶]]].

The following facts about sets can similarly be proved using tautologies
borrowed from zeroeth order logic.

• [[𝐴 ∩ 𝐵] ⊆ 𝐴]
• [[𝐴 ∩ 𝐵] ⊆ 𝐵]
• [𝐴 ⊆ [𝐴 ∪ 𝐵]]
• [𝐵 ⊆ [𝐴 ∪ 𝐵]]
• [[𝐴 ∖ 𝐵] ⊆ 𝐴]
• [[𝐴 ∩ 𝐴] = 𝐴]
• [[𝐴 ∪ 𝐴] = 𝐴]
• [[𝐴 ∩ 𝐵] = [𝐵 ∩ 𝐴]]
• [[𝐴 ∪ 𝐵] = [𝐵 ∪ 𝐴]]
• [[[𝐴 ∩ 𝐵] ∩ 𝐶] = [𝐴 ∩ [𝐵 ∩ 𝐶]]]
• [[[𝐴 ∪ 𝐵] ∪ 𝐶] = [𝐴 ∪ [𝐵 ∪ 𝐶]]]
• [[[𝐴 ∩ [𝐵 ∪ 𝐶]] = [[𝐴 ∪ 𝐶] ∩ [𝐵 ∪ 𝐶]]]
• [[[𝐴 ∪ [𝐵 ∩ 𝐶]] = [[𝐴 ∩ 𝐶] ∪ [𝐵 ∩ 𝐶]]]
• [[𝐴 ∩ [𝐴 ∪ 𝐵]] = 𝐴]
• [[𝐴 ∪ [𝐴 ∩ 𝐵]] = 𝐴]
• [[𝐴 ∖ [𝐴 ∖ 𝐵]] = [𝐴 ∩ 𝐵]]
• [[𝐶 ∖ [𝐴 ∩ 𝐵]] = [[𝐶 ∖ 𝐵] ∪ [𝐶 ∖ 𝐴]]]
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• [[𝐶 ∖ [𝐴 ∪ 𝐵]] = [[𝐶 ∖ 𝐵] ∩ [𝐶 ∖ 𝐴]]]
• [[𝐴 ∖ [𝐵 ∖ 𝐶]] = [[𝐴 ∩ 𝐶] ∪ [𝐵 ∖ 𝐶]
• [[[𝐴 ∖ 𝐵] ∖ 𝐶] = [𝐴 ∖ [𝐵 ∪ 𝐶]]]
• [[[𝐴 ∖ 𝐵] ∩ 𝐶] = [𝐴 ∩ [𝐶 ∖ 𝐵]]]

Finite sets
There are a few different ways to define finiteness of sets. The method be-
low is due to Tarski. It requires some preliminary definitions. To improve
readability I’ll start being less strict about the bracketing of expressions.

Definitions

A minimal member of a set 𝐴 is a set 𝐶 such that 𝐶 ∈ 𝐴 and if 𝐵 ∈ 𝐴 and
𝐵 ⊆ 𝐶 then 𝐵 = 𝐶. In otherwords, 𝐶 is amember of 𝐴 and no proper subset
of 𝐶 is a member of 𝐴. A maximal member of a set 𝐴 is a set 𝐵 such that
𝐵 ∈ 𝐴 and if 𝐶 ∈ 𝐴 and 𝐵 ⊆ 𝐶 then 𝐵 = 𝐶. In other words, 𝐵 is a member
of 𝐴 and is not a proper subset of any member of 𝐴. Sets can have more
than one minimal or maximal member. Suppose 𝑥 ≠ 𝑦. Then {𝑥} and {𝑦}
are both minimal and maximal members of the set {{𝑥}, {𝑦}}.
A set 𝐸 is said to be finite if every non-empty set of subsets of 𝐸 has both a
minimal and a maximal member. It is said to be infinite if it is not finite.
Your intuitive notion of finiteness probably involves associating a natural
number to each finite set, the number of members in the set. This assign-
ment probably has the property that if 𝐴 is a proper subset of a finite set 𝐵
then 𝐴 is also finite and the number of members of 𝐴 is less than the num-
ber of members of 𝐵. Assuming for a moment that your intuition is correct
we can see that every set which is finite according to your intuition is also
finite according to the definition above. Let 𝐸 be finite according to your
intuition and let 𝐴 be a non-empty set of subsets of 𝐸. The set of numbers
of members of members of 𝐴 is a non-empty set of natural numbers and
therefore has a least member. This number is the number of members of
some member of 𝐴. Call that member 𝐶. If 𝐵 ∈ 𝐴 and 𝐵 ⊆ 𝐶 then 𝐵 can’t
have fewer members than 𝐶 because the number of members of 𝐶 is the
least possible number of members for a member of 𝐴. It is therefore not
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a proper subset, so 𝐵 = 𝐶. In other words 𝐵 is a minimal member of 𝐴.
The argument to show that 𝐴 has a maximal member is very similar. We
look for a member 𝐶 of 𝐴 with the largest possible number of members. Of
course subsets of the natural numbers don’t have to have a largest mem-
ber but in this case we only need to consider subsets of 𝐸 and they have at
most as manymembers as 𝐸 has, so there is an upper bound on this set and
therefore there is a largest member.
The intuitive notion of finiteness considered above can’t be turned into a
definition. It requires a number of facts about sets which we haven’t yet
proved. In particular it requires one fact about sets, that proper subsets
have a strictly smaller number of members than the whole set, which is
only true of finite sets, so even if we had the notions of integers and cardi-
nalities of sets and all their properties we would still be left with a circular
definition. That’s why we need a definition like the one above.
The argument above just showed that sets you would intuitively regard as
finite are finite according to the definition. It didn’t show that sets you
would intuitively regard as infinite are infinite according to the definition.
Part of your intuition for infinite sets is probably that they have arbitrar-
ily large finite subsets. In other words, if 𝐸 is infinite according to your
intuition then we can find a subset 𝐷𝑚 with 𝑚 members for each natural
number 𝑚. Let 𝐵𝑚 be the union of 𝐷𝑘 for each 𝑘 ≤ 𝑚 and let 𝐴 be the set
of all 𝐵𝑚’s. If 𝐸 were finite according to the definition then some member
of 𝐴 would be maximal. It would have to be 𝐵𝑚 for value of 𝑚 because
those are the only members of 𝐴. Let 𝑛 be the number of members of 𝐵𝑚.
𝑚 ≤ 𝑛 because 𝐵𝑚 has 𝑚 members and is a subset of 𝐶. Let 𝐶 = 𝐵𝑛+1. Then
𝐶 ∈ 𝐴. Also, 𝐵𝑚 ⊆ 𝐶 because 𝐵𝑚 is the union of 𝐷𝑘 for 𝑘 ≤ 𝑚 and 𝐶 is the
union of 𝐷𝑘 for 𝑘 ≤ 𝑛 + 1 and 𝑚 < 𝑛 + 1. Since we’ve assumed 𝐵𝑚 is max-
imal it follows that 𝐵𝑚 = 𝐶. But 𝐵𝑚 has 𝑛 members and 𝐷𝑛+1, which is a
subset of 𝐶, has 𝑛 + 1 members, so we have a subset with more members
than the whole set, which is impossible. So our assumption that 𝐸 is finite
according to the definition is untenable. In other words, every set which is
infinite according to your intuition is also infinite according the definition.
As with the previous argument this one can’t really be formalised because
the intuitive notion of finiteness is vague and, if pushed too far, circular.
That’s why we need a formal definition, which is necessarily somewhat
unintuitive. There are two standard choices. One is the definition above,
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due to Tarski. The other choice, due toDedekind, is to define infinite sets to
be those which have a proper subsets with the same number of members
as the whole set, and then to define infinite to mean not finite. Tarski’s
definition is better adapted to proving that finite sets have the properties
you would expect them to have, e.g. that every subset of a finite set is finite.
Our definition says that 𝐸 is finite if every member of 𝑃𝑃𝐸 ∖ ∅ has a maxi-
mal member and that everymember of 𝑃𝑃𝐸 ∖ ∅ has aminimal member. In
fact either of these conditions implies the other. Suppose, for example, that
every 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅ has a maximal member and that 𝐵 ∈ 𝑃𝑃𝐸 ∖ ∅. Since
every 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅ has a maximal member it follows that

𝐴 = {𝐶 ∈ 𝑃𝐸 ∶ ∃𝐷 ∈ 𝐵 ∶ 𝐶 = 𝐸 ∖ 𝐷}

has a maximal member. This 𝐴 is just the set of relative complements of
the members of 𝐵. If 𝐶 is a maximal member of 𝐴 then 𝐸 ∖ 𝐶 is a minimal
member of 𝐵, so 𝐵 has a minimal member. The argument above shows that
if every member of 𝑃𝑃𝐸 ∖ ∅ has a maximal member then every member of
𝑃𝑃𝐸 ∖ ∅ has a minimal member. The same argument, but with the words
minimal and maximal switched, shows that if every member of 𝑃𝑃𝐸 ∖ ∅
has aminimalmember then everymember of 𝑃𝑃𝐸 ∖ ∅ has amaximalmem-
ber. So in order to prove that a set is finite it suffices to prove one condition
or the other; we don’t have to prove both.

Elementary properties of finite sets.

The empty set is finite. Indeed, 𝑃∅ = {∅}, 𝑃𝑃∅ = {∅, {∅}} and𝑃𝑃∅ ∖ ∅ = {{∅}}.
It’s only member, {∅}, has ∅ as both a minimal and maximal member.
A set with only one member is finite. Let 𝐴 = {𝑎}. Then 𝑃𝐴 = {∅, 𝐴} and
𝑃𝑃𝐴 = {∅, {∅}, {𝐴}, {∅, 𝐴}}. The non-empty members are {∅}, {𝐴} and
{∅, 𝐴}}. The first of these has ∅ as a minimal and maximal member. The
second has 𝐴 as a minimal and maximal member. The third has ∅ as a
minimal member and 𝐴 as a maximal member.
We could do a similar case by case analysis to show that sets with twomem-
bers are finite but it’s better just to prove that the union of two finite sets is
finite and use the fact that a set with two members is the union of two sets
with one member.
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Before considering unions we consider subsets, intersections and relative
complements, all of which are easier. We start with subsets. Suppose 𝐸 is
finite and 𝐷 ⊆ 𝐸. If 𝐴 ∈ 𝑃𝑃𝐷 ∖ ∅ then 𝐴 ∈ 𝑃𝑃𝐸 ∖ ∅. 𝐸 is finite so 𝐴 has a
minimal member. So every non-empty set of subsets of 𝐷 has a minimal
member. We’ve already seen that if every non-empty set of subsets of a set
has a minimal member then that set is finite. So 𝐷 is finite.
As an easy consequence if 𝐴 or 𝐵 is finite then 𝐴 ∩ 𝐵 is finite because
𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵. More generally, if 𝐶 is a set of sets at least one
member of which is finite then ⋂ 𝐶 is finite, because it’s a subset of that
member and subsets of finite sets are finite. Similarly, if 𝐴 is finite then
𝐴 ∖ 𝐵 is finite for any set 𝐵 because 𝐴 ∖ 𝐵 is a subset of 𝐴.
Before proving that the union of two finite sets is finite it will be useful to
introduce another notion, that of a small set. Small will turn out to mean
the same as finite, but it has a slightly different definition. We say that 𝐴
is small if for every non-empty set 𝐵 there is a 𝐷 ∈ 𝐵 such that if 𝐶 ∈ 𝐵
and 𝐶 ⊆ 𝐷 then 𝐴 ∩ 𝐶 = 𝐴 ∩ 𝐷. Every finite set is small. We can see this
as follows. If 𝐵 is a non-empty set of subsets of 𝐴 then there is, by the
smallness of 𝐴 a 𝐷 ∈ 𝐵 such that if 𝐶 ∈ 𝐵 and 𝐶 ⊆ 𝐷 then 𝐴 ∩ 𝐶 = 𝐴 ∩ 𝐷.
Both 𝐶 and 𝐷 are members of 𝐵 and hence are subsets of 𝐴 so 𝐴 ∩ 𝐶 = 𝐶
and 𝐴 ∩ 𝐷 = 𝐷 so we can equally well say that there is a 𝐷 ∈ 𝐵 such that
if 𝐶 ∈ 𝐵 and 𝐶 ⊆ 𝐷 then 𝐶 = 𝐷. In other words 𝐵 has a minimal member.
We’ve already seen that that if every non-empty set of subsets of 𝐴 has a
minimal member then 𝐴 is finite. Conversely, suppose that 𝐴 is finite and
𝐵 is a non-empty set, not necessarily a set of subsets of 𝐴. Let 𝐸 be the set
of sets of intersections of members of 𝐵 with 𝐴. In other words,

𝐸 = {𝐹 ∈ [𝑃𝐴] ∶ [∃𝐶 ∈ 𝐵 ∶ [𝐹 = [𝐶 ∩ 𝐴]]]}.

𝐸 is a set of subsets of 𝐴. 𝐵 is non-empty so there is a 𝐶 ∈ 𝐵. Then
𝐶 ∩ 𝐴 ∈ 𝐸, so 𝐸 is non-empty. 𝐴 is finite so every non-empty set of
subsets of 𝐴 has a minimal member. Let 𝐺 be the minimal member of
𝐸. 𝐺 ∈ 𝐸 so there is a 𝐷 ∈ 𝐵 such that 𝐺 = 𝐷 ∩ 𝐴. Suppose 𝐶 ∈ 𝐵 and
𝐶 ⊆ 𝐷. Let 𝐹 = 𝐶 ∩ 𝐴. From 𝐶 ⊆ 𝐷 it follows that 𝐶 ∩ 𝐴 ⊆ 𝐷 ∩ 𝐴, i.e. that
𝐹 ⊆ 𝐺. 𝐺 is a minimal member of 𝐸 and 𝐹 ⊆ 𝐺 so 𝐶 = 𝐷. In other words,
𝐶 ∩ 𝐴 = 𝐷 ∩ 𝐴. We’ve just seen that for every non-empty set 𝐵 there is a
𝐷 ∈ 𝐵 such that if 𝐶 ∈ 𝐵 and 𝐶 ⊆ 𝐷 then 𝐴 ∩ 𝐶 = 𝐴 ∩ 𝐷. In other words,
𝐴 is small. We’ve just shown that finiteness implies smallness and we’ve
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already seen that smallness implies finiteness so smallness and finiteness
are equivalent.
We can now prove that the union of two finite sets is finite. Actually I’ll
prove that the union of two small sets is small, with smallness as defined
in the preceding paragraph, but that then implies that the union of two
finite sets is finite. Suppose then that 𝐴 and 𝐵 are small, and that 𝐶 is a non-
empty set. Since 𝐴 is small there is an 𝐸 ∈ 𝐶 such that 𝐷 ∈ 𝐶 and 𝐷 ⊆ 𝐸
imply 𝐷 ∩ 𝐴 = 𝐸 ∩ 𝐴. Choose such an 𝐸. Let 𝐹 be the set of members of 𝐶
whose intersection with 𝐴 is 𝐸 ∩ 𝐴. In other words,

𝐹 = {𝐷 ∈ 𝐶 ∶ 𝐷 ∩ 𝐴 = 𝐸 ∩ 𝐴}.

Now 𝐸 ∈ 𝐹 so 𝐹 is non-empty. 𝐵 is small so there is an 𝐻 ∈ 𝐹 such that
𝐺 ∈ 𝐹 and 𝐺 ⊆ 𝐻 imply 𝐺 ∩ 𝐵 = 𝐻 ∩ 𝐵. Choose such an 𝐻. Then 𝐻 ∈ 𝐹
and so 𝐻 ∈ 𝐶. Suppose 𝐺 ∈ 𝐶 and 𝐺 ⊆ 𝐻. Then 𝐺 ∩ 𝐴 ⊆ 𝐻 ∩ 𝐴. But
𝐻 ∈ 𝐹 so 𝐻 ∩ 𝐴 = 𝐸 ∩ 𝐴 and therefore 𝐺 ∩ 𝐴 ⊆ 𝐸 ∩ 𝐴. Since 𝐺 ∈ 𝐶 it fol-
lows from the way that 𝐸 was chosen that 𝐺 ∩ 𝐴 = 𝐸 ∩ 𝐴. Therefore 𝐺 ∈ 𝐹.
From this and the way 𝐻 was chosen it follows that 𝐺 ∩ 𝐵 = 𝐻 ∩ 𝐵. Now

𝐺 ∩ (𝐴 ∪ 𝐵) = (𝐺 ∩ 𝐴) ∪ (𝐺 ∩ 𝐵)

and
𝐻 ∩ (𝐴 ∪ 𝐵) = (𝐻 ∩ 𝐴) ∪ (𝐻 ∩ 𝐵)

so from 𝐻 ∩ 𝐴 = 𝐸 ∩ 𝐴 and 𝐺 ∩ 𝐵 = 𝐻 ∩ 𝐵 we find that

𝐺 ∩ (𝐴 ∪ 𝐵) = 𝐻 ∩ (𝐴 ∪ 𝐵).

Whatwe’ve shown is that for any non-empty set 𝐶 there is an 𝐻 ∈ 𝐶 so that
𝐺 ∈ 𝐶 and 𝐺 ⊆ 𝐻 imply 𝐺 ∩ (𝐴 ∪ 𝐵) = 𝐻 ∩ (𝐴 ∪ 𝐵). In other words 𝐴 ∪ 𝐵
is small. So the union of two small sets is small and therefore the union of
two finite sets is finite.
From this and the fact that {𝑥} is finite we find that if 𝐴 is finite then so is
𝐴 ∪ {𝑥} for any 𝑥. One consequence of this that if every proper subset of a
set is finite then the set itself is finite. Indeed, suppose 𝐵 is a set such that
every proper subset of 𝐵 is finite. Either 𝐵 is empty or there is some 𝑥 ∈ 𝐵.
If 𝐵 is empty then we’re done, because we already know the empty set is
finite. If 𝑥 ∈ 𝐵 then let 𝐴 = 𝐵 ∖ {𝑥}. Then 𝐴 ⊆ 𝐵 and 𝑥 is a member of 𝐵 but
not of 𝐴 so 𝐴 is a proper subset of 𝐵 and therefore is finite. But we just saw
that if 𝐴 is finite then so is 𝐴 ∪ {𝑥}, which in this case is 𝐵, so 𝐵 is finite.

180



Induction for finite sets

The following is the counterpart for finite sets to the principle of mathemat-
ical induction for integers:
Suppose 𝐴 is a finite set and 𝐵 is a set of sets such that ∅ ∈ 𝐵 and for all
𝐶 ∈ 𝐵 and 𝑥 ∈ 𝐴 we have 𝐶 ∪ {𝑥} ∈ 𝐵. Then 𝐴 ∈ 𝐵.
To prove this, first set 𝐷 = 𝐵 ∩ 𝑃𝐴. Then 𝐷 is a set of subsets of 𝐴. It’s non-
empty because ∅ ∈ 𝐷. It therefore has a maximal member. Let 𝐸 be such
a member. 𝐸 is a subset of 𝐴. If it were a proper subset there would be an
𝑥 which is in 𝐴 but not in 𝐸. Let 𝐹 = 𝐸 ∪ {𝑥}. Since 𝐸 ⊆ 𝐴 and {𝑥} ⊆ 𝐴 we
have 𝐹 ⊆ 𝐴. Also, 𝐸 ∈ 𝐷 so 𝐸 ∈ 𝐵. From the properties which 𝐵 was as-
sumed to have it follows that 𝐸 ∪ {𝑥} ∈ 𝐵, i.e. that 𝐹 ∈ 𝐵. Now 𝐷 = 𝐵 ∩ 𝑃𝐴
and 𝐹 ∈ 𝐵 and 𝐹 ∈ 𝑃𝐴 so 𝐹 ∈ 𝐷. 𝐸 is a proper subset of 𝐹 since 𝑥 is a mem-
ber of 𝐹 but not of 𝐸. But 𝐸 was amaximal member of 𝐷. This is impossible,
so our assumption that 𝐸 is a proper subset of 𝐴 is untenable.
The statement above has a sort of converse:
Suppose 𝐴 is a member of every set of sets 𝐵 such that ∅ ∈ 𝐵 and for all
𝐶 ∈ 𝐵 and 𝑥 ∈ 𝐴 we have 𝐶 ∪ {𝑥} ∈ 𝐵. Then 𝐴 is finite.
To prove thiswe just take 𝐵 to be the set of finite subsets of 𝐴. We’ve already
proved that it has the required properties. By what we’ve just proved it
follows that 𝐴 ∈ 𝐵 and therefore that 𝐴 is finite.
We can use induction on sets to generalise our earlier theorem about the
union of two finite sets being finite to finite unions of finite sets. Suppose
𝐴 is a finite set and each member of 𝐴 is also a finite set. Let 𝐵 be the set
of subsets of 𝐴 such that ⋃ 𝐵 is finite. We have ⋃ ∅ = ∅ and ∅ is finite so
∅ ∈ 𝐵. If 𝐶 ∈ 𝐵 and 𝐷 ∈ 𝐴 then

⋃[𝐶 ∪ {𝐷}] = [⋃ 𝐶] ∪ 𝐷

and ⋃ 𝐶 and 𝐷 are both finite so ⋃[𝐶 ∪ {𝐷}] is finite. In other words, if
𝐶 ∈ 𝐵 and 𝐷 ∈ 𝐴 then ⋃[𝐶 ∪ {𝐷}] ∈ 𝐵. The set 𝐵 therefore satisfies the
conditions from our induction principle for sets and we can therefore con-
clude that 𝐴 ∈ 𝐵, i.e. that ⋃ 𝐴 is finite.
Another thing we can prove by induction is that the power set of a finite
set is finite. For this we first need a preliminary lemma saying that if 𝑃𝐴 is
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finite then for any 𝑥 the set 𝐵 = 𝑃[𝐴 ⋃{𝑥}] ∖ 𝑃𝐴 is also finite. Either 𝑥 is a
member of 𝐴 or it isn’t. If it is then 𝐵 = ∅ and we’ve already seen that ∅ is
finite. Suppose then that 𝑥 is not a member of 𝐴. If 𝐶 is a non-empty set
of subsets of 𝐵 then we construct a set 𝐷 of sets of subsets of 𝑃𝐴 by saying
that 𝐸 ∈ 𝐷 if and only if 𝐸 ∪ {𝑥} ∈ 𝐶. 𝐶 was assumed to be non-empty so
there is an 𝐹 in 𝐶. Then 𝐹 ∖ {𝑥} ∈ 𝐷 so 𝐷 is also non-empty. 𝐴 is finite
so 𝐷 has a minimal member. Let 𝐺 be such a member. Then 𝐺 ∪ {𝑥} is
a minimal member of 𝐶. So every non-empty set 𝐶 of subsets of 𝐵 has a
minimal member and therefore 𝐵 is finite.
We’ve just seen that if 𝑃𝐴 is finite then so is 𝑃[𝐴 ∪ {𝑥}] ∖ 𝑃𝐴 for any 𝑥. But

𝑃[𝐴 ∪ {𝑥}] = 𝑃𝐴 ∪ [𝑃[𝐴 ∪ {𝑥}] ∖ 𝑃𝐴]

and the union of two finite sets is finite so 𝑃[𝐴 ∪ {𝑥}] is finite. Now
𝑃∅ = {∅} is finite so by induction on sets we can conclude that if 𝐵 is finite
then so is 𝑃𝐵.
For reference here are the main finiteness properties we’ve proved so far:

• ∅ is finite, as is {𝑥} for any 𝑥.
• If 𝐴 ⊆ 𝐵 and 𝐵 is finite then so is 𝐴.
• If 𝐴 is finite then so is 𝐴 ∖ 𝐵 for any 𝐵.
• If 𝐴 is a set of sets at least one of which is finite then ⋂ 𝐴 is finite. In

particular 𝐵 ∩ 𝐶 is finite if 𝐵 or 𝐶 is finite.
• If 𝐴 is a finite set of sets all of which are finite then ⋃ 𝐴 is finite. In

particular 𝐵 ∪ 𝐶 is finite if 𝐵 or 𝐶 is finite.
• If 𝐴 is finite then so is 𝑃𝐴.

Induction can also be used to show that the Cartesian product of finite sets
is finite, but first we’ll need to define Cartesian products.

Lists
The main goals of this section is make precise what we mean by a list, and
to define various other useful objects in terms of them.
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Kuratowski pairs

We start with ordered pairs. There is a simple way to define ordered pairs
which unfortunately does not generalise to ordered triples or beyond, but
which we can use as a starting point to construct lists.
What do we want from such a construction?

• Given any 𝑥 and 𝑦, not necessarily distinct, we should be able to de-
fine the pair (𝑥, 𝑦).

• Given any 𝑧 we should be able to determine whether it is an ordered
pair, i.e. whether there exist 𝑥 and 𝑦 such that 𝑧 = (𝑥, 𝑦).

• Given any 𝑧 which is an ordered pair we should be able to find 𝑥 and
𝑦 such that 𝑧 = (𝑥, 𝑦).

• The 𝑥 and 𝑦 above should be uniquely determined by 𝑧. In other
words if also 𝑧 = (𝑣, 𝑤) for some 𝑣 and 𝑤 then it must be the case
that 𝑣 = 𝑥 and 𝑤 = 𝑦.

With these considerations in mind, we define the Kuratowski pair of 𝑥 and
𝑦 as

«𝑥, 𝑦» = {{𝑥}, {𝑥, 𝑦}}.
I’ve avoided writing this as (𝑥, 𝑦) for two reasons. First, we don’t yet know
that it has the properties listed above. Second, even if it does there might
be other constructions which have the same properties and we shouldn’t
prematurely commit ourselves to a particular implementation of ordered
pairs.
The first property above is fairly obvious. For every 𝑥 and 𝑦 the set «𝑥, 𝑦»
does indeed exist, as a simple consequence of the Axiom of Pairing. The
second is much less obvious. What properties does «𝑥, 𝑦» have which set it
apart from things which are not Kuratowski pairs?

• «𝑥, 𝑦» is a non-empty set of non-empty sets.
• ⋂ «𝑥, 𝑦» has exactly one member.
• [⋃ «𝑥, 𝑦»] ∖ [⋂ «𝑥, 𝑦»] has at most one member.

These are all properties which we can express in our language. We can say
that a set 𝐴 has at least one member, even though we don’t have a notation
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for numbers, by saying ∃𝑤.𝑤 ∈ 𝐴. Similarly, we can say that 𝐴 has at least
one member by saying that any two members must be equal:

∀𝑢 ∈ 𝐴.∀𝑣 ∈ 𝐴.[𝑢 = 𝑣].

We can say that a set has exactly one member by taking these two state-
ments and joining them with an ∧.
Each statement is true. The first is clear. The second and third follow from
⋂ «𝑥, 𝑦» = {𝑥} and ⋃ «𝑥, 𝑦» = {𝑥, 𝑦}, so [⋃ «𝑥, 𝑦»] ∖ [⋂ «𝑥, 𝑦»] is either ∅ or
{𝑦}, according to whether 𝑥 = 𝑦 or not.
Is it true that if 𝑧 satisfies the three conditions

• 𝑧 is a non-empty set of non-empty sets,
• ⋂ 𝑧 has exactly one member, and
• [⋃ 𝑧] ∖ [⋂ 𝑧] has at most one member

then 𝑧 is an ordered pair? Yes. Suppose 𝑧 is such a set. Let 𝑥 be the only
member of ⋂ 𝑧. Let 𝑦 be the only member of [⋃ 𝑧] ∖ [⋂ 𝑧], if there is one,
and let it be the only member of ⋂ 𝑧 otherwise. We always have ⋂ 𝑧 ⊆ ⋃ 𝑧
so

⋃ 𝑧 = [⋂ 𝑧] ∪ [[⋃ 𝑧] ∖ [⋂ 𝑧]].
Now ⋂ 𝑧 = {𝑥} and either ⋂ 𝑧 = {𝑦} or ⋂ 𝑧 = ∅ and [⋃ 𝑧] ∖ [⋂ 𝑧] = {𝑦} or
⋂ 𝑧 = {𝑦}. In either case we have

⋂ 𝑧 = {𝑥}

and
⋃ 𝑧 = {𝑥, 𝑦}.

Any member of 𝑧 is a subset of ⋃ 𝑧 and a superset of ⋂ 𝑧 but the only sets
like that are {𝑥} and {𝑥, 𝑦}, so

𝑧 ⊆ {{𝑥}, {𝑥, 𝑦}}

or
𝑧 ⊆ «𝑥, 𝑦».

It’s easy to check that any proper subset of «𝑥, 𝑦» would violate at least one
of the conditions above so

𝑧 = «𝑥, 𝑦»
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This shows that the second of our three properties holds, i.e. that we can
identify which sets are Kuratowski pairs. It also shows that the third prop-
erty holds though, since we’ve uniquely identified 𝑥 and 𝑦 from the pair.
I’ll refer to 𝑥 as the left component and 𝑦 as the right component.

Kuratowski triples?

You might reasonably hope to generalise the construction above to triples
by defining

«𝑥, 𝑦, 𝑧» = {{𝑥}, {𝑥, 𝑦}, {𝑥, 𝑦, 𝑧}}.
This turns out not to work though. With this definition

«𝑣, 𝑣, 𝑤» = {{𝑣}, {𝑣, 𝑣}, {𝑣, 𝑣, 𝑤}}

so
«𝑣, 𝑣, 𝑤» = {{𝑣}, {𝑣, 𝑤}}

and
«𝑣, 𝑤, 𝑤» = {{𝑣}, {𝑣, 𝑤}, {𝑣, 𝑤, 𝑤}}

so
«𝑣, 𝑤, 𝑤» = {{𝑣}, {𝑣, 𝑤}}

and hence
«𝑣, 𝑣, 𝑤» = «𝑣, 𝑤, 𝑤».

In other words, we have no way of identifying the middle component of
the triple. This is in contrast to the situation with pairs, where we could
identify the left and right components from the pair.

Lists

We’d like to have not just pairs and triples but lists of arbitrary finite length.
The Kuratowski construction works for pairs, but not for length greater
than two. We can still use it to define lists though. The idea is to define
lists as sets of Kuratowski pairs. Each member of the set will have as its left
component an element of the list and as it’s right component the list of all
subsequent elements. An empty list is just the empty set. A list with one
element, say 𝑧 will be a set whose only member is a pair with 𝑧 as its left
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component and the list of all subsequent elements, which is just the empty
list, as it’s right component. In other words,

() = ∅

and
(𝑧) = {«𝑧, ()»}.

Similarly, a list with two elements, say 𝑦 and 𝑧 is a set with two members,
one of which is the pair from (𝑧) and the other of which is a pair with 𝑦 as
its left component and the set (𝑧) as its right component,

(𝑦, 𝑧) = {«𝑦, (𝑧)», «𝑧, ()»}.

Similarly for lists with three elements.

(𝑥, 𝑦, 𝑧) = {«𝑥, (𝑦, 𝑧)», «𝑦, (𝑧)», «𝑧, ()»}.

You can expand these out, but it rapidly becomes messy.

(𝑥, 𝑦, 𝑧) = {«𝑥, {«𝑦, {«𝑧, ∅»}», «𝑧, ∅»}», «𝑦, {«𝑧, ∅»}», «𝑧, ∅»}.

To write this fully in our language of course we should proceed further
and write each of the seven Kuratowski pairs above as a set of sets, as in
the definition of Kuratowski pairs. Fortunately we don’t really need to do
that. Even the expansion above isn’t ever needed. We can think of lists as
being built from the empty list and prepending elements one at a time. The
empty list is the empty set. To prepend an element 𝑥 to a list 𝐴 we form the
set

𝐴 ∪ {«𝑥, 𝐴»},
which is

𝐴 ∪ {{{𝑥}, {𝑥, 𝐴}}}.

Everything you might want to do with lists can be done using three basic
operations. One is the prepending operation described above, which adds
a pair to an existing list. The other two extract the left and right components
of the most recently added pair. How do we know which pair was added
most recently? It’s the onewhose right component is a superset of the right
components of the others. Taking the left component of this pair gives
the first element of the list. Taking its right component gives the result of
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removing that element from the list. These only work on non-empty lists,
of course.
As an example of decomposing a list operation into these three basic oper-
ations, consider reversing a list. We start with the list we want to reverse
and an empty list. One by one we remove elements from the list we started
with and prepend them to the list which was initially empty until the list
we started with has been emptied.
As another example, consider the problem of concatenating two lists,
which I’ll call the left list and right list, to distinguish the positions of their
elements in the combined list. We start by reversing the left list. We then
removed elements from it one at a time and prepend them to the right list.
We continue until the left list is empty. The right list will then be their
concatenation.
I’ve chosen a representation where new elements are added to a list from
the left. I could equally have chosen one where we add elements from the
right, appending rather than prepending. This particular choice of repre-
sentation for lists is borrowed from LISP though and for historical reasons
the choice there is that the newest list element is the first rather than the last.
The three basic list operations described above have the names cons, car
and cdr in LISP, again for historical reasons. Racket is a descendent of LISP
and those functions all put in a brief appearance in the Racket program in
the introductory chapter.

Interfaces and implementation

An important principle in computer science is that of abstraction through
interfaces. The idea is to separate the interface from the details of its imple-
mentation. A user should be able to rely on the public interface of a system
without needing to know any of the details of how it is implemented. In
fact, using details of the implementation which are not part of the public
interface is strongly discouraged.
In our case we have a notion of lists and basic list operations, like adding
an element to the list, extracting the most recently added element and ex-
tracting the remainder of the list. The particular implementation may be
rather complicated but should never be needed and indeed should never
be used beyond proving a small number of basic properties, the fact that
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if we add an element and then remove it then we are left with the same
list we started with, and that the element we extracted is the one we added.
Any more complicated operations, like reversal or concatenation should
be defined in terms of the basic operations and any properties of the those
more complicated operations should be proved from the properties of the
basic operations, without reference to the implementation. This is done
partly to reduce cognitive load and partly to allow the implementation to
be replaced by a different one without any need for external changes.
There’s a difference between mathematics and computer science, but it’s
one which makes the principle of separating the interface and implemen-
tation even more useful in mathematics than in computer science. The
two subjects have different notions of an efficient implementation. The effi-
ciency of an implementation of lists in a programming language or library
is mostly a matter of resource usage, and the most important resource is
usually time. A program which uses lists won’t need to be rewritten if
the list implementation changes, provided it relies only on the public in-
terface and not on the details of the previous implementation, but it may
well run faster, so there is an obvious benefit to replacing a simple but
slow implementation with a more complicated but faster one. For an im-
plementation of lists in set theory the situation is different. What makes an
implementation efficient is the ease with which we can prove that the basic
operations have the required properties. Once this is done there’s no real
advantage to replacing it with a different implementation. The same ap-
plies to abstraction through interfaces in general. Separating interface and
implementation is useful in both subjects, but in mathematics efficiency of
implementation is a pedagogical issue rather than a practical one.
One advantage of the abstract approach described above is that often we
realise that two different interfaces are in fact the same, except for names.
Stacks appeared as a data structure in the introductory chapter. I didn’t
define them precisely there but the basic operations on a stack are push-
ing something on to it and popping something off. An implementation
of a stack just needs to provide these operations and ensure that the item
popped off is the same as the one which was pushed and that the stack
after a push and a pop is the same as it was before. If this sounds similar to
the rules for lists then that’s because they are, except for terminology, iden-
tical. A stack is just a list. In a computing application you might or might
not want to implement a stack as a list but from a mathematical point of
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view there’s no reason not to.

Pairs again

There are a number of ways we could define ordered pairs in set theory.
The usual choice is Kuratowski pairs. An equal valid choice would be Ku-
ratowski pairs with the left and right components swapped. The choice
of which to call left and which to call right was entirely arbitrary. There
are a number of other options available. The particular choice I’m going to
make here is to regard ordered pairs as lists with two elements. As long
as we only use the basic operations and properties it doesn’t matter which
implementation we choose. One minor advantage of using lists of length
two though is that we can now entirely forget the notation «𝑥, 𝑦».

Cartesian products

The set of ordered pairs (𝑥, 𝑦) with 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 is called the Cartesian
product of𝐴 and𝐵, written𝐴 × 𝐵. In the common special casewhere𝐴 = 𝐵
we often write 𝐴2 rather than 𝐴 × 𝐴. In a similar way we define 𝐴3 to be
the list of ordered triples, i.e. lists of the form (𝑥, 𝑦, 𝑧), where each of 𝑥, 𝑦
and 𝑧 is an element of 𝐴.
𝐴 × 𝐵 is indeed a set, as are 𝐴2 and 𝐴3. This is less obvious than it might
seem, but still true.
If 𝐴 and 𝐵 are finite sets then 𝐴 × 𝐵 is finite. This is proved by a double
induction on sets. Suppose 𝑥 ∈ 𝐴. Let 𝐷 be the set of subsets 𝐶 of 𝐵 such
that {𝑥} × 𝐶 is finite. {𝑥} × ∅ is ∅, which is finite, so ∅ ∈ 𝐷. If 𝐶 ∈ 𝐷 and
𝑦 ∈ 𝐵 then

{𝑥} × [𝐶 ∪ {𝑦}] = [{𝑥} × 𝐶] ∪ {(𝑥, 𝑦)}.
This is the union of two finite sets and so is finite. In other words, ∅ ∈ 𝐷
and if 𝐶 ∈ 𝐷 and 𝑦 ∈ 𝐵 then 𝐶 ∪ {𝑦} ∈ 𝐷. 𝐵 is finite so by induction 𝐵 ∈ 𝐷.
In other words {𝑥} × 𝐵} is finite. Now let 𝐹 be the set of all subsets 𝐸 of 𝐴
such that 𝐸 × 𝐵 is finite. ∅ × 𝐵 is ∅, which is finite, so ∅ ∈ 𝐹. If 𝑥 ∈ 𝐴 then,
as we just saw, {𝑥} × 𝐵} is finite. Suppose 𝐸 ∈ 𝐹.

[𝐸 ∪ {𝑥}] × 𝐵 = [𝐸 × 𝐵] ∪ [{𝑥} × 𝐵]
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so [𝐸 ∪ {𝑥}] × 𝐵 is the union of twofinite sets and so is finite. In otherwords,
∅ ∈ 𝐹 and if 𝐸 ∈ 𝐹 and 𝑥 ∈ 𝐴 then 𝐸 ∪ {𝑥} ∈ 𝐹. 𝐴 is finite so by induction
𝐴 ∈ 𝐹. In other words, 𝐴 × 𝐵 is finite.
In particular, if 𝐴 is finite then so are 𝐴2 and 𝐴3.

Relations
A binary relation is a set of ordered pairs. From now on I’ll just use rela-
tion as shorthand for binary relation unless otherwise specified since we’re
mostly concernedwith binary relations. The definition above is too general
to be of much use. We really need to impose more conditions to get any in-
teresting properties but there are a few useful definitions that make sense
in this level of generality.

Basic definitions

A relation 𝑅 is called diagonal if (𝑥, 𝑦) ∈ 𝑅 implies 𝑥 = 𝑦. For any set 𝐴
we can define the relation 𝐼𝐴 as the set of all ordered pairs (𝑥, 𝑥) for 𝑥 ∈ 𝐴.
This is a diagonal relation and is called the diagonal relation on 𝐴. These
are in fact the only examples of diagonal relations.
The domain of a relation𝑅 is the set of 𝑥 such that there is a 𝑦 with (𝑥, 𝑦) ∈ 𝑅.
The range of 𝑅 is the set of 𝑦 such that there is an 𝑥 with (𝑥, 𝑦) ∈ 𝑅. The
range and domain of 𝐼𝐴 are just 𝐴.
The inverse of a relation 𝑅 is the set of all ordered pairs (𝑥, 𝑦) such that
(𝑦, 𝑥) ∈ 𝑅. I’ll denote it by 𝑅−1. Note that 𝑅−1 is a set of ordered pairs
so it is also a relation. We can therefore take its inverse, 𝑅−1−1. Now
(𝑥, 𝑦) ∈ 𝑅−1−1 if and only if (𝑦, 𝑥) ∈ 𝑅−1, which happens if and only if
(𝑥, 𝑦) ∈ 𝑅. By the Axiom of Extensionality it follows that

𝑅−1−1 = 𝑅.

Given two relations 𝑅 and 𝑆 we can define their composition, which is writ-
ten 𝑅 ∘ 𝑆, defined to be the set of ordered pairs (𝑥, 𝑧) such that there is a
𝑦 with (𝑥, 𝑦) ∈ 𝑆 and (𝑦, 𝑧) ∈ 𝑅. The name is standard and the notation
somewhat standard, but most authors reverse the roles of 𝑅 and 𝑆 in the
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definition. The problem with doing that is that functions, as we’ll see, are
a kind of relation and the standard notation for composition of functions
writes them in reverse order, i.e. 𝑓 ∘ 𝑔 is the result of applying 𝑔 and then 𝑓 .
To accommodate this convention, which is unfortunate but too well estab-
lished to attempt to change, it’s necessary to do composition of relations
in the reverse order as well. The composition of relations is also a relation,
and so can be composed with other relations. This has the associativity
property

(𝑅 ∘ 𝑆) ∘ 𝑇 = 𝑅 ∘ (𝑆 ∘ 𝑇).
If the domain of 𝑅 is a subset of 𝐴 then 𝑅 ∘ 𝐼𝐴 = 𝑅. If the range of 𝑅 is a
subset of 𝐴 then 𝐼𝐴 ∘ 𝑅 = 𝑅.
Another useful identity is

(𝑅 ∘ 𝑆)−1 = (𝑆−1) ∘ (𝑅−1).

A relation 𝑅 is said to be symmetric if 𝑅 = 𝑅−1, i.e. if (𝑥, 𝑦) ∈ 𝑅 if and only
(𝑦, 𝑥) ∈ 𝑅. It’s said to be transitive if 𝑅 ∘ 𝑅 ⊆ 𝑅, i.e. if (𝑥, 𝑧) ∈ 𝑅 whenever
(𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅. The diagonal relation on a set is always symmet-
ric and transitive. If 𝑅 is transitive then so is 𝑅−1.
A relation 𝑅 is said to be antisymmetric if 𝑅 ∩ 𝑅−1 is diagonal or, equiva-
lently if (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅 imply 𝑥 = 𝑦. The terminology is unfor-
tunate since antisymmetric is not the opposite of symmetric. A relation
can be symmetric and antisymmetric. Diagonal relations, for example, are
both symmetric and antisymmetric. It’s also possible for a relation to be
neither symmetric nor antisymmetric. Note that if 𝑅 is antisymmetric then
so is 𝑅−1.
A relation 𝑅 is said to be left unique if 𝑅−1 ∘ 𝑅 is diagonal. In otherwords, if
𝑥 = 𝑧 whenever there is a 𝑦 such that (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅−1 or, equiv-
alently, whenever (𝑥, 𝑦) ∈ 𝑅 and (𝑧, 𝑦) ∈ 𝑅. In other words, for any 𝑦 there
is at most one ordered pair has 𝑦 as its right element. Similarly 𝑅 is said
to be right unique if 𝑅 ∘ 𝑅−1 is diagonal, which is equivalent to saying that
for any 𝑥 there is at most one ordered pair with 𝑥 as its left element. This
may seem backwards but this use of left and right is standard.
If the relation 𝑅 is a subset of the Cartesian product 𝐴 × 𝐵 then we say that
it’s a relation from 𝐴 to 𝐵 and if 𝑅 is a subset of 𝐴 × 𝐴 then we say that it’s
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a relation on 𝐴. If 𝑅 is a relation from 𝐴 to 𝐵 then 𝑅−1 is a relation from 𝐵
to 𝐴. In particular if 𝑅 is a relation on 𝐴 then so is 𝑅−1. If 𝑅 is a relation
from 𝐵 to 𝐶 and 𝑆 is a relation from 𝐴 to 𝐵 then 𝑅 ∘ 𝑆 is a relation from 𝐴
to 𝐶. In particular if 𝑅 and 𝑆 are relations on 𝐴 then so is 𝑅 ∘ 𝑆.

Examples

As examples of the properties above, consider the following relations on
the set of natural numbers:

• 𝑅 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦.
• 𝑆 is the set of (𝑥, 𝑦) with 𝑥 ≤ 𝑦.
• 𝑇 is the set of (𝑥, 𝑦) with 𝑥 < 𝑦.
• 𝑈 is the set of all (𝑥, 𝑦).
• 𝑉 is the set of (𝑥, 𝑦) with 𝑥 ≠ 𝑦.

The domain of 𝑅, 𝑆, 𝑇, 𝑈, and 𝑉 is the set of natural numbers. The range
is also the set of natural numbers in each case, except that of 𝑇, whose
range is the set of positive integers since every positive integer is greater
than some natural number and every natural numberwhich is greater than
some natural number is a positive integer.
𝑅 is diagonal. None of the other relations are. It is also the only one which
is left or right unique.
Now

• 𝑅−1 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦, i.e. just 𝑅, so 𝑅 is symmetric and
antisymmetric. As mentioned above, diagonal relations are always
symmetric and antisymmetric.

• 𝑆−1 is the set of (𝑥, 𝑦) with 𝑥 ≥ 𝑦, which is not the same as 𝑆, so 𝑆 is
not symmetric. 𝑆 ∩ 𝑆−1 = 𝑅 and 𝑅 is diagonal so 𝑆 is antisymmetric.

• 𝑇−1 is the set of (𝑥, 𝑦) with 𝑥 > 𝑦, which is not the same as 𝑇, so 𝑇 is
also not symmetric. 𝑇 ∩ 𝑇−1 = ∅ and ∅ is diagonal so 𝑇 is antisym-
metric.

• 𝑈−1 is the set of all (𝑥, 𝑦), which is the same as 𝑈, so 𝑈 is symmetric.
𝑈 ∩ 𝑈−1 = 𝑈 and 𝑈 is not diagonal, so 𝑈 is not antisymmetric.
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• 𝑉−1 is the set of (𝑥, 𝑦) with 𝑥 ≠ 𝑦, which is the same as 𝑉, so 𝑉 is also
symmetric. 𝑉 ∩ 𝑉−1 = 𝑉 and 𝑉 is not diagonal so 𝑉 is not antisym-
metric.

and
• 𝑅 ∘ 𝑅 is the set of (𝑥, 𝑦) with 𝑥 = 𝑦, i.e. 𝑅, which is a subset of 𝑅, so

𝑅 is transitive. As mentioned above diagonal relations are always
transitive.

• 𝑆 ∘ 𝑆 is the set of (𝑥, 𝑦) with 𝑥 ≤ 𝑦, i.e. 𝑆, so 𝑆 is transitive.
• 𝑇 ∘ 𝑇 is the set of (𝑥, 𝑦) with 𝑥 + 1 < 𝑦, which is a subset of 𝑇, so 𝑇

is transitive. Note that 𝑇 ∘ 𝑇 is a proper subset of 𝑇, unlike what we
saw for 𝑅 and 𝑆, but the relation is still transitive.

• 𝑈 ∘ 𝑈 is the set of all (𝑥, 𝑦), i.e. 𝑈, so 𝑈 is transitive.
• 𝑉 ∘ 𝑉 is the set of all (𝑥, 𝑦), i.e. 𝑈, which is not a subset of 𝑉 so 𝑉 is

not transitive.
Most of these are fairly straightforward. If (𝑥, 𝑧) ∈ 𝑆 ∘ 𝑆 then there is a 𝑦
such that (𝑥, 𝑦) ∈ 𝑆 and (𝑦, 𝑧) ∈ 𝑆, i.e. such that 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧. It follows
that 𝑥 ≤ 𝑧, i.e. that (𝑥, 𝑧) ∈ 𝑆. So 𝑆 ∘ 𝑆 ⊆ 𝑆. This is all we need for tran-
sitivity, but if we want to prove the statement made above that 𝑆 ∘ 𝑆 = 𝑆
then we also need to show the reverse inclusion 𝑆 ⊆ 𝑆 ∘ 𝑆. In other words
we need to show that if 𝑥 ≤ 𝑧 then there is a 𝑦 such that 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧.
This is easy. Either 𝑦 = 𝑥 or 𝑦 = 𝑧 will work. The argument for 𝑇 is sim-
ilar. If (𝑥, 𝑧) ∈ 𝑇 ∘ 𝑇 then there is a 𝑦 such that (𝑥, 𝑦) ∈ 𝑇 and (𝑦, 𝑧) ∈ 𝑇,
i.e. such that 𝑥 < 𝑦 and 𝑦 < 𝑧. It follows that 𝑥 < 𝑧, i.e. that (𝑥, 𝑧) ∈ 𝑇. So
𝑇 ∘ 𝑇 ⊆ 𝑇 and 𝑇 is transitive. To prove the stronger statement given above
we note that since we’re dealing with natural numbers 𝑥 < 𝑦 and 𝑦 < 𝑧 im-
ply 𝑥 + 1 ≤ 𝑦 and 𝑦 + 1 ≤ 𝑧, fromwhichweget 𝑥 + 2 ≤ 𝑧 and then 𝑥 + 1 < 𝑧.
To see that 𝑉 ∘ 𝑉 = 𝑈, note that if (𝑥, 𝑧) ∈ 𝑈 then there is a natural number
𝑦 distinct from 𝑥 and 𝑧. To be more concrete, the numbers 0, 1, and 2 are all
distinct so at least one of them is unequal to either 𝑥 or 𝑧. Call the least such
number 𝑦. Then (𝑥, 𝑦) ∈ 𝑉 and (𝑦, 𝑧) ∈ 𝑉 so (𝑥, 𝑧) ∈ 𝑉 ∘ 𝑉. So 𝑈 ⊆ 𝑉 ∘ 𝑉.
The reverse inclusion is trivial since every relation on the natural numbers
is a subset of 𝑈, essentially by definition.
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Functions

If 𝑅 is a relation from 𝐴 to 𝐵 then the domain of 𝑅 is a subset of 𝐴 and the
range of 𝑅 is a subset of 𝐵. We say that 𝑅 is left total if the domain of 𝑅 is
all of 𝐴 and that it’s right total if the range of 𝑅 is all of 𝐵. It follows that
𝑅−1 is left total if 𝑅 is right total and vice versa.
Some properties of a relation from 𝐴 to 𝐵 depend only on the relation,
i.e. the set of ordered pairs and others depend on the sets 𝐴 and 𝐵. Left
and right uniqueness, for example, depend only on the relation while left
and right totality depend on 𝐴 and 𝐵 as well.
A relation which is left total and right unique is called a function. If 𝐹 a
function from 𝐵 to 𝐶 and 𝐺 is a function from 𝐴 to 𝐵 then 𝐹 ∘ 𝐺 is a function
from 𝐴 to 𝐶. It’s possible for 𝐹 ∘ 𝐺 to be a function without 𝐹 or 𝐺 begin
functions though. The precise conditions needed are

• For each 𝑥 in 𝐴 there is a 𝑦 in the domain of 𝐺 such that (𝑥, 𝑦) ∈ 𝐹.
• If (𝑥, 𝑦) ∈ 𝐹, (𝑦, 𝑧) ∈ 𝐹, (𝑥, 𝑤) ∈ 𝐹 and (𝑤, 𝑣) ∈ 𝐹 then 𝑣 = 𝑧.

Although this might seem like an obscure way to construct a function com-
pared to composition of functions it is in fact frequently used.
Every function is left total by definition. Functions which are also right to-
tal are called surjective. Every function is right unique by definition. Func-
tions which are also left unique are called injective. Functions which are
both right total and left unique are called bijective, or invertible. Every
function is a relation and so has an inverse, which is also a relation. For
bijective relations this inverse relation is also a function. If 𝐹 is a bijective
function from 𝐴 to 𝐵 then 𝐹 ∘ 𝐹−1 = 𝐼𝐵 and 𝐹−1 ∘ 𝐹 = 𝐼𝐴.
If you’re accustomed to thinking of functions as being defined by algo-
rithms then the definition above does not correspond to your intuition. Dif-
ferent algorithms can certainly give the same function. For example, taking
a number and adding it to itself and taking a number and multiplying it
by two are different algorithms but they correspond to the same function
according to the definition above. Later we will see that there are func-
tions for which there is no corresponding algorithm as well. If you’re used
to thinking of functions in terms of graphs, on the other hand, then the
definition above is exactly your intuition. Functions are simply defined as
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graphs. Note that this is the one place in these notes where I use the word
graph in the sense that it’s used in algebra and calculus. Everywhere else
it will by used in the same sense as in graph theory.
There are relatively few terminological conflicts between computer science
and related fields like mathematics, logic and linguistics. Sometimes com-
puter scientists use a different term for the same concept but its rare for
them to use the same term for a different concept. This is unfortunately
one of the exceptions. Computer scientists refer to the algorithmic notion
of functions as functions. What word do they use for the graph notion of
functions? Also function! This is confusing, but less of a problem than it
might appear since the algorithmic notion is much more common. Logi-
cians are the only people who have an adequate terminology. They refer
to the algorithmic notion as intensional functions and the graph notion as
extensional functions. Function without an adjective normally means ex-
tensional unless otherwise specified. Note that intensional is not a typo for
intentional. The term from logic has an s rather than a t.
A useful fact about finite sets is that if 𝐴 is a finite set and 𝐹 is an injective
function from 𝐴 to 𝐴 then 𝐹 is also a surjective function from 𝐴 to 𝐴. This
can be proved by set induction. The only function from ∅ to ∅ is ∅, because
there are no ordered pairs (𝑥, 𝑦) with 𝑥 ∈ ∅ and 𝑦 ∈ ∅. Now ∅ is trivially
right total so every injective function ∅ to ∅ is a surjective function from
∅ to ∅. It therefore suffices to prove that if every injective function from
𝐴 to itself is surjective then every injective function from 𝐴 ∪ {𝑥} to itself
is surjective. This is certainly true if 𝑥 ∈ 𝐴 so we can limit our attention
the case where 𝑥 is not a member of 𝐴. Assume then that 𝐹 is an injective
function from 𝐴 ∪ {𝑥} to itself and 𝑥 is not a member of 𝐴. 𝐹 is left total so
there is a 𝑦 ∈ 𝐴 such that (𝑥, 𝑦) ∈ 𝐹. 𝐹 is left unique so there is no 𝑤 ∈ 𝐴
such that (𝑤, 𝑦) ∈ 𝐹. 𝐹 is left total and right unique so for all 𝑤 ∈ 𝐴 there is
a unique 𝑧 ∈ 𝐴 ∪ {𝑥} such that (𝑤, 𝑧) ∈ 𝐹. If 𝑦 = 𝑥 then this 𝑧 is not 𝑥 and so
must be in 𝐴. In this case the set of pairs (𝑤, 𝑧) with 𝑤 ∈ 𝐴 is an injective
function from 𝐴 to itself. It must therefore be surjective. There is then,
for each 𝑧 ∈ 𝐹 a 𝑤 ∈ 𝐴 such that (𝑤, 𝑧) ∈ 𝐹. 𝐹 is injective so we can’t have
(𝑥, 𝑧) ∈ 𝐹. and therefore 𝑦 = 𝑥. In other words, 𝑥 = 𝑦 if and only if there is,
for each 𝑤 ∈ 𝐴, a 𝑧 ∈ 𝐴 such that (𝑤, 𝑧) ∈ 𝐹, and in this case everymember
of 𝐴 is in the range of 𝐹 and so is 𝑥 so 𝐹 is a surjective function from 𝐴 ∪ {𝑥}
to itself. It remains to consider the case where 𝑦 is not equal to 𝑥, and so
is member of 𝐴, and there is some 𝑤 ∈ 𝐴 for which there is no 𝑧 ∈ 𝐴 with
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(𝑤, 𝑧) ∈ 𝐹. 𝐹 is left total so there is some 𝑧 ∈ 𝐴 ∪ {𝑥} with (𝑤, 𝑧) ∈ 𝐹 and so
we must have 𝑧 = 𝑥 for such 𝑤. Since 𝐹 is left unique there is at most one
such 𝑤 and we already know there’s at least one so there must be exactly
one. Let

𝐺 = 𝐹 ∪ {(𝑤, 𝑦)} ∖ {(𝑤, 𝑥), (𝑥, 𝑦)}.
This is an injective function from 𝐴 to itself and so is also a surjective func-
tion. So for all 𝑧 ∈ 𝐴 there is a 𝑣 ∈ 𝐴 such that (𝑣, 𝑧) ∈ 𝐺. If 𝑧 is not 𝑦 then
(𝑣, 𝑧) ∈ 𝐹 so 𝑧 is in the range of 𝐹. If 𝑧 is 𝑦 then 𝑧 is also in the range of 𝐹
because then (𝑥, 𝑧) ∈ 𝐹. So all members of 𝐴 are in the range of 𝐹. 𝑥 is also
in the range of 𝐹 since (𝑤, 𝑥) ∈ 𝐹 so all of 𝐴 ∪ {𝑥} is in the range of 𝐹, which
therefore must be surjective. 𝐹 was an arbitrary injective function from
𝐴 ∪ {𝑥} to itself so all injective functions from 𝐴 ∪ {𝑥} to itself are surjec-
tive. We’ve shown that all injective functions from ∅ to itself are surjective
and that if all injective functions from 𝐴 to itself are surjective then all in-
jective functions from 𝐴 ∪ {𝑥} to itself are surjective. By induction on sets
it follows that all injective functions from a finite set to itself are surjective.

Replacement

As was mentioned earlier, it would be nice to be able to define a set by
giving a Boolean expression with a single free variable and define a set
as those values of the variable for which the expression is true, but this
doesn’t work because we could use it to show the existence of the set of all
sets, which leads to contradiction. That’s why the Axiom of Separation has
the form that it does.
Similarly, we would like to be able to define a function by giving a Boolean
expression with two free variables, one representing the argument of the
function and one representing the value of the function at that argument.
We would need some additional restrictions to make sure that the relation
we get in this way is left total and right unique, but we also need to use
some set as the domain, to avoid accidentally creating the set of all sets.
We could, for example, assume the following.

• Replacement Suppose 𝑃 is an expression in which 𝑥 and 𝑦 are free
variables and 𝐴 and 𝐹 do not appear. For all 𝐴 the statement that for
each 𝑥 ∈ 𝐴 there is unique 𝑦 such that 𝑃 holds implies that there is a
set 𝐹 such that (𝑥, 𝑦) ∈ 𝐹 if and only if 𝑥 ∈ 𝐴 and 𝑃 holds.
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Formally, the statement that for each 𝑥 there is unique 𝑦 such that 𝑃 holds
is the result of linking with a ∧ the two statements

[∀𝑥 ∈ 𝐴.[∃𝑦.𝑃]]

and
[∀𝑥 ∈ 𝐴.[∀𝑦.[∀𝑧.[[𝑃 ∧ 𝑄] ⊃ [𝑦 = 𝑧]]]]]

where 𝑄 is 𝑃 with all free occurrences of 𝑦 replaced by 𝑧. We can simplify
this a little by combining the ∀𝑥 ∈ 𝐴’s in the two statements:

[∀𝑥 ∈ 𝐴.[[∃𝑦.𝑃] ∧ [∀𝑦.[∀𝑧.[[𝑃 ∧ 𝑄] ⊃ [𝑦 = 𝑧]]]]]].

The first statement is what gives us left totality and the second is what
gives us right uniqueness. For this to work we need to make the additional
assumption that 𝑧 does not appear in 𝑃. We can simplify this a little by
combining the ∀𝑥 ∈ 𝐴’s in the two statements:

[∀𝑥 ∈ 𝐴.[[∃𝑦.𝑃] ∧ [∀𝑦.[∀𝑧.[[𝑃 ∧ 𝑄] ⊃ [𝑦 = 𝑧]]]]]]

The statement about 𝐹 is the result of joining

[∀𝑥.[∀𝑦.[[[𝑥 ∈ 𝐴] ∧ 𝑃] ⊃ [(𝑥, 𝑦) ∈ 𝐹]]]]

and
[∀𝑥.[∀𝑦.[[(𝑥, 𝑦) ∈ 𝐹] ⊃ [[𝑥 ∈ 𝐴] ∧ 𝑃]]]]

Again, we can simplify this slightly by combining the quantifiers they have
in common:

[∀𝑥.[∀𝑦.[[[[𝑥 ∈ 𝐴]∧𝑃] ⊃ [(𝑥, 𝑦) ∈ 𝐹]]∧[[(𝑥, 𝑦) ∈ 𝐹] ⊃ [[𝑥 ∈ 𝐴]∧𝑃]]]]].

The full formal version is then

[∀𝐴.[[∀𝑥 ∈ 𝐴.[[∃𝑦.𝑃] ∧ [∀𝑦.[∀𝑧.[[𝑃 ∧ 𝑄] ⊃ [𝑦 = 𝑧]]]]]]
⊃ [∃𝐹.[∀𝑥.[∀𝑦.[[[[𝑥 ∈ 𝐴] ∧ 𝑃] ⊃ [(𝑥, 𝑦) ∈ 𝐹]] ∧ [[(𝑥, 𝑦) ∈ 𝐹] ⊃ [[𝑥 ∈ 𝐴] ∧ 𝑃]]]]]]]].

Like Separation, Replacement is really an axiom schema rather than a sin-
gle axiom. There is one axiom for each choice of 𝑃.
For finite sets we don’t need a new axiom since we can prove the statement
above from the axioms we already have by set induction. For infinite sets
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though this doesn’t follow from our existing axioms. In contrast to Separa-
tion, which is used all the time, Replacement is almost never used outside
of set theory, and rarely used even within it. It is fairly plausible though
and it can be shown that if the system is sound without it then it is also
sound with it so we can be sure that we haven’t accidentally introduced
contradictions if we adopt it. This would not be the case if we didn’t re-
quire the domain of the function to be specified.
The axiom schema above isn’t quite the usual one. The usual choice gives
the existence of the range of 𝐹 rather than 𝐹 itself. This is equivalent, in the
sense that from either axiom we can derive the other. The usual choice has
the advantage that we don’t need to mention ordered pairs, just sets, and
so the axiom schema can be introduced much earlier, before we’ve defined
ordered pairs. On the other hand the axiom schema isn’t needed earlier
and the version with functions makes the motivation for its introduction
much clearer.

Order relations, equivalence relations

A relation 𝑅 on a set 𝐴 is called reflexive if 𝐼𝐴 ⊆ 𝑅, i.e. if (𝑥, 𝑥) ∈ 𝑅 for all
𝑥 ∈ 𝐴. Note that if 𝑅 is reflexive then so is 𝑅−1. Of our earlier examples 𝑅,
𝑆 and 𝑈 are reflexive while 𝑇 and 𝑉 are not.
A relationwhich is reflexive, transitive and antisymmetric is called a partial
order. We just noted that if 𝑅 is reflexive then so is 𝑅−1. We’ve previously
seen that if 𝑅 is transitive then so is 𝑅−1 and that if 𝑅 is antisymmetric then
so is 𝑅−1. It follows that if 𝑅 is a partial order then so is 𝑅−1. It’s said to be
a total order if in addition 𝑅 ∪ 𝑅−1 = 𝐴 × 𝐴, i.e. if for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴
at least one of (𝑥, 𝑦) ∈ 𝑅 or (𝑦, 𝑥) ∈ 𝑅 holds.
Of our earlier example relations, 𝑅 and 𝑆 are partial orders and 𝑆 is a total
order. None of the others are partial orders and 𝑅 is not a total order.
If we restrict a partial order to a subset then the result will always be a
partial order on the subset and may or may not be a total order on the
subset. If it is a total order then that subset is called a chain.
A relation 𝑅 on a set 𝐴 is said to be an equivalence relation if it is reflex-
ive, transitive and symmetric. Of our earlier examples, both 𝑅 and 𝑈 are
equivalence relations, while 𝑆, 𝑇 and 𝑉 are not. There is an important
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equivalence relation, equivalence modulo 𝑛, on the set of natural num-
bers, defined for each natural number 𝑛. This is the set of ordered pairs
(𝑥, 𝑦) for which there is a natural number 𝑚 such that either 𝑥 = 𝑦 + 𝑚 · 𝑛
or 𝑥 + 𝑚 · 𝑛 = 𝑦. The special case 𝑛 = 0 gives the relation 𝑅 from earlier
and the special case 𝑛 = 1 gives the relation 𝑈 but the cases where 𝑛 > 1,
and particularly where 𝑛 is prime, are more important.
Suppose 𝑅 is a partial order on 𝐴. 𝑦 ∈ 𝐴 is said to be a greatest member
of 𝐴 if (𝑥, 𝑦) ∈ 𝑅 for all 𝑥 ∈ 𝐴. 𝑦 ∈ 𝐴 is said to be a maximal member if
𝑧 ∈ 𝐴 and (𝑦, 𝑧) ∈ 𝑅 imply 𝑦 = 𝑧. 𝑥 ∈ 𝐴 is said to be a least member of 𝐴
if (𝑥, 𝑦) ∈ 𝑅 for all 𝑦 ∈ 𝐴. 𝑥 is said to be a minimal member of 𝐴 if 𝑤 ∈ 𝐴
and (𝑤, 𝑥) ∈ 𝑅 imply 𝑤 = 𝑥.
If there is a greatest member then there is only one and it is also a maximal
member. If there is a least member then there is only one and it is also a
minimal member.
If 𝐴 is a set of sets then 𝑅 = {(𝐵, 𝐶) ∈ 𝐴 × 𝐴 ∶ 𝐵 ⊆ 𝐶} is an order relation
since 𝐵 ⊆ 𝐵 for all 𝐵 ∈ 𝐴, 𝐵 ⊆ 𝐷 if 𝐵 ⊆ 𝐶 and 𝐶 ⊆ 𝐷, and 𝐵 ⊆ 𝐶 and 𝐶 ⊆ 𝐵
imply 𝐵 = 𝐶.
As an example of the definitions above, suppose 𝐴 is the set of non-empty
finite subsets of some non-empty set 𝐸.
For any 𝑥 ∈ 𝐸 we have {𝑥} ∈ 𝐴. {𝑥} is in fact a minimal member since if 𝐵
is a finite non-empty subset of {𝑥} then 𝐵 = {𝑥}. If 𝑥 is the only member of
𝐸 then {𝑥} is also a least member of 𝐴, but if there is some 𝑦 ∈ 𝐸 with 𝑥 ≠ 𝑦
then 𝐴 has no least member. A least member would have to be a subset of
every member of 𝐴 and hence a subset of both {𝑥} and {𝑦}. The only set
with this property is ∅, but it is not a member of 𝐴.
If 𝐸 is finite then 𝐸 ∈ 𝐴 and 𝐸 is a greatestmember of 𝐴 since everymember
of 𝐴 is a subset of 𝐸. If 𝐸 is infinite then 𝐸 is not a member of 𝐴 and so
can’t be greatest member or maximal member. In fact there is no maximal
member in this case and hence also no greatest member. Suppose 𝐵 is a
member of 𝐴. Then 𝐵 is finite and 𝐸 is infinite so 𝐵 is not 𝐸. 𝐵 is a member
of 𝐴 and all members of 𝐴 are subsets of 𝐸 so 𝐵 is a subset of 𝐸 andmust be
a proper subset since 𝐵 is not equal to 𝐸. There is therefore some 𝑥 which is
a member of 𝐸 but not of 𝐵. Let 𝐶 = 𝐵 ∪ {𝑥}. Then 𝐵 is a subset of 𝐶 and 𝐶
is a subset of 𝐸. It’s a finite subset. We proved that earlier. It’s non-empty
since 𝑥 ∈ 𝐶. So 𝐶 ∈ 𝐴. From this and 𝐵 ⊆ 𝐶 it would follow that 𝐵 = 𝐶 if
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𝐵 were maximal, but 𝑥 is a member of 𝐶 and not of 𝐵 so this is impossible.
Therefore𝐵 is notmaximal. Since𝐵was an arbitrarymember of𝐴 it follows
that no member of 𝐴 is maximal.
When defining finiteness earlier I used the terms minimal and maximal.
You can check that the definitions given there agree with the definitions of
minimal andmaximal given above, with the relation being the set inclusion
relation.
For any non-empty finite set 𝐴 and partial order 𝑅 on 𝐴 there is a minimal
member and a maximal member. This is proved by induction on sets. Let
𝐵 be the set of subsets 𝐶 of 𝐴 such that 𝐶 is empty or has a minimal and
maximal member. Then ∅ ∈ 𝐵. If 𝐶 ∈ 𝐵 then 𝐶 ∪ {𝑥} ∈ 𝐵 for all 𝑥 ∈ 𝐴.
This is proved as follows. If 𝐶 = ∅ then 𝑥 is both a minimal and maximal
member of 𝐶 ∪ {𝑥}. If 𝐶 is not empty then it has a minimal and maximal
member. Let 𝑧 be aminimalmember of 𝐶. Then 𝑦 ∈ 𝐶 and (𝑦, 𝑧) ∈ 𝑅 imply
𝑦 = 𝑧. (𝑥, 𝑧) either is or isn’t a member of 𝑅. If it isn’t then 𝑦 ∈ 𝐶 ∪ {𝑥} and
(𝑦, 𝑧) ∈ 𝑅 imply 𝑦 = 𝑧 so 𝑧 is a minimal member of 𝐶 ∪ {𝑥}. If (𝑥, 𝑧) ∈ 𝑅
then for any 𝑦 ∈ 𝐶 such that (𝑦, 𝑥) ∈ 𝑅 we have (𝑦, 𝑧) ∈ 𝑅 by the transitiv-
ity of 𝑅 and so 𝑦 = 𝑧, since 𝑧 is a minimal member of 𝐶. But (𝑥, 𝑧) ∈ 𝑅 so
(𝑥, 𝑦) ∈ 𝑅. 𝑅 is antisymmetric so (𝑥, 𝑧) ∈ 𝑅 and (𝑧, 𝑥) ∈ 𝑅 imply 𝑧 = 𝑥. In
other words, whenever 𝑦 ∈ 𝐶 such that (𝑦, 𝑥) ∈ 𝑅 we have 𝑦 = 𝑥. There-
fore 𝑦 ∈ 𝐶 ∪ {𝑥} and (𝑦, 𝑥) ∈ 𝑅 imply 𝑦 = 𝑥. In other words 𝑥 is a minimal
member of 𝐶 ∪ {𝑥}. So either 𝑥 or 𝑧 is a minimal member of 𝐶 ∪ {𝑥}. A
similar argument shows that 𝐶 ∪ {𝑥} has a maximal member.
If𝑅 is an equivalence relation on a set𝐴 thenwe say that𝐵 is an equivalence
class if 𝐵 is a subset of 𝐴, for all 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵 we have (𝑥, 𝑦) ∈ 𝑅, and if
(𝑥 ∈ 𝐵) and 𝑦 ∈ 𝐵 then 𝑥 ∈ 𝐵.
Every element of 𝐴 is a member of exactly one equivalence class. In fact, if
𝑥 ∈ 𝐴 then 𝐵 = {𝑦 ∈ 𝐴 ∶ (𝑥, 𝑦) ∈ 𝑅} is an equivalence class of which 𝑥 is a
member and if 𝐶 is an equivalence class with 𝑥 ∈ 𝐶 then 𝐶 = 𝐵.
From a partial order we can construct an equivalence relation in a natural
way. If 𝑅 is a partial order on 𝐴 then 𝑆 = 𝑅 ∩ 𝑅−1 is an equivalence relation.
Another way to state this equation is to say that (𝑥, 𝑦) ∈ 𝑆 if and only if
(𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑥) ∈ 𝑅.
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Notation

You have no doubt noticed that this is not the usual way to write functions
or relations. In place of (𝑥, 𝑦) ∈ 𝐹 or (𝑥, 𝑦) ∈ 𝑅 weusuallywrite 𝑦 = 𝐹(𝑥) or
𝑥𝑅𝑦. This is convenient, but dangerous. As I’ve mentioned before, first or-
der logic does not copewell withmeaningless expressions, like 𝐹(𝑥) where
𝑥 is not in the domain of 𝐹. For this reason I’ll be careful not to use the usual
notation in this chapter, although I will use it in later chapters. You should
be aware though that some rules of inference which are sound if we stick
to the ordered pair notation become unsound when the usual functional
notation is used. Themost important of these is substitution. For real num-
bers, for example, we have the basic fact, known as the Law of Trichotomy,
that

[∀𝑦.[[𝑦 < 0] ∨ [𝑦 = 0] ∨ [𝑦 > 0]]].
If we substitute the numerical expression 𝐹(𝑥) for 𝑦 we get

[[𝐹(𝑥) < 0] ∨ [𝐹(𝑥) = 0] ∨ [𝐹(𝑥) > 0]]].

This is fine if 𝑥 is in the domain of 𝐹 but the usual way of interpreting a
statement like 𝐹(𝑥) = 0 is what we’ve written above as (𝑥, 0) ∈ 𝐹, i.e. that
𝑥 is in the domain of 𝐹 and the value of 𝐹 at 𝑥 is 0. So the statement

[[𝐹(𝑥) < 0] ∨ [𝐹(𝑥) = 0] ∨ [𝐹(𝑥) > 0]]]

carries an implicit assumption that 𝑥 is in the domain of 𝐹, which may not
be true. This turns substitution from a mechanical process into one which
requires actual thought, checking that the expressions which are given as
arguments to functions represent values within the domains of those func-
tions. Mathematicians generally consider the ease of use of the usual func-
tional notation to be worth the extra work but it’s important to realise that
there is a trade-off here.

Natural numbers
Consider lists all of whose elements are ∅. One of these is the list of length
0, which is just ∅. If 𝑥 is such a list then we can get another such list by
prepending another ∅. In our representation of lists this is 𝑥 ∪ {(∅, 𝑥)} but
in keeping with our policy of not relying on the particular representation
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we can introduce the notation 𝑥′ for the result of prepending a ∅ to 𝑥. Sim-
ilarly, concatenating two such lists gives us another such list. Rather than
writing down an expression for this in our particular representation of lists
we can simply denote the concatenation of 𝑥 and 𝑦 by 𝑥 + 𝑦. Rather than
relying on the empty list being represented by the empty set we can write
0 for the empty list.
We the notation as above one can prove a number of elementary properties
of these lists, such as the following.

• 0 exists.
• For all 𝑥, 𝑥′ exists.
• For all 𝑥 we have 𝑥′ ≠ 0.
• For all 𝑥 we have 𝑥 + 0 = 𝑥.

The second and fourth of these are proved by induction on sets. These
may look familiar. They are in fact our first four axioms for elementary
arithmetic. To get the remaining axiomswe need to definemore operations
and relations. 𝑥 − 𝑦, for example, can be defined to be the list, if there is one,
whichwhen concatenatedwith 𝑦 gives 𝑥. 𝑥 ≤ 𝑦 will mean that there is a list
which, when concatenated with 𝑥 gives 𝑦 and 𝑥 > 𝑦 will mean that there
isn’t one. The only definition which is somewhat tricky is the definition
of 𝑥 · 𝑦. To get 𝑥 · 𝑦 we start with a pair of lists where the first is initially 0
and the second is initially 𝑦. We then successively remove elements from
the second list and concatenate copies of the 𝑥 with the first. Once we’ve
removed all elements of the second list the first list will be 𝑥 · 𝑦.
Oncewe have definitions for all the operations and relations it’s not terribly
difficult to show that the axioms of elementary arithmetic are all satisfied.
We can also show that the three rules of inference from elementary arith-
metic also apply to lists of ∅’s. Not surprisingly, the rule of induction for
natural numbers follows from the induction theorem for finite sets. Note
that induction for sets is a theorem though, rather than an axiom.
So we have a copy of elementary arithmetic sitting inside of set theory.
There are other ways to embed arithmetic in set theory. The method above
is not the most commonly used one. A more traditional approach is in
terms of what are called the von Neumann ordinals. It’s better not to think
of the natural numbers as some particular representation. We shouldn’t
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therefore ask questions like whether 𝑥 ⊂ 𝑥″. This happens to be true in
the representation we’ve chosen, and also happens to be true in the repre-
sentation in terms of von Neumann ordinals, but isn’t true in some other
representations of the natural numbers within set theory. In keeping with
our policy of separating interface and implementation we should avoid ap-
plying operations or relations to natural numbers other than the ones from
elementary arithmetic.
The particular construction chosen is somewhat arbitrary, but it’s not ran-
domly chosen either. Intuitively, lists have a length. Prepending and el-
ement increments the length. Concatenating lists adds their lengths. Of
course many different lists will generally have the same length but if we
want to choose a particular one for each length then we can do that by
choosing some item and using only lists where all elements are equal to
that item. The simplest choice for that item is ∅ because it’s the only set
whose existence is directly guaranteed by an axiom of set theory.

Infinite sets
I was very careful in the discussion above not to refer to the set of natural
numbers, just to natural numbers. We have criteria, at least with the partic-
ular representation chosen, for determining whether something is a natu-
ral number, whether one natural number is the sum, difference or product
of two other natural numbers, etc. Do we have a set of natural numbers
though? We can write down a Boolean expression with a single free vari-
able which evaluates to true if and only if a natural number, in our chosen
representation, is substituted for all free occurrences of that variable. The
Axiom of Separation, though, doesn’t allow us to get sets from Boolean ex-
pressions; it only allows us to get subsets of a given set from them. Do we
have a set which is large enough to contain at least the natural numbers,
so that we then use Separation to find a set with the natural numbers and
only the natural numbers?
With the axioms above we have no way to prove the existence of an infinite
set. Extensionality doesn’t give us any sets; it just says when two sets are
equal. The axiom of elementary sets produces only finite sets, and in fact
only sets with atmost two elements. Separation gives us subsets of existing
sets. We’ve already seen that subsets of finite sets are finite, so this axiom
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can’t give us an infinite set unless we already have one. We’ve also seen
that power sets of finite sets are finite, so that axiom also can’t give us an
infinite set unless we already have one. The same is true of the Axiom of
Union. Adding the Axiom of Replacement wouldn’t help either since it’s
not difficult to show that functions with finite domains are finite.
We have a number of things thoughwhich, if they are sets, must be infinite.
One is the natural numbers. If the natural numbers are a set then the set
pairs (𝑥, 𝑦) with 𝑥 ≤ 𝑦 is a partially ordered set with no greatest element.
We’ve already seen that any partial order on a finite set has a greatest ele-
ment, so the natural numbers can’t be a finite set.
You might object that I’ve used the set of natural numbers in examples. Ex-
amples are meant to guide your intuition though so I sometimes presup-
pose things we don’t yet know to be true. I’ve been careful to confine the
natural numbers to examples though and not to use the existence of such
a set in proving theorems.
Another set which, if is exits, must be infinite is that set of lists of items
in a given non-empty set 𝐴. Any set which contains all such lists must be
infinite, which we can see as follows.
Suppose 𝐴 is a non-empty set and 𝐵 is a set which contains all lists whose
items are members of 𝐴. We can write down a Boolean expression which
identifies which elements of 𝐵 are actually lists all of whose items are mem-
bers of 𝐴 so we can use Separation to conclude that there is a set 𝐶 whose
members are precisely such lists. 𝐴 is non-empty, so there is an 𝑥 ∈ 𝐴. Let
𝐹 be the set of pairs of lists (𝐷, 𝐸) where 𝐸 is the list obtained by appending
𝑥 onto 𝐷. Then 𝐹 is an injective function from 𝐶 to itself. It is not surjective
because the empty list ∅ is not in its range. But we’ve already shown that
every injective function from a finite set to itself is surjective, so 𝐶 cannot
be finite. Subsets of finite sets are finite so 𝐵 can’t be finite either.
I introduced a notation earlier for the set of such lists. [𝐿𝐴] denotes the lists
all of whose elements are members of 𝐴. The existence of a notation for a
set doesn’t imply the existence of that set though, in much the same way
that having a notation for the difference of two natural numbers doesn’t
imply that this difference exists for all pairs of natural numbers.
There are a number of ways to get infinite sets but all of them involve in-
troducing some new axiom. We could just introduce an axiom saying that

204



there is an infinite set. This turns out not to be sufficient to establish the
existence of all the infinite sets that we want. The usual procedure is to
introduce an axiom establishing the existence of one particular infinite set
which is in some sense large enough. We can, for example, use 𝐿{∅} for
this purpose. As we saw, this is essentially the same as the set of natural
numbers.
Once we have one infinite set it’s fairly easy to get others, if we have the
Axiom of Replacement. We can, for example, show the existence of 𝐿𝐴
for any set 𝐴. It’s not terribly difficult to write down a Boolean expression
which characterises 𝐿𝐴 in the sense that it has one free variable and evalu-
ates to true if and only if the thing substituted for that variable is a list all of
whose elements are members of 𝐴. By itself this isn’t enough to show that
𝐿𝐴 exists since Separation only allows us to construct subsets of a given set
from Boolean expressions. What we can do though is to construct another
Boolean expression expression the fact that two lists are of equal length.
Combining these two expressions we can write down a Boolean expres-
sion with two free variables which evaluates to true if and only if the first
variable is a member of 𝐿{∅}, i.e. a list all of whose elements are ∅’s and
whose second variable is the set of all lists of members of 𝐴 of length equal
to the list in the first variable. Applying Replacement gives a function from
𝐿{∅} to the sets of lists of members of 𝐴 of equal length. As the range of
a function this is a set. Applying Union we finally get the set 𝐿𝐴. This is
actually the only time we will apply Replacement.
Motivated by the considerations abovewe’ll take the following as an axiom:

• Infinity: The set 𝐿{∅} exists.

Cardinality
Set inclusion provides a notion of size of sets. A set is at least as large
as any of its subsets and is strictly larger than any of its proper subsets.
Inclusion is reflexive, transitive and antisymmetric, since𝐴 ⊆ 𝐴, 𝐴 ⊆ 𝐵 and
𝐵 ⊆ 𝐶 imply 𝐴 ⊆ 𝐶 and 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 imply 𝐴 = 𝐵. If therewere a set of
all sets then 𝑅 = {(𝐴, 𝐵) ∶ 𝐴 ⊆ 𝐵} would be a partial order on it, but we’ve
already seen that there can be no such set. The construction above does
work for any set of sets though and was in fact one of our examples in the
section on partial orders. It just doesn’t make sense to apply it to the set of
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sets because there is no such thing.
Inclusion doesn’t really provide a notion of size which agrees with our in-
tuitive notion of size though. If 𝑥, 𝑦 and 𝑧 are distinct then we would like
to be able to say that the set {𝑥} is strictly smaller than the set {𝑦, 𝑧}, even
though it’s not one of its proper subsets. The obvious way to do this is to
count the members, but we would like a definition which also works for
infinite sets. The standard way to do this is to define the notion of size in
terms of the existence of injective functions. There is an injective function
from {𝑥} to {𝑦, 𝑧}. In fact there are two, {(𝑥, 𝑦)} and {(𝑥, 𝑧)}. There is no
injective function from {𝑦, 𝑧} to {𝑥}.
Motivated by this example, we say that 𝐴 is no larger than 𝐵 if there is an
injective function from 𝐴 to 𝐵. We say that 𝐴 is of the same size as 𝐵 if 𝐴 is
no larger than 𝐵 and 𝐵 is no larger than 𝐴. We say that 𝐴 is strictly smaller
than 𝐵 if 𝐴 is no larger than 𝐵 and there is not an injective function from 𝐵
to 𝐴.
One casewherewe know there is an injective function is when 𝐴 is a subset
of 𝐵. In this case 𝐼𝐴 is an injective function from 𝐴 to 𝐵. So we get the rather
unsurprising result that a subset is no larger than the set of which it’s a
subset.
Unwrapping the definitions, 𝐴 is of the same size as 𝐵 if there is an injective
function from 𝐴 to 𝐵 and an injective function from 𝐵 to 𝐴. This is certainly
true if there is a bijective function from 𝐴 to 𝐵. If 𝐹 is such a function then
𝐹 is an injective function from 𝐴 to 𝐵 and 𝐹−1 is an injective function from
𝐵 to 𝐴. For finite sets this is the only way for two sets to have the same size.
In other words, if 𝐴 and 𝐵 are finite sets and 𝐹 is an injective function from
𝐴 to 𝐵 and 𝐺 is an injective function from 𝐵 to 𝐴 then 𝐹 and 𝐺 are bijective,
although it’s not necessarily the case that 𝐺 = 𝐹−1.
For infinite sets the situation is more complicated. It’s possible for
there to be an injective but not bijective function function 𝐹 from 𝐴
to 𝐵 and an injective but not bijective function 𝐺 from 𝐵 to 𝐴. In fact
it’s possible to give a simple example. Let 𝐴 = 𝑁 and 𝐵 = 𝑁 and let
𝐹 = 𝐺 = {(𝑥, 𝑦) ∈ 𝑁 × 𝑁 ∶ 𝑦 = 𝑥 + 1}. This is the increment function. It’s
injective because for any natural number 𝑥 there is a natural number 𝑦 such
that 𝑦 = 𝑥 + 1. It’s not surjective because there is a natural number 𝑦 for
which there is no natural number 𝑥 with 𝑦 = 𝑥 + 1. 𝑦 = 0 is such a number,
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and is in fact the only such number. So we can certainly have an injective
but not bijective function function 𝐹 from 𝐴 to 𝐵 and an injective but not
bijective function 𝐺 from 𝐵 to 𝐴. There is however a useful theorem, the
Schröder-Bernstein theorem, which says that in such a case there is always
some bijective function 𝐻 from 𝐴 to 𝐵. It follows that 𝐴 and 𝐵 are of the
same size if and only if there is a bijective function from 𝐴 to 𝐵. This isn’t
the definition of having the same size but it is equivalent to that definition
as a consequence of the Schröder-Bernstein theorem.
One other difference between finite and infinite sets, or perhapsmore accu-
rately the same difference from a different point of view, is that an infinite
set can be of the same size as one of its proper subsets. For example the
set of natural numbers and the set of positive integers are of the same size
since the increment function is a bijective function from one to the other,
but it is a proper subset.
The notion of size based on injective functions is called cardinality. Sets
of the same size are said to have the same cardinality and a set which is
strictly smaller than another set is said to have a lower cardinality than it.
Cardinality behaves somewhat like a partial order. It is reflexive in the
sense that any set 𝐴 is of the same size as itself, since the identity function
is injective. It is transitive in the sense that if 𝐴 is no larger than 𝐵 and 𝐵
is no larger than 𝐶 then 𝐴 is no larger than 𝐶. This is a consequence of
the fact that the composition of an injective function from 𝐴 to 𝐵 with an
injective function from 𝐵 to 𝐶 is an injective function from 𝐴 to 𝐶. It is sort
of antisymmetric in the sense that if 𝐴 is no larger than 𝐵 and 𝐵 is no larger
than 𝐴 then 𝐴 is of the same size as 𝐵. For true antisymmetry this would
have to imply that 𝐴 = 𝐵 rather than merely that they’re of the same size.
Of course “is no larger than” isn’t a true relation because there is no set of
sets for it to be a relation on. When we restrict it to subsets of a given set it
does become a relation though.
The distinction between a partial order on a set and a total order on a set
is that the latter has the additional requirement that for all 𝑥 and 𝑦 either
(𝑥, 𝑦) or (𝑦, 𝑥) is a member. Even though there is no set of sets we can still
ask whether for all sets 𝐴 and 𝐵 it is true that 𝐴 is no larger than 𝐵 or 𝐵 is
no larger than 𝐴. The answer is yes if at least one of the sets is finite. For
infinite sets the answer, based on the axioms presented so far, is maybe. It
is not possible to prove this but it is also not possible to disprove it.
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Diagonalisation

Suppose 𝐴 is a set and 𝐵 is 𝑃𝐴, i.e. the set of subsets of 𝐴. Let 𝐹 be the set
of ordered pairs of the form (𝑥, {𝑥}) for 𝑥 in 𝐴. It’s easy to check that 𝐹 is
both left total and right unique so it is a function. It’s also easy to see that
it is left unique and so is an injective function. It is not right total though
because there is no 𝑤 ∈ 𝐴 such that (𝑤, ∅) ∈ 𝐹. So 𝐹 is not surjective. Since
there is an injective function from 𝐴 to 𝐵 we conclude that 𝐴 is no larger
than 𝐵.
Is there some other function 𝐺 from 𝐴 to 𝐵 which is surjective? If there
were then we could form the set

𝐶 = {𝑥 ∈ 𝐴 ∶ ∃𝐷 ∈ 𝐵 ∶ (𝑥, 𝐷) ∈ 𝐺 ∧ [¬𝑥 ∈ 𝐷]}.

𝐺 was assumed to be surjective so there is a 𝑦 ∈ 𝐴 such that (𝑦, 𝐶) ∈ 𝐺.
Either 𝑦 is a member of 𝐶 or it isn’t. If 𝑦 is a member of 𝐶 then there is a
𝐷 such that (𝑦, 𝐷) ∈ 𝐺 and ¬𝑦 ∈ 𝐷. Now 𝑦 is a member of 𝐶 but not of 𝐷
so 𝐶 and 𝐷 are not equal. But (𝑦, 𝐶) and (𝑦, 𝐷) belong to 𝐺, which is right
unique, so 𝐶 must be equal to 𝐷. So the assumption that 𝑦 is a member of
𝐶 leads to a contradiction. Suppose then that 𝑦 is not a member of 𝐶. Then
there is a set 𝐷 such that (𝑦, 𝐺) ∈ 𝐺 and ¬𝑦 ∈ 𝐷. Indeed 𝐷 = 𝐶 has both
these properties. But then the definition of 𝐶 tells us that 𝑦 ∈ 𝐶, which
contradicts our assumption that 𝑦 is not a member of 𝐶. So 𝑦 is neither a
member of 𝐶 nor not a member of 𝐶. The only way to resolve this paradox
is that the set 𝐶 does not in fact exist. But the existence of 𝐶 follows from
that of 𝐺 by Separation, so 𝐺 does not exist either. In other words there is
no surjective function from 𝐴 to 𝐵.
The argument above is known as the Cantor diagonalisation argument.
Using the Schröder-Bernstein theorem one can sharpen this result some-
what. We’ve already seen that there is an injective function from 𝐴 to 𝐵. If
there were an injective function from 𝐵 to 𝐴 then the Schröder-Bernstein
theorem would imply the existence of a bijective function from 𝐴 to 𝐵 and
hence a surjective function from 𝐴 to 𝐵. We’ve just seen that there is no
such function so there can’t be an injective function from 𝐴 to 𝐵. In other
words 𝐴 is strictly smaller than 𝐵.
For finite sets the size is determined by the number of members and if 𝐴
has 𝑚 members then 𝐵 has 2𝑚 members. We can conclude that 𝑚 < 2𝑚
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for all 𝑚. This is indeed true, but hardly surprising. For infinite sets we
get a more interesting conclusion. If 𝐴 is an infinite set then 𝑃𝐴 is strictly
larger than 𝐴, so there are infinite sets which are not of the same size. We
don’t have to stop there though. 𝑃𝑃𝐴 is strictly larger than 𝑃𝐴 and 𝑃𝑃𝑃𝐴
is strictly larger than 𝑃𝑃𝐴. There is no limit on the number of infinite sets
of different sizes we can construct.
Incidentally, this gives us a different proof of the fact that there is no set
of all sets. If there were then every subset of it would be a set and hence a
member of itself so the set of setswould contain its ownpower set. It would
therefore have a power set which is no larger than itself, in contradiction
to what we’ve just proved.

Countable sets

We’ve just seen that there are infinite sets of different sizes. We want a
notion of sets which are not too infinite. A set is said to be countable if it is
no larger than the set of natural numbers.
There are unfortunately two conflicting terminologies in use. One conven-
tion is the one given above. The other defines the countable sets to be those
which are of the same size as the set of natural numbers. Under the conven-
tion I’m using finite sets are countable. Under the other convention they
are not. Both conventions agree on calling a set uncountable if the set of
natural numbers is strictly smaller than it. The alternative convention has
the rather unfortunate property that “uncountable” and “not countable”
are not synonyms. Finite sets are neither countable nor uncountable in
this convention. Perhaps more importantly, the condition that a set is no
larger than the set of natural numbers arises more frequently in both the
hypotheses and conclusions of theorems than the condition that a set if of
the same size as the set of natural numbers so it’s much more convenient
to have a short name for the former condition than for the latter.
There are two unfortunate consequences of this terminological confusion.
First, if you read the word countable by itself somewhere other than these
notes you can’t be sure what the authors mean unless they have explicitly
said which convention they follow. Second, if you write the word count-
able by itself and don’t specify which convention you follow then no one
can be surewhat youmean. The standardway to avoid the second problem
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is to refer to sets which are countable according to the definition at the be-
ginning of this section as “at most countable” and to refer to sets which are
countable according to the other convention as “countably infinite”. This
involves some redundancy. According to the convention of these notes the
words “at most” in “at most countable” are redundant. According to the
other convention the word “infinite” in “countably infinite” is redundant.

Properties of countable sets

Using the convention described above, finite sets are countable. This is
reasonably straightforward to prove by induction on sets. ∅ satisfies all the
requirements to be an injective function from ∅ to 𝑁 so ∅ is no larger than
𝑁 and is therefore countable. Suppose 𝐴 is a countable set. Then there is
an injective function from 𝐴 to 𝑁. If 𝑥 is a member of 𝐴 then 𝐴 ∪ {𝑥} = 𝐴
and so 𝐹 is also an injective function from 𝐴 ∪ {𝑥} to 𝑁. If 𝑥 is not amember
of 𝐴 then we can define a set of ordered pairs 𝐺 whose members are (𝑥, 0)
and (𝑦, 𝑚 + 1) for all (𝑦, 𝑚) in 𝐹. This 𝐺 is an injective function from 𝐴 ∪ {𝑥}
to 𝑁. So in either case there is an injective function from 𝐴 ∪ {𝑥} to 𝑁 and
so 𝐴 ∪ {𝑥} is countable. So ∅ is countable and if 𝐴 is countable then so is
𝐴 ∪ {𝑥}. By induction on sets it follows that all finite sets are countable.
Subsets of countable sets are countable. Suppose that 𝐴 is a subset of 𝐵
and 𝐵 is countable, i.e. there is an injective function 𝐺 from 𝐵 to 𝑁. Define
𝐹 to be the subset of ordered pairs in 𝐺 whose left element is a member of
𝐴. Then 𝐹 is an injective function from 𝐴 to 𝑁, so 𝐴 is countable. It follows
from this that if 𝐵 is countable and 𝐶 is a set then both 𝐵 ∩ 𝐶 and 𝐵 ∖ 𝐶 are
countable, since they are subsets of 𝐵.
The union of two countable sets is countable. To see this, suppose 𝐴 and 𝐵
are countable. We’ve just seen above that 𝐴 ∖ 𝐵 is then countable, i.e. that
there is an injective function from 𝐴 ∖ 𝐵 to 𝑁. Let 𝐹 be such a function. 𝐵
is countable so there is an injective function 𝐺 from 𝐵 to 𝑁. Define 𝐻 to be
the set of pairs either of the form (𝑥, 2 · 𝑚) where (𝑥, 𝑚) ∈ 𝐹 or of the form
(𝑦, 2 · 𝑚 + 1) where (𝑦, 𝑚) ∈ 𝐺. Then 𝐻 is an injective function from 𝐴 ∪ 𝐵
to 𝑁 so 𝐴 ∪ 𝐵 is countable.
𝑁 itself is countable since 𝐼𝑁 is an injective function from 𝑁 to 𝑁. Perhaps
surprisingly 𝑁 × 𝑁 is also countable. It’s possible to write down an injec-
tive function from 𝑁 × 𝑁 to 𝑁 explicitly. Such a function is given by the set
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of ordered pairs ((𝑖, 𝑗), 𝑘) where

𝑘 = (𝑖 + 𝑗)(𝑖 + 𝑗 + 1)/2 + 𝑗.

The division by two is permissible because (𝑖 + 𝑗)(𝑖 + 𝑗 + 1) is always even,
as we can prove by induction.
The function above may appear mysterious but it is easily explained by the
following picture.

⋮
5 20
4 14 19
3 9 13 18
2 5 8 12 17
1 2 4 7 11 16
0 0 1 3 6 10 15

0 1 2 3 4 5 ⋯

The horizontal axis is labelled by the 𝑖 values, the vertical axis by the 𝑗 val-
ues and the element in the 𝑖’th column, 𝑗, row, counting from the bottom
left and starting at 0, is the corresponding 𝑘 value. You can see that these
numbers are obtained by visiting the pairs in a particular order, working
one diagonal at a time and going from the lower right to the upper left
within that diagonal. Working out how many points in the grid are visited
before the given point gives exactly the expression above. and the fact that
this function is injective is simply the fact that this procedure never reuses
a natural number. This is visually obvious but rather tedious to prove.
More generally, if 𝐴 and 𝐵 are countable then so is 𝐴 × 𝐵. To see this note
that in this case there are injective functions 𝐹 from 𝐴 to 𝑁 and 𝐺 from 𝐵 to
𝑁. Define 𝐻 to be set of pairs of pairs ((𝑥, 𝑦), (𝑚, 𝑛)) such that (𝑥, 𝑚) ∈ 𝐹
and (𝑦, 𝑛) ∈ 𝐺. Then 𝐻 is an injective function from 𝐴 × 𝐵 to 𝑁 × 𝑁. Com-
posing this with the injective function we already have from 𝑁 × 𝑁 to 𝑁
gives an injective function from 𝐴 × 𝐵 to 𝑁, so 𝐴 × 𝐵 is countable.
In particular, if 𝐴 is countable then so is 𝐴2. Since the Cartesian product of
two countable sets is countable it follows that 𝐴2 × 𝐴 is countable. There
is an injective function from 𝐴3 to 𝐴2 × 𝐴 consisting of the ordered pairs of
the form ((𝑥, 𝑦, 𝑧), ((𝑥, 𝑦), 𝑧)). This function is also surjective, but we won’t
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need that. The fact that it is injective means, together with the fact we just
proved that 𝐴2 × 𝐴, implies that 𝐴3 is countable.
Less obviously, if 𝐴 is countable then so is the set of all lists all of whose
items are members of 𝐴. This fact is of great importance in the study of for-
mal languages. Since subsets of countable sets are countable and languages
are sets of lists of tokens it follows that every language with a countable
number of tokens is countable.
Here is a sketch of a proof of the statement above. 𝐴 is countable so there
is an injective function 𝐹 from 𝐴 to 𝑁. Define a function 𝐺 from 𝐴∗ to 𝑁3

as follows. (𝑤, (𝑥, 𝑦, 𝑧)) ∈ 𝐺 if 𝑥 is the number of elements in the list 𝑤, 𝑦 is
the least natural number 𝑛 such that if 𝑣 is an item in 𝑤 and (𝑣, 𝑚) ∈ 𝐹 then
𝑚 < 𝑛, and 𝑧 is natural number whose base 𝑛 representation has as it’s 𝑗’th
digit the number 𝑘 where (𝑣, 𝑘) ∈ 𝐹 and (𝑣) is the 𝑗’th item in the list. This
𝐺 is an injective function. There is an injective function 𝐻 from 𝑁3 to 𝑁.
Then 𝐻 ∘ 𝐺 is an injective functions from 𝐴∗ to 𝑁, so 𝐴∗ is countable.

Uncountable sets

It’s easy to produce uncountable sets. 𝑃𝑁 is uncountable. If it were count-
able then there would be an injective function from 𝑃𝑁 to 𝑁 but we’ve
already seen that there can be no such function.
Let 𝐴 be the set of arithmetic sets, i.e. subsets of 𝑁 for which there is a
Boolean expression in our language for arithmetic which is a necessary
and sufficient condition for membership in the set. Choose some encod-
ing of that language into 𝑁. Consider those pairs (𝐵, 𝑥) with 𝐵 ∈ 𝐴 and
𝑥 ∈ 𝑁 such that 𝑥 is the natural number which encodes a Boolean expres-
sion characterising membership in 𝐵. The set of such pairs is an injective
function from 𝐴 to 𝑁, so 𝐴 is countable.
𝐴 is not 𝑃𝑁 because 𝐴 is countable and 𝑃𝑁 is uncountable. 𝐴 is a subset
of 𝑃𝑁 so there must therefore be a member of 𝑃𝑁 which is not a member
of 𝐴. In other words there is a subset of 𝑁 which is not arithmetic. We’ve
already seen an example, without a proof, of such a set, namely the set
of encodings of true statements. That’s a hard theorem though while the
proof above, while it doesn’t provide any examples, is quite easy.
A similar argument shows that there is a language which has no phrase
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structure grammar. We choose as our set of tokens a non-empty countable
set. Let 𝐴 be the set of lists of tokens. 𝐴 is then countable. We can say a bit
more than that though. Since the set of tokens is non-empty we can choose
one and look at the set of lists using only that token. This, as we discussed,
is essentially a copy of 𝑁. So 𝑁 is no larger than 𝐴 but 𝐴 is also no larger
than 𝑁 because it’s countable. Therefore 𝐴 is of the same size as 𝑁. It
follows that 𝑃𝐴, which is the list of languages using only those tokens, is
uncountable. Any phrase structure grammar for 𝐴 is a list of tokens. These
tokens belong to the original list of tokens or are tokens like “:”, “|”, or “;”
which belong to our language for describing languages. There are only
finitely many of the latter though so the full set of tokens is still countable
and therefore the set of phrase structure grammars is countable. There are
fewer phrase structure grammars than languages so there is a language
without a grammar.
Aswith arithmetic sets, it is possible to give concrete examples of languages
with no phrase structure grammar but the proofs aremuch harder than the
simple counting argument above.

Choice
The axioms we’ve seen so far are arguably sufficient for all of computer
science and are sufficient for some mathematics, including at least elemen-
tary arithmetic. There is some standard mathematics for which they are
insufficient though.
Fromnowon I’ll use𝑁 to denote the set of natural numbers. It won’tmatter
what representation of 𝑁 we use.

Dependent choice

Consider the following two statements.
• Suppose 𝑅 is a left total relation on a set 𝐴. For every 𝑥 ∈ 𝐴 there

is a function 𝐹 from 𝑁 to 𝐴 such that (0, 𝑥) ∈ 𝐹 and if (𝑛, 𝑦) ∈ 𝐹 and
(𝑛 + 1, 𝑧) ∈ 𝐹 then (𝑦, 𝑧) ∈ 𝑅.

• For every set 𝐴 and partial order 𝑅 on 𝐴 if every chain in 𝐴 is finite
then 𝐴 contains a maximal element.
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The chains and maximal elements in the second statement are understood
as being with respect to the partial order 𝑅.
The meaning of these statements may not be immediately obvious but the
first one, at least, has a fairly nice interpretation in terms non-deterministic
computations. We think of 𝐴 as the state space and 𝑥 as the initial state. The
function 𝐹 simply tells us which state the computation is in after a given
number of steps. The relation 𝑅 is the one which gives the allowed tran-
sitions. The condition that if (𝑛, 𝑦) ∈ 𝐹 and (𝑛 + 1, 𝑧) ∈ 𝐹 then (𝑦, 𝑧) ∈ 𝑅
is then the statement that each transition is one of the allowed ones and
the condition that (0, 𝑥) ∈ 𝐹 is of course the condition that that the com-
putation starts in the start state. The condition that 𝑅 is left total means
that for any allowed state there is at least one state to which the system can
transition, so the computation is never forced to terminate due to a lack of
options. We can therefore give the first statement the interpretation that
a non-deterministic computation for which there is at least one transition
from each allowed state can run forever.
There are two important conditions under which we can prove the first
statement using the axioms we’ve introduced so far. One is when the com-
putation is deterministic, i.e. when 𝐹 is not just a left total relation but a
function. The other is when the set 𝐴 of possible states is countable. Those
two cases are probably sufficient for computer science.
The second statement is harder to attach an intuitive meaning to but it is in
some sense simpler. It’s certainly shorter and it doesn’t refer to the natural
numbers so it makes sense even without the Axiom of Infinity.
If we assume the Axiom of Infinity then the two statements above are in
fact equivalent, in the sense that from either we can prove the other. They
are independent of our axioms though in the sense that neither of them
can be proved from those axioms. If we want them to be true then we’ll
need to take one of them as an axiom, or choose some other axiom which
implies them. I’ll choose the second one.

• Dependent Choice: For every set 𝐴 and partial order 𝑅 on 𝐴 if every
chain in 𝐴 is finite then 𝐴 contains a maximal element.
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Zorn’s Lemma

If we think of classical mathematics as covering the integral and differ-
ential calculus, complex analysis, ordinary and partial differential equa-
tions, number theory, differential geometry and classical algebraic geome-
try then the axioms above are a sufficient foundation. There are some parts
of modernmathematics which require something stronger than the Axiom
of Dependent Choice though. There are a few different, but equivalent,
choices for what this something is but the most popular is the following.

• Zorn’s Lemma: For every set 𝐴 and partial order 𝑅 on 𝐴 if every chain
in 𝐴 has an upper bound in 𝐴 then 𝐴 contains a maximal element.

Every finite chain has a maximal element and this maximal element is
an upper bound so the Axiom of Dependent Choice follows from Zorn’s
Lemma. Zorn’s Lemma does not follow from the Axiom of Dependent
Choice though. We can therefore think of Zorn’s Lemma as a generalisa-
tion of the Axiom of Dependent Choice.
Despite its name, Zorn’s Lemma is normally taken as an axiomand so is not
a lemma. It’s also due to Kuratowski rather than to Zorn. The word lemma
in its name dates to a time when it was traditional to take the following as
an axiom:

• Choice: Suppose 𝐴 is a set of non-empty sets such that if 𝐵 ∈ 𝐴 and
𝐶 ∈ 𝐴 then 𝐵 = 𝐶 or 𝐵 ∩ 𝐶 = ∅. Then there is a set 𝐷 such that for all
𝐵 ∈ 𝐴 the intersection 𝐵 ∩ 𝐷 has exactly one member.

𝐷 can be thought of as selecting a single member from each member of 𝐴.
That’s why it’s called the Axiom of Choice.
Kuratowski showed that the “lemma” is a consequence of this axiom. Zorn
stated the axiom also follows from the lemma and promised to prove this,
but didn’t. It is nonetheless true. The two statements are equivalent, just
as the two statements in the previous section were. Which one to take as
an axiom and which to prove as a consequence is then just a matter of con-
venience. The modern approach is to take the “lemma” as an axiom and
prove the “axiom” as a theorem.
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Banach-Tarski

Unfortunately the Axiom of Choice has some rather unsettling conse-
quences. Perhaps the most counterintuitive of these is the Banach-Tarski
Paradox in geometry. Assuming Zermelo-Fraenkel plus the Axiom of
Choice one can show that there are sets 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐵1, 𝐵2, 𝐵3, 𝐶1,
𝐶2, 𝐶3, 𝐶4 and 𝐶5 in three dimensional Euclidean space with the following
properties.

• 𝐵1, 𝐵2 and 𝐵3 are disjoint balls of radius 1.
• 𝐴1 is congruent to 𝐶1, 𝐴2 is congruent to 𝐶2, 𝐴3 is congruent to 𝐶3,

𝐴4 is congruent to 𝐶4, and 𝐴5 is congruent to 𝐶5.
• 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 are disjoint and their union is 𝐵1 ∪ 𝐵2.
• 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 are disjoint and their union is 𝐵3.

In otherwords, we can take a ball, split it into five pieces, move those pieces
via a rigid motion, i.e. a combination of translations, reflections and rota-
tions, and reassemble them to form two balls of the same radius as the
original one.
Mostmathematicians are not particular bothered by paradoxes like the one
above. In their view it shows that it’s possible to find really weird bounded
subsets of Euclidean space, weird enough that one can’t attach a notion
of volume to them in any consistent way, but not as a problem with set
theory. Some mathematicians reject the Axiom of Choice entirely. Others
accept onlyweaker versions, like theAxiomofDependent choice, which do
not imply the existence of the paradoxical sets appearing in Banach-Tarski
theorem.

Additional axioms
Foundation

The following was not part of Zermelo set theory but is often taken as an
axiom.

• Foundation: Every non-empty set has a member which is disjoint
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from it, i.e. shares no members with it. Formally

[∀𝐴.[[∃𝐵.𝐵 ∈ 𝐴] ⊃ [∃𝐶 ∈ 𝐴 ∶ [𝐴 ∩ 𝐶] = ∅]]].

I’m not sure I’ve ever seen anyone present an argument that this statement
is true, as opposed to simply convenient.
Some programming languages provide a set data type, which generally
means a finite set data type, natively while there are library implementa-
tions in some others. Most of those do not appear to satisfy the Axiom of
Foundation, which makes it hard to argue that this axiom reflects people’s
intuitive understanding of sets, even when restricted to finite sets. Even
the arguments that Foundation is convenient are somewhat suspect since
it is generally assumed by mathematicians but never really used by them.
It is at least safe to assume it, in the sense that if it is possible to prove a
contradiction using this axiom then it is also possible to prove one without
it.

Extensionality, again

There is another, stronger, form of the Axiom of Extensionality.
• Extensionality (stronger version): Suppose every member of 𝐴 is a

member of 𝐵 and vice versa. Then 𝐴 = 𝐵.
Formally,

[∀𝐴.[∀𝐵.[[∀𝑥.[[[𝑥 ∈ 𝐴] ⊃ [𝑥 ∈ 𝐵]]∧[[𝑥 ∈ 𝐵] ⊃ [𝑥 ∈ 𝐴]]]]] ⊃ [𝐴 = 𝐵]]].

The difference between this version and the previous version is that one
began with the words “Suppose 𝐴 and 𝐵 are sets” and the formal version
had some additional conditions expressing that assumption. So the strong
version of the axiom implies that if 𝐴 has no members then 𝐴 is the empty
set. This might seem innocuous but it means that for all 𝐴, 𝐴 is a set, which
is an additional assumption we haven’t made previously. Assuming this
axiom, whenever we see a statement of the form 𝑥 ∈ 𝐴 not only must 𝐴
be a set but so must 𝑥. I’ve been deliberately vague about what can be a
member of a set but with this version of Extensionality the answer is that
the only things which can be members of sets are sets.
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Can we have a set of natural numbers? That is compatible with the strong
version of Extensionality because we’ve implemented natural numbers as
sets. We can also implement integers, rational numbers, real numbers and
complex numbers as sets. The usual way to implement the integers, for ex-
ample, is as equivalence classes of ordered pairs of natural numbers, where
the equivalence relation is the set of pairs of pairs ((𝑣, 𝑤), (𝑥, 𝑦)) for which
𝑣 + 𝑦 = 𝑤 + 𝑥.
In general this version of Extensionality is compatible with modern math-
ematics. Whether it’s a good idea or not is another question. It forces us to
implement everything as a set. The fact that we can do this doesn’t neces-
sarily mean we want to be forced to.
Assuming this version of Extensionality, if we start with a set then all of
its members, if it has any, are sets. All of their members, if they have any,
are sets. The same applies to their members. Starting from a set, choosing
one of its members, then one of its members, etc. we get a sequence of sets
which is either infinite or terminates with the empty set. If we assume the
Axiom of Foundation and the Axiom of Replacement as well then it cannot
give an infinite sequence and so must terminate with the empty set. So in
some sense all sets are built from only the empty set.

Zermelo-Fraenkel

The most common choice of axioms for set theory is
• the strong version of Extensionality,
• Elementary Sets, without assuming the existence of the empty set,

which we can get from Separation and Infinity, or if you really take a
first order logic with existential presuppositions seriously, from the
mere fact that it has a name.

• Separation,
• Power Set,
• Union,
• Infinity, but the version corresponding to implementing the natural

numbers as von Neumann ordinals,
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• Replacement, in the version which constructs the range rather than
the function,

• Foundation,
• Zorn’s Lemma, or, equivalently, the Axiom of Choice.

The version without the Axiom of Choice is known as Zermelo-Fraenkel,
or just ZF. The versionwith Choice is just called Zermelo-Fraenkel with the
Axiom of Choice, or ZFC. Zermelo would have hated this terminology. He
felt that Fraenkel had vandalised his theory by adding some of the axioms
above and wouldn’t have wanted to have his name associated with ZF or
ZFC.
Most introductions to set theory start with examples from outside mathe-
matics, e.g. the set of students in a particular class, the set of people in a
building, etc. In view of the comments on the strong version of Extension-
ality none of these things are sets in Zermelo-Fraenkel, with or without
the Axiom of Choice. In fact Zermelo-Fraenkel set theory is aggressively
hostile to possible applications outside of mathematics.
A version of set theory sufficient for large parts of mathematics and nearly
all of computer science, and less openly hostile to other applications, would
be

• the original version of Extensionality
• Elementary Sets
• Separation
• Power Set
• Union
• Infinity, in some version
• Replacement, in some version
• Dependent Choice

EvenReplacement isn’t really needed if you take a strong enough version of
Infinity. You don’t really need any form of Choice for computer science but
Dependent Choice is useful. The axioms above, together with Dependent
Choice, are also sufficient for nearly all of classical mathematics. For some
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parts of modern mathematics the full Axiom of Choice is useful, but then
you have to accept paradoxes like Banach-Tarski. Foundation is probably
best forgotten.

Graph theory
The word “graph” has multiple, unrelated, meanings in mathematics.
What we’re concerned with here is not graphs of functions but rather
graphs as they are understood in the field known, appropriately enough,
as graph theory. A graph is a set of vertices and edges. The edges connect
vertices. There are, in fact, two different ways to make this notion precise,
depending on whether we regard the connections between vertices to
have a direction or not. These are called directed graphs and undirected
graphs.

Examples
Before giving definitions, it may be helpful to consider examples of each.
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Figure 40: An undirected graph

The first example is of land borders within the EU. Vertices are countries
and edges are land borders between them. This is an undirected graph,
because there is no preferred direction for border crossings.
The second example has as its vertices the substrings of the word mathe-
matics which are themselves words. There is an edge from one word to
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mathematics

athematic

mat

thematic

them

tic

the

hem

at

he

a

Figure 41: A directed graph

another if the second occurs as a proper substring of the first without any
other word appearing in between. This is a directed graph because the “is
a proper substring of” relation is not symmetric. Youmight notice that this
graph is very nearly a tree. It only fails to be because the wordmat appears
twice in mathematics. The first occurrence is a proper substring of mathe-
matics but not a proper substring of any proper substring which is a word.
The second occurrence is a proper substring of the word thematic.
Note that the graph is defined by which vertices are connected by an edge,
not by its visual representation in a particular diagram. There are edges
which cross in our directed graph example. This could have been avoided
by rearranging the positions of some vertices and edges but the crossings
are in any case just artifacts of the particular visual representation, not fea-
tures of the graph. A graph which can be drawn in the plane without
edge crossings is called planar. So the EU border graph is planar, even
though this particular diagram has edge crossings. Not all graphs are pla-
nar though. Our third example, with seven vertices and an edge between
each pair of vertices, is not. Proving that a graph isn’t planar is not straight-
forward though, since the presence of edge crossings in some particular
diagram doesn’t really tell you anything. The only way to prove this is to
prove that all planar graphs have some property which all planar graphs
have and then show that this graph doesn’t have it.
You can find a number of other examples of graphs in earlier chapters. All
trees are graphs. Also, all of our state diagrams for idealised machines are
graphs, provided we make one change, which is described below.

221



A

B

C

D

E

F

G

Figure 42: Another undirected graph
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Different notions of a graph
Graph theory is really a collection of closely related theories which differ
in some details, depending on a few basic choices:

• Are our graphs directed or undirected?
• How many vertices and edges do we allow? Finitely many? Count-

ably many, uncountably many?
• Are self-loops, i.e. edges connecting a vertex to itself, allowed?
• Can there be more than one edge between a pair of vertices?

For different applications different combinations of these are useful. We
don’t have time to cover all of them though and so will have to make some
choices.
I’ll take graphs to be directed unless otherwise specified. Most of the
graphs we’ve encountered are best thought of as directed graphs. State
transitions in an idealised machine often go in one direction only. Undi-
rected trees are sometimes useful but most of our trees, e.g. abstract
syntax trees or trees representing possible paths for a non-deterministic
computation, have a natural direction to their edges, from parent to child.
There is no real loss of generality in considering graphs to be directed. We
can always think of an undirected graph as a special case of a directed
graph where for each edge from on vertex to another there is a corre-
sponding edge in the reverse direction. It’s linguistically a bit unfortunate
that undirected graphs are directed graphs but a lot of mathematical
terminology has similar properties. The only real disadvantage of this
point of view is that you have to be careful reading works which deal
only with undirected graphs. They will use the word edge to refer to
what we’re considering a pair of edges. Later we’ll consider Eulerian
paths in an undirected graph, for example. In a text devoted solely to
undirected graphs these would usually be described as traversing each
edge exactly once. If you’re considering undirected graphs as directed
graphs then you need to modify this to say that a path is Eulerian if from
each pair of oppositely directed edges it traverses one edge exactly once
and the other not at all. To avoid clutter in diagrams, whenever we have
an undirected graph I will show a single edge without arrows rather than
a pair with arrows, as I did in the first and third examples above. That
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convention is limited to undirected graphs however. For graphs which
are not undirected I will show both edges where there are two.
I will allow infinite graphs, but will restrict attention to finite graphs wher-
ever that’s convenient. The graphs associated to finite state automata, ab-
stract syntax trees, and computational paths of processes guaranteed to ter-
minate are all finite. The tree of computational paths of a non-terminating
process is infinite.
I will allow self loops in the definition, because they arise naturally in
graphs for finite state automata. For some theorems though it will be nec-
essary to add a hypothesis that the graph has no self loops.
I’ll exclude the possibility of havingmore than one edge from one vertex to
another. This means that for a finite state automaton where there is more
than one input token which causes a given transition we need to list all of
those in the label on a single edge rather than having multiple edges each
labelled by a different token. Note that the restriction is only on multiple
edges from one vertex to another. We are allowed to have two edges be-
tween a pair of edges as long as they go in different directions.
The choices above are motivated mainly by applications to the theory of
computation. Graph theorists tend to make a different set of choices, pre-
ferring undirected finite graphs with no self loops.

Definition
With the conventions chosen above we can define a graph as a set, the set
of vertices, and a relation on that set, the set of order pairs of vertices for
which there is an edge connecting the left component of the pair to the
right component. From this point of view graph theory is just the study of
relations on sets, but the questionswe askwhen considering such a relation
as a graph are different from the ones we normally ask about relations. It is
sometimes helpful though to recast problems about relations as problems
about graphs, to take advantage of our spatial intuition.
With this definition a graph is undirected if and only if it is symmetric,
i.e. if and only if (𝑥, 𝑦) belongs to the edge relation whenever (𝑦, 𝑥) does.
Self loops are just pairs of the form (𝑥, 𝑥).
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If we allowed multiple edges from one vertex to another we would have to
adopt a different set of definitions. The usual way to to this is to have two
sets, for vertices and relations, and two relations, each of which applies to
a vertex and an edge. The first is the “is the initial vertex of” relation and
the second is the “is the final vertex of” relation.

Ways to describe finite graphs
All the examples so far have been given via diagrams. This works well for
human viewers and small graphs, but becomes unwieldy for larger graphs
or for machine processing. There are several alternative ways to describe
finite graphs. As an example, consider the graph whose diagram has ver-
tices labelled a to e and edges labelled 1 to 6.
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2
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4
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Figure 43: An undirected graph with labelled edges

One way to describe this is with what’s called an incidence table, as shown
below

1 2 3 4 5 6
𝑎 1 1 0 0 0 0
𝑏 0 0 1 1 0 0
𝑐 1 0 1 0 1 0
𝑑 0 0 0 0 1 1
𝑒 0 1 0 1 0 1

There is a row for each vertex and a column for each edge. There is a 1
in the row corresponding to a vertex and the column corresponding to an
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edge if that vertex is an endpoint of that edge, and a 0 otherwise. If we
remove the row and column labels then we get an incidence matrix:

⎡⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
1 0 1 0 1 0
0 0 0 0 1 1
0 1 0 1 0 1

⎤⎥⎥⎥⎥⎥
⎦

There isn’t a particularly good analogue of this for directed graphs. Some-
times people use an incidence matrix with a −1 entry for the initial end-
point and 1 for the final endpoint.
An alternative way to describe a graph is with an adjacency table. This has
a row and a column for each vertex. There is a 1 in a row and column if the
graph has an edge from the vertex corresponding to that row to the vertex
corresponding to that column and a 0 otherwise.

𝑎 𝑏 𝑐 𝑐 𝑒
𝑎 0 0 1 0 1
𝑏 0 0 1 0 1
𝑐 1 1 0 1 0
𝑑 0 0 1 0 1
𝑒 1 1 0 1 0

Again, we can remove the labels to get a matrix, the adjacency matrix:

⎡⎢⎢⎢⎢⎢
⎣

0 0 1 0 1
0 0 1 0 1
1 1 0 1 0
0 0 1 0 1
1 1 0 1 0

⎤⎥⎥⎥⎥⎥
⎦

This is a symmetric matrix, reflecting the fact that our graph is undirected.
It has 0’s along the main diagonal, reflecting the fact that the graph has no
loops.
This representation works well in the case of graphs which are not undi-
rected as well. For our earlier example of a directed graph, the one with
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substrings of the word mathematics, the adjacency matrix is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For each representation, we need an order relation to determine the order
of the rows and columns. For the adjacency matrix we need an ordering of
the vertices. For the incidence matrix we need that and an ordering of the
edges. Different choice of order relation will require permuting the rows
and columns of the matrices. In the particular case above I chose to order
the strings first by length and then lexicographically within those of each
possible length. A more traditional choice for ordering words would be
just to use lexicographic ordering, but this would disguise an important
property of our graph: the fact that it is possible to order the vertices in
such a way that all edges go from vertices earlier in the order to vertices
later in the ordering. Graphs with this property are called directed acyclic
graphs. The come up in a variety of contexts. With such an ordering the
adjacency matrix is lower triangular.
As often happens there differing conventions here. For directed graphs
I’ve chosen to make the rows of the adjacency matrix correspond to initial
endpoints of an edges and make the columns correspond to the terminal
endpoints. Roughly half the world seems to use that convention and half
uses the reverse convention. The effect of changing conventions is to trans-
pose the matrices.

Bipartite graphs, complete graphs, colouring
A graph is called complete if it has no self loops but otherwise has an edge
from each vertex to each other vertex. Complete graphs are undirected.
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The graph I gave earlier as an example of a non-planar graph is complete.
The adjacencymatrix of a complete graph looks like an identitymatrixwith
the 1’s and 0’s reversed. A complete graph with 𝑛 vertices, known as a 𝐾𝑛.
Our example graph is therefore a 𝐾7.
A graph is called bipartite if the set of vertices can be partitioned into two
subsets, such that all the edges connect a vertex from one subset to a ver-
tex from the other. An example is the graph above with labelled edges.
The two subsets of vertices are {𝑎, 𝑏, 𝑑} and {𝑐, 𝑒}, in the labeling from that
diagram. This bipartite graph has the property that for every vertex in
the first subset and every vertex in the second there is an edge connecting
them. That is not a requirement of the definition. A bipartite graph with
𝑝 vertices in one set and 𝑞 in the other is called a 𝐾𝑝,𝑞. These graphs are
often referred to as “complete bipartite” graphs. This terminology is un-
fortunate, because these graphs are not in fact complete graphs for 𝑝 > 1
or 𝑞 > 1, so I won’t use it.
Another example is given in the figure after. In this case it’s easy to see
that the graph is bipartite because every edge connects an even numbered
vertex to an odd numbered one.
Bipartite graphs arise in a variety of contexts. The one above is related to
the finite projective plane of order 2. The even numbered vertices corre-
spond to points and the odd numbered vertices correspond to lines. There
is an edge joining two vertices if and only if they correspond to a point and
a line through that point.
More generally we can consider graphs whose set of vertices can be par-
titioned into 𝑘 disjoint subsets such that no edge connects two vertices in
the same subset. Such a partition is called a 𝑘-colouring of the graph. A
bipartite graph is then one with a 2-colouring. It’s not terribly difficult to
show that every finite planar graph has a 5-colouring, and indeed to give
reasonably efficient algorithms for finding a 5-colouring for a given graph.
It’s considerably more difficult to show that every planar graph has a 4-
colouring. There are planar graphs which can’t be 3-coloured. Indeed 𝐾4
is such a graph. Deciding whether or not a graph has a 3-colouring is a
hard computational problem. Earlier I mentioned that 𝐾7 is not planar. In
general 𝐾𝑛 can’t be coloured with fewer than 𝑛 colours so it follows from
the Four Colour Theorem that 𝐾𝑛 is not planar for 𝑛 > 4.
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Figure 44: A bipartite graph
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Homomorphisms
Supposewe have two graphs, onewith vertex set𝑉 and edge relation𝐸 and
the other with vertex set 𝑊 and edge relation 𝐹. A function 𝑔 from 𝑉 to 𝑊
is called a graph homomorphism (𝑔(𝑎), 𝑔(𝑏)) ∈ 𝐹 whenever (𝑎, 𝑏) ∈ 𝐸.
Several concepts we’ve already defined can be expressed in terms of ho-
momorphisms. For example, a graph 𝐸 is bipartite if and only if there is
a homomorphism 𝑔 from it to a complete graph with two vertices, which
we’ll call 𝑢 and 𝑣, since we can partition the vertices 𝐸 into those for which
𝑔(𝑎) = 𝑢 and those for which 𝑔(𝑎) = 𝑣. The definition of a homomorphism
and the fact that complete graphs have no self-loops imply that there are
no edges between a vertex in the first set and a vertex in the second set.
More generally, a graph has an 𝑚-colouring if and only if there is a homo-
morphism from it to a complete graph with 𝑚 vertices.
A graph homomorphism is called a graph isomorphism if it is a bijective
function and its inverse is also a homomorphism. In other 𝑔 from 𝑉 to 𝑊
is an isomorphism if is bijective and (𝑔(𝑎), 𝑔(𝑏)) ∈ 𝐹 whenever (𝑎, 𝑏) ∈ 𝐸
and vice versa. In the special case 𝑊 = 𝑉 and 𝐹 = 𝐸 it’s called an automor-
phism.
There is rarely much point in distinguishing between isomorphic graphs,
and people often implicitly treat isomorphic graphs as equal. For example,
people talk of 𝐾𝑛 as the complete graph with 𝑛 vertices. Technically, there
is such a graph for each set with 𝑛 elements, but for purposes of graph
theory they all behave the same, and so we speak as if there were only one.
An easy way to describe isomorphism, at least for finite graphs, is that two
graphs are isomorphic if and only if their vertices can be ordered in such
a way that they have the same adjacency matrix. Or, if we don’t want to
disturb an ordering that we may already have given the vertices, they are
are isomorphic if and only if one adjacency matrix can be converted into
the other by applying a permutation to the rows and applying the same
permutation to its columns.
Every graph has at least one automorphism, corresponding to the identity
function, but even small graphs may have many more. 𝐾𝑛 has 𝑛! automor-
phisms, since any bijective function from the set of vertices to itself will be
an automorphism. 𝐾𝑝,𝑞 has 𝑝! · 𝑞! automorphisms, unless 𝑝 = 𝑞, in which
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case there are twice as many, because in that case we can not only permute
each of the two subsets into which the vertices have been partitioned but
can also swap the two subsets. The graph we saw earlier, with vertices la-
belled 0 to 13, has 336 automorphisms. Our first two examples of graphs,
by contrast, have only the identity automorphism.

Subgraphs, degrees
Suppose we have a graph with vertex set 𝑉 and edge relation 𝐸. If 𝑊 is a
subset of 𝑉 and 𝐹 is a subset of the restriction of 𝐸 to 𝐹 then we say that the
with vertex set 𝑊 and edge relation 𝐹 is a subgraph of the one with vertex
set 𝑉 and edge relation 𝐸. Note that in cases where two vertices 𝑥 and 𝑦 in
𝑊 are connected by an edge in 𝐹 they are required to be connected by an
edge in 𝐸, but not vice versa. We could, for example, obtain a subgraph by
keeping all the vertices and removing all the edges, although this wouldn’t
be particularly interesting. For a slightly more interesting example, con-
sider the graph with 14 vertices considered earlier. It can be considered as
a subgraph of 𝐾7,7, since we could add further edges between each even
numbered vertex and each odd numbered vertex.
Like many concepts in graph theory, the notion of a subgraph is related to
graph homomorphisms. If 𝑉 is a subgraph of 𝑊 then the inclusion func-
tion from 𝑉 to 𝑊, i.e. the one defined by 𝑔(𝑎) = 𝑎 for all 𝑎 ∈ 𝑉, is a graph
homomorphism.
The in-degree of a vertex in a graph is the number of edges from that vertex
while the out-degree is the number of edges to that vertex. In undirected
graphs these two numbers must be the same and are just called the degree
of the vertex. Corresponding vertices in isomorphic graphs have the same
in-degrees and have the same out-degree. This can be used to show that a
pair of graphs are not isomorphic, by showing that the number of vertices
with a given in and out degree differ between the two graphs.
Degrees are generally only useful when they’re finite. This is certainly the
case for finite graphs but it is possible to have an infinite graph where all
the vertices have finite degree.
An undirected graph where all vertices have the same degree is called reg-
ular. Complete graphs are always regular. A 𝐾𝑝,𝑞 is regular if and only if
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𝑝 = 𝑞. The EU borders graph considered earlier is very far from regular.
There are some vertices, e.g. Ireland, with degree 0 while Germany has de-
gree 8. An example of a regular graph which is not a 𝐾𝑛 or 𝐾𝑝,𝑝 can be
found in the accompanying figure, where each vertex has degree 5.
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Figure 45: A regular graph

Each edge goes from on vertex to another. If we group the edges by their
initial endpoints then the number for each vertex is its out-degree, so the
number of edges is equal to the sumof the out-degrees of the vertices. Simi-
larly, if we group them by their final endpoints thenwe see that the number
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of edges is equal to the sum of the in-degrees of the vertices. The sum of
the in-degrees is therefore equal to the sum of the out-degrees.
For an undirected graph the in-degrees and out-degrees are the same, so
we can just say that the sum of the degrees is equal to the number of edges.
We have to be careful here though, because edges occur in pairs an our
convention is to draw only one of each pair. The sum of the degrees is
therefore twice the number of edges visible in the diagram. This is always
an even number so we obtain the useful result that the sum of the degrees
of the vertices in an undirected graph is always and even number, and the
corollary that the number of vertices of odd degree is even.

Walks, trails, paths, etc.
A walk in a graph is a list of edges where the final endpoint of each edge,
other than the last, is the initial point of the next one. Of course for an
undirected graph we don’t have to worry about which vertex is the initial
vertex andwhich is the final vertex of an edge, since there is always another
edge with the opposite orientation. You can check that the edges (𝑎, 𝑏),
(𝑏, 𝑐) (𝑐, 𝑑), (𝑑, 𝑒), (𝑒, 𝑓 ), (𝑓 , 𝑔), (𝑔, ℎ), (ℎ, 𝑖), (𝑖, 𝑗), (𝑗, 𝑘), (𝑘, 𝑙) form a path of
length 11. It’s more efficient to list the vertices in order than to list the edges
though to avoid listing vertices twice, once as the initial endpoint of an edge
and once as the final endpoint. The walk above would then be given by the
list of vertices (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙). Note that the number of vertices in
such a list is always one greater than the number of edges.
Walks are also describable in terms of graph homomorphisms. Consider
the directed graph whose vertices are the natural numbers 0, 1, …, 𝑚 and
whose edges connect each of these numbers, except the last, to its succes-
sor. Specifying a walk of length 𝑚 in a graph is equivalent to specifying a
homomorphism from from the graph just described to it.
A walk in an undirected graph, like the one above, is called a trail if at
most one from each pair of edges appears and is called a path if each edge
appears at most once. The walk above is both a trail and a path. It can be
extended further as a trail but not as a path. We could, for example, extend
the path further by adding the edge (𝑙, 𝑗) to get a trail of length 12, but this
would not be a path since the vertex 𝑗 would appear twice. In fact there
can’t be a trail of length 12 in this graph because the number of vertices
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appearing in a trail is one greater than the length and this graph only has
12 vertices.
A walk is called closed if it starts and ends with the same vertex.
The walk above is not closed, but it can be extended to a closed
walk, which visits the vertices in the order given by the following
list: (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑗, 𝑒, 𝑘, 𝑔, 𝑙, ℎ, 𝑐, 𝑖, 𝑑, 𝑎). This is a closed path of
length 21. It is in fact a trail. Closed trails are called circuits.
How long could a circuit in this graph be? The number of edges is the sum
of the degrees of the vertices and there are twelve vertices, each of degree
5, so there are 60 edges, or 30 pairs of edges, so no trail could possibly
have length greater than 30. In fact we can’t even have one that long. The
number times a vertex appears as the initial vertex of an edge in a circuit
must be equal to the number times it appears as a final vertex and there are
only five pairs of edges for each vertex so the we can’t have more than two
incoming and two outgoing edges appearing in a circuit. With 12 vertices
there therefore can’t be more than 24 edges.
Suppose a non-empty undirected graph has all vertices of degree at least 2.
Then it has a simple circuit. We can see this as follows. Given any vertex 𝑣
of degree at least two there is a pair of distinct edges through 𝑣. Taking one
and then the other gives a path length two passing through 𝑣. Consider the
set of paths through 𝑣. The length of such a path is at most the number of
vertices in the graph. There is therefore a longest such path. The final point
of the path has degree at least two and only one of the edges it traverses
is in the path, since the path has no repeated vertices. Adding that edge
gives a longer walk, but it can’t give a longer path, since we’ve already
chosen one of maximal length. The other vertex of the edge we’ve added
must then be one of the vertices already in the path. Following from that
vertex along the path and then back along the edge we’ve just added gives
a simple circuit.
Another case inwhichwe know there is a non-trivial simple circuit is when
there are two vertices connected by distinct paths. We can get a closed path
by following one path in the forward direction and the other in the reverse
direction, but that walk need not be a circuit, let alone a simple circuit. We
can, however, look at the first vertex where the two paths diverge and the
first vertex after that where they come together again. If we look only at
the parts of the paths between those two vertices then we can still follow
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one in the forward direction and the other in the reverse direction. This
time the resulting closed walk will be a simple circuit.
A trail or circuit is called Eulerian if exactly one from each pair of edges
appears. Our example graph has no Eulerian path or circuit. We’ve seen
that there are 30 edges and no circuit can be of length greater than 24. A
slight modification of the argument which showed that also tells us that no
path has length greater than 25. To get an example we therefore need to
look at a different graph. The one in the accompanying figure will work.
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Figure 46: A bipartite regular graph
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This is a regular bipartite graph with 12 vertices, each of degree 6. There
are therefore 36 pairs of edges, so a circuit of length 36 must be Eulerian.
One such example is the graph which visits the vertices a, b, e, l, a, d, k, l, c,
j, k, b, i, j, a, h, i, l, g, h, k, f, g, j, e, f, i, d, e, h, c, d, g, b, c, f, and a that order,
as shown in the following figure, where the edges are given the orientation
in which they are traversed in the Eulerian trail.
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Figure 47: An Eulerian path in the bipartite regular graph
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Connectedness
Given a graph with vertex set 𝑉 we can define a relation 𝑆 on 𝑉 by saying
that (𝑣, 𝑤) ∈ 𝑆 if 𝑣 = 𝑤 or there is a walk with initial vertex 𝑣 and final
vertex 𝑤. This is a reflexive relation, because we defined (𝑣, 𝑤) ∈ 𝑆 to be
true if 𝑣 = 𝑤. It is also a transitive relation. In other words, if (𝑢, 𝑣) ∈ 𝑆 and
(𝑣, 𝑤) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. If 𝑢 = 𝑣 then (𝑢, 𝑤) and (𝑣, 𝑤) are the same, so
it’s clear that if (𝑣, 𝑤) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. Similarly if 𝑣 = 𝑤 then (𝑢, 𝑣) and
(𝑢, 𝑤) are the same, so if (𝑢, 𝑣) ∈ 𝑆 then (𝑢, 𝑤) ∈ 𝑆. The only interesting
case is therefore the one where there is a walk from 𝑢 to 𝑣 and a walk from
𝑣 to 𝑤. In this case we can obtain a walk from 𝑢 to 𝑤 by concatenating the
list of edges in the walk from 𝑢 to 𝑣 and the list of edges in the walk from
𝑣 to 𝑤.
If the relation 𝑆 is antisymmetric then we say the graph is a directed acyclic
graph. In this case the set of vertices with the relation 𝑆 form a partially
ordered set.
A tree is just a directed acyclic graph in which there is at most one walk
from any vertex to any other vertex. In the theory of undirected graphs we
say that a graph is a tree if it’s connected and has no simple circuit of length
greater than two. These two seemingly different definitions are related as
follows. An undirected graph is a tree, as defined for undirected graphs, if
and only if its possible to choose a direction for each edge making it into a
tree, as defined for directed graphs.
If the graph is undirected then 𝑆 is symmetric, since we can then obtain a
walk from 𝑣 to𝑤 from awalk from 𝑤 to 𝑣 by reversing the order of the edges
in the walk and reversing the direction of each edge. So in this case the re-
lation 𝑆 is an equivalence relation. The equivalence classes are called con-
nected components. A non-empty undirected graph is called connected if
it has only one connected component, i.e. if for every two distinct vertices
there is a walk connecting them. All of the undirected graphs which have
appeared so far are connected, except for the EU border graph, which has
five connected components. One each with just Cyprus, Ireland andMalta
as members, one with just Finland and Sweden, and one with all other EU
states as members.
If two distinct vertices belong to the same equivalence class then there is a
walk between them. Lengths of walks are natural numbers so there must
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then be a shortestwalk. If thiswalk had a vertexwhich appearedmore than
once thenwe could further shorten it by removing all the edges between its
first appearance and its last, but then itwouldn’t be a shortestwalk, so there
can be no repeated vertices. In other words the walk is a path. We already
knew from the definition that any two vertices in a connected component
are connected by a walk but the argument above shows that they are in
fact connected by a path. This is a stronger statement since every path
is a walk but not every walk is a path. It would have been a bad idea to
define connected components in terms of paths though since this would
have made it harder to prove the transitivity property.

Eulerian trails and circuits
Given a trail in an undirected graph we can form a subgraph by taking
the same set of vertices in the original graph but keeping only those edges
which appear in the trail. In the case of an Eulerian path we will then
be keeping one edge from each pair. The diagram of this new, directed,
graph will be the same as the diagram of the original graph, except each
edge will have an arrow indicating its direction, as in our earlier bipartite
regular graph example.
You may we recall that we’ve already seen a directed graph which selected
one edge from each pair, as a way of showing that the graph is bipartite.
That graph had the property that at each vertex the edges were either all
outgoing or all incoming. In terms of degrees, for each vertex either the
in-degree or out-degree is zero. This new directed graph is different. Here
the in-degree and out-degree are always equal.
More generally, suppose we start from an Eulerian trail in an undirected
graph and create a directed graph by keeping all the vertices and those
edges belonging to the path, as above. Whenever a vertex appears in the
interior of the trail, i.e. not as the initial or final vertex, it is the final end-
point of one edge and the initial endpoint of the following edge so the first
of those edges contributes one to the in-degree and the latter contributes
one to the out-degree. The initial edge contributes one to the out-degree of
its initial endpoint and the final edge contributes one to the in-degree of its
final endpoint. All of the contributions of any edge to the degrees of any
vertex arise in one of the ways just described. So for all but the initial and fi-
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nal vertices of the trail the in-degree and out-degree must be the same. For
the initial vertex the in-degree is one less than the out-degree and for the
final vertex it is one more, unless the initial and final vertex are the same,
i.e. unless the trail is a circuit, in which case the in and out degrees at that
vertex are again the same. Each edge in the directed graph corresponds to
a pair of edges in the original undirected graph and each such edge con-
tributes one to the degree of its endpoints so the degree of a vertex in the
undirected graph is the sum of the in-degree and out-degree of that vertex
in the directed graph. This degree is therefore even, except in the case of a
trail which is not a circuit, in which case the degrees of the initial and final
vertices are odd. There are therefore either zero or two vertices of odd de-
gree in an undirected graph with an Eulerian trail. If there are zero then
that trail, and all other Eulerian trails, are circuits. If there are two then that
trail, and all other Eulerian trails, are not circuits. If the number of vertices
of odd degree in an undirected graph is not equal to zero or two then there
is no Eulerian trail.
In particular the regular graph we considered earlier with twelve vertices
of degree five has no Eulerian trail since it has twelve odd vertices. We can
also see that any Eulerian path on the graph we just considered is a circuit,
since the number of odd vertices is zero.
Suppose we have an undirected graph all of whose vertices have even de-
gree and at least one has positive degree. Then there is a trail of positive
length through that vertex. The number of edges in trail is at most the
number of total edges, which is finite, so there is a longest trail through
that vertex. What can we say about this trail?
First of all, such a longest trail must in fact be a circuit. To see this we
construct two subgraphs. Both have the same vertex set as the origin graph.
The first has those edges which belong to the trail, along with the edges in
the reverse direction. The second has all the other edges. These are both
undirected graphs. The first graph was constructed to have an Eulerian
trail. If the initial or final vertex of this trail had odd degree in the first
subgraph then it would also have odd degree in the second subgraph, since
the two degrees add up to the degree in the original graph. Zero is not an
odd number so the degree in the second subgraph is positive, whichmeans
there is a pair of edges in the original graph with that vertex as their initial
or final endpoint, neither of which belong to the trail. We could therefore
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extend the trail by appending one or the other of these edges, either at the
beginning, if the vertex is the initial vertex or the trail, or at the end, if it’s
the final vertex, to obtain a longer trail. Since our trail was chosen to be
as long as possible this is impossible, so the degree of the initial and final
vertices in the first subgraph is even and therefore those vertices are the
same and the trail is a circuit.
Next, a longest trail contains one edge from each pair attached to any of
its vertices. We use the same subgraphs as before. We’ve now established
that the first subgraph has an Eulerian circuit and that the degrees of the
vertices in an undirected graph with an Eulerian circuit are all even so the
degrees of all vertices in the first subgraph are all even. We know that the
degree of each vertex in the original graph is even and is the sum of its
degrees in the two subgraphs so the degree in the second subgraph is also
even. Suppose there were a vertex on the circuit which did not contain
an edge from each pair connected to it. Then those edges would be in the
second subgraph. The second subgraph thus has vertices of even order
and this vertex has positive degree so by what we proved in the preced-
ing paragraph, applied now to this subgraph, there is a circuit of positive
length through this vertex. We could then splice this circuit in to the orig-
inal trail to obtain a longer trail, but this is impossible, so the assumption
that there is such a vertex is untenable.
So nowwe know that a longest trail through a vertex is necessarily a circuit
and that it contains all edges connected to any of its vertices. Consider
now a walk starting at the same vertex. The final vertex of this walk must
be traversed by the circuit. This is proved by induction on the length of
the walk. If the walk is of length 0 then the final vertex is the initial one
and so is certainly traversed by the circuit. If the length is positive then we
can assume, by induction, that circuit traverses the final vertex of the walk
obtained by deleting the final edge of the original walk. But every edge
through that vertex is then traversed by the circuit, including the edge we
just deleted, so the final edge of the original path, and hence the final vertex,
is traversed by the circuit.
Every vertex in the same component of the graph as the original vertex
is connected to that vertex by a walk, and so is traversed by the circuit,
as are all the edges connected to it. So a longest path through a vertex
traverses every vertex and edge of that component. In particular, if the
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graph is connected then the longest trail traverses every vertex and edge
of the graph. It is therefore an Eulerian trail and, since we’ve already seen
that it’s a circuit, is an Eulerian circuit.
What we have just shown is that a connected undirected graph has an Eu-
lerian circuit if and only if all of its vertices have even degree. There is
a similar theorem for non-closed Eulerian trails. A connected undirected
graph has such a trail if and only if exactly two of its vertices have odd
degree. Those two vertices are the initial and final points of the trail. The
trick to proving this is to consider the original graph as a subgraph of a
larger graph, obtained by adding an extra vertex and pairs of edges from
that vertex to the two odd vertices. The larger graph has vertices of even
degree and so has an Eulerian circuit. This circuit goes through the added
vertex. If we remove the edges in and out of this vertex then we obtain an
Eulerian trail in the original graph.
Previously we saw that if there is an Eulerian circuit then the graph is con-
nected and all vertices have even degree. We now have the converse, that
if the graph is connected and all vertices have even degree then there is
an Eulerian circuit. A similar statement applies to graphs with exactly two
vertices of odd degree and Eulerian trails.
It’s often said that proofs by contradiction are non-constructive but the one
above does actually give an algorithm for finding Eulerian circuits:

• Choose a vertex.
• Starting at that vertex continue to an adjacent vertex, a vertex adjacent

to that, etc., always avoiding edges which have already been used in
either direction. Do this until there are no available edges left wher-
ever you stopped.

• The vertex where you stopped must be the one where you started,
so you have a circuit, but not necessarily an Eulerian one. If it’s not
Eulerian then there’s a vertex somewhere along the path with edges
you haven’t used. Starting from that vertex continue to an adjacent
vertex, a vertex adjacent to that, etc. When you can’t continue any
further youmust have ended up at the vertex where you left the orig-
inal circuit. Splice the new circuit into the old one at the point where
it was first visited.
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• Keep doing the preceding operation until there are no vertices on
the circuit with available edges. At this point you have an Eulerian
circuit.

Hamiltonian paths and circuits
A path is called Hamiltonian if it traverses every vertex exactly once. A
circuit is called Hamiltonian if it traverses every vertex exactly once, except
that the initial and final vertices are the same. The definition is similar to
that of Eulerian trails and circuits, but the question of whether a graph has
a Hamiltonian path or circuit turns out to bemuchmore difficult to answer
than the question of whether it has an Eulerian trail or circuit.
Some information is easy to obtain. 𝐾𝑛 always has a Hamiltonian path and
a Hamiltonian circuit. We can order the vertices however we like and then
visit each one in order, since every pair of vertices is connected by an edge.
To get a circuit we just append another edge from the last vertex in the path
to the first.
For 𝐾𝑝,𝑞 the answer depends on 𝑝 and 𝑞. Any walk in 𝐾𝑝,𝑞 alternately visits
vertices from the set of 𝑝 vertices and the set of 𝑞 vertices, since there are
no edges within either set. So at the end of any path in 𝐾𝑝,𝑞 the number of
edges visited from one set differs by at most one from the number visited
from the other set. So there is no Hamiltonian path unless |𝑝 − 𝑞| ≤ 1. Con-
versely, if this inequality is satisfied then we can find a Hamiltonian path.
If 𝑝 = 𝑞 then we can also find a Hamiltonian circuit.
The bipartite regular graph we used earlier as an example for Eulerian
paths also has a Hamiltonian circuit, which is just a, b, c, d, e, f, g, h, i,
j, k, l, a, which is shown in the accompanying diagram.
This Hamiltonian path is far from unique. We can obtain other ones just
by visiting the vertices in clockwise or anticlockwise order.
The earliest example of a Hamiltonian path is the Knight’s Tour problem
in chess. The graph in question has the squares of the chessboard as ver-
tices and vertices are adjacent if and only if they are a knight’s move apart.
A knight’s tour is a set of moves visiting each square exactly once, i.e. a
Hamiltonian path in the graph. The earliest known solutions are by al-Adli
ar-Rumi and byRudrata, and date to the ninth century. Again, theseHamil-
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Figure 48: A bipartite regular graph
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tonian paths are far from unique. In fact there are 19,591,828,170,979,904
of them.

Spanning trees
As we’ve already discussed, graphs do not necessarily have Hamiltonian
paths. Connectedness is a necessary condition for the existence of a
Hamiltonian path, but it’s not a sufficient condition. Connected undi-
rected graphs without self-loops do, however, always have spanning tree,
i.e. a subgraph which is a tree and has every vertex of the original graph
as a vertex.
The largest connected component of the EU border graph, for example, has
the spanning tree shown in the accompanying diagram. Edges which be-
long to the spanning tree are shown in bold, while edges which belong to
the original graph but not the spanning tree are dotted.

AT

CZ

DE

HU

IT

SI

SK

PL FR

LU

NLDK

RO

BE

BG

EL

EE

LV

ES

PT

HR LT

Figure 49: An undirected graph

To show that every connected graph has a spanning tree we use an argu-
ment similar to the one used earlier for the existence of Eulerian trails. For
the rest of this paragraph whenever I refer to a tree I will mean a subgraph
of the original graph which is a tree. The number of vertices in a tree is at
most one less than the number of vertices in the graph, so there must be a
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tree with a maximal number of vertices. If there were a vertex in the graph
whichwas not in the tree thenwe could obtain a larger tree as follows. Pick
a vertex in the tree and one not in the tree. The graph is connected so there
is a walk from the first vertex to the second. Consider the last vertex of the
tree which belongs to this walk. The next edge connects that vertex to a
vertex not in the tree. Adjoining that edge to the tree gives a graph which
is still connected and has no loops and so is a tree. It would therefore be a
larger tree, but we chose our tree to be maximal, so this can’t happen. In
other words, there is no vertex in the tree but not in the graph, so the tree
is a spanning tree.
There are, in general, many possible spanning trees. It’s common in ap-
plications that there is a cost function on the edges of the graph and that
one wants to minimise the cost of the tree, i.e. the sum of the costs of the
edges in the tree, among all the spanning trees of the graph. Such a cost-
minimising spanning tree is called a minimal spanning tree. The existence
of aminimal spanning tree is easy to prove. Spanning trees are determined
by their edges, which are a subset of the edges of the original graph. There
are only finitelymany edges in the original graph and so only finitelymany
spanning trees. The total cost determines an ordering of spanning trees and
we’ve already seen that orderings of finite sets have minimal elements. If
you actually want to find a minimal spanning tree then finding all span-
ning trees, computing their total costs, and then choosing one with the
lowest cost is not an efficient algorithm. A number of efficient algorithms
are known though.

Abstract algebra
Binary operations
If 𝐴 is a set then a function from 𝐴2 to 𝐴 is called a binary operation. Ex-
amples include

• ∧ on Boolean truth values
• ∨ on Boolean truth values
• ⊃ on Boolean truth values
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• + on the natural numbers
• · on the natural numbers
• the maximum operation on natural numbers
• the minimum operation on natural numbers
• ∩ on the power set of a given set
• ∪ on the power set of a given set
• ∖ on the power set of a given set
• ∘ on the set of functions from a given set to itself
• ∘ on the set of relations on a given set to itself
• ∘ on the set of homomorphisms from a graph to itself
• ∘ on the set of isomorphisms from a graph to itself
• the concatenation operation on lists all of whose items belong to a

given set
Functions are left total, so we can’t define subtraction or division as binary
operations on the natural numbers. We can define subtraction as a binary
operation on a larger set, like the set of integers, rationals or reals. We
can’t define division as a binary operation on any of these sets, at least if
we want the relation (𝑥/𝑦) · 𝑦 = 𝑥 to hold for all 𝑥 and 𝑦, because of the
problems with division by zero.
The notation used for binary operations varies. Most of the operations
above are usually written with an infix notation, like 𝑥 · 𝑦, 𝐴 ∪ 𝐵, or 𝑓 ∘ 𝑔.
Maximum andminimum are usually written with functional notation, like
max(𝑥, 𝑦). Arguably this should bemax((𝑥, 𝑦)) with one set of parentheses
identifying function arguments and the other identifying an ordered pair,
since this is a function on ordered pairs, but in reality no one uses that no-
tation. The infix notation 𝑥 ∧ 𝑦 for maximum and 𝑥 ∨ 𝑦 for minimum is
sometimes used. This is consistent with the notation for Boolean operators
provided you accept that falsehood is greater than truth. Notation for con-
catenation is not completely standardised. Functional notation is used by
some authors. Others use an infix notation, often with no actual symbol in
between, like 𝑣𝑤 for the list consisting of the items of 𝑣 followed by those
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of 𝑤. I’ll use a mix of notations, but will mostly prefer functional nota-
tion when described properties of general binary operations and whatever
notation is most commonly used for specific binary operators when they
appear as examples.
A binary operation 𝑓 on a set 𝐴 is called associative if

𝑓 (𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑥, 𝑦), 𝑧)

for all 𝑥, 𝑦 and 𝑧 in 𝐴. It is called commutative if

𝑓 (𝑥, 𝑦) = 𝑓 (𝑦, 𝑥)

for all 𝑥 and 𝑦 in 𝐴.
We can apply the associativity property multiple times to show that, for
example

𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧))) = 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧).

This is usually easier to follow with an infix notation. For example, the
previous calculation applied to the union operator for sets is

𝐴 ∪ (𝐵 ∪ (𝐶 ∪ 𝐷)) = (𝐴 ∪ 𝐵) ∪ (𝐶 ∪ 𝐷) = ((𝐴 ∪ 𝐵) ∪ 𝐶) ∪ 𝐷.

The parentheses tell you in what order the union operator is to be applied
but the equation essentially tells you that the order doesn’t matter. Or at
least it tells you that the order doesn’t affect the final result. In a computa-
tional problem the order may have a very noticeable affect on the time or
resources required. Matrix multiplication, for example, is associative, in
the sense that if 𝐿, 𝑀 and 𝑁 are matrices such that the 𝑀 has as many rows
as 𝐿 has columns and as many columns as 𝑁 has rows then

(𝐿𝑀)𝑁 = 𝐿(𝑀𝑁).

Without those conditions on the numbers of rows and columns the prod-
ucts are not defined. Suppose 𝐿 is has 𝑚 rows and 𝑛 columns while 𝑁
has 𝑝 rows and 𝑞 columns. The number of multiplications needed to com-
pute 𝐿𝑀 is 𝑚𝑛𝑝 and the number of further multiplications needed to com-
pute (𝐿𝑀)𝑁 is𝑚𝑝𝑞, so the left hand side requires𝑚𝑝(𝑛 + 𝑞)multiplications.
Similarly, number of multiplications needed to compute 𝑀𝑁 is 𝑛𝑝𝑞 and the
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number of further multiplications needed to compute 𝐿(𝑀𝑁) is 𝑚𝑛𝑞 so the
total number for the right hand side is (𝑚 + 𝑝)𝑛𝑞. These numbers might be
very different. In the case of a square matrix followed by a column vec-
tor, thought of as a matrix with a single column, and then a row vector,
thought of as a matrix with a single row, we would have 𝑚 = 𝑛 = 𝑞 and
𝑝 = 1 so the left hand side needs 2𝑚2 operations while the right hand side
needs 𝑚3 + 𝑚2 operations. Quite a bit of computational linear algebra is
devoted to figuring out the most efficient ways to apply associativity.
Of the examples above, ⊃ and ∖ are neither associative nor commutative.
∘ and concatenation are associative but not commutative. The remaining
ones are all associative and commutative. It’s certainly possible to con-
struct examples of operations which are commutative but not associative,
but naturally occurring examples are somewhat rare. One is the nand op-
erator, ⊼, from Boolean algebra, which we briefly considered in the context
of the Nicod formal system.

Semigroups
A pair (𝐴, 𝑓 ), where 𝐴 is a set and 𝑓 is an associative binary operation on 𝐴,
is called a semigroup.
If (𝐴, 𝑓 ) is a semigroup and 𝐵 is a subset of 𝐴 then we can restrict 𝑓 to
get a function from 𝐵2 to 𝐴. If the range of this function is a subset of 𝐵,
i.e. if 𝑓 (𝑥, 𝑦) ∈ 𝐵 whenever 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵, then this restriction is a binary
operation on 𝐵. It is necessarily associative because if 𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵, and
𝑧 ∈ 𝐵, then 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴, and 𝑧 ∈ 𝐴, and so

𝑓 (𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑥, 𝑦), 𝑧),
by the associativity of 𝑓 on 𝐴. If 𝑓 (𝑥, 𝑦) ∈ 𝐵 whenever 𝑥 ∈ 𝐵 and 𝑦 ∈ 𝐵 then
we say that𝐵 is a subsemigroup of 𝐴. As an example, the set of even natural
numbers, with addition as the operation, is a subsemigroup of the natural
numbers, also with addition. Not every subset is a subsemigroup though.
The set of prime numbers is not a subsemigroup because the sum of prime
numbers needn’t be prime.
There is a general associativity property for semigroups which I hinted at
with the equation

𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧))) = 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧)) = 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)
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above. In stating this it’s convenient to use the word “multiplication” for
the function 𝑓 , even thoughmultiplication is just one of the possible binary
operations wemight consider, and to refer to the result of applying 𝑓 to two
members of 𝐴 as the “product” of those elements. With this convention
the generalised associativity property we want to prove says that the order
in which multiple multiplications is performed doesn’t change the final
product.
One way to state it more precisely, related to our discussion of parsing ear-
lier, is in terms of binary trees. Given a list of 𝑛 members of 𝐴 and a binary
tree with 𝑛 leaves we can compute a corresponding product by filling in
the list items in the leaves and then proceeding up the tree to the root, mul-
tiplying the values of a node’s children to obtain its value. There are, for
example, five possible shapes for a binary tree with four leaves, which you
found in Assignment 0. Each of these gives a different way to compute the
product of a list (𝑤, 𝑥, 𝑦, 𝑧) of members of 𝐴, illustrated in the five accom-
panying figures.

Figure 50: A tree for 𝑓 (𝑓 (𝑤, 𝑥), 𝑓 (𝑦, 𝑧))

One way to see that these are all give the same result for any associative
operation is to look at the accompanying graph, where the five vertices
are the five products and the edges connect those products which can be
shown equal with a single application of the associative law.
The fact that this graph is connected implies that we can show any two
are equal via repeated applications of the associative law, since any walk
tells us the order in which we need to apply the associative law in order to
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Figure 51: A tree for 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)

Figure 52: A tree for 𝑓 (𝑓 (𝑤, 𝑓 (𝑥, 𝑦)), 𝑧)
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Figure 53: A tree for 𝑓 (𝑤, 𝑓 (𝑥, 𝑓 (𝑦, 𝑧)))

Figure 54: A tree for 𝑓 (𝑤, 𝑓 (𝑓 (𝑥, 𝑦), 𝑧))
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f ( f ( f ( w , x ) , y ) , z )

f ( f ( w , x ) , f ( y , z ) )

f ( f ( w , f ( x , y ) ) , z )

f ( w , f ( x , f ( y , z ) ) )

f ( w , f ( f ( x , y ) , z ) )

Figure 55: A graph for products of length 4

get from the product labeling its initial vertex to the one labeling its final
vertex.
Nothing but boredom prevents us from doing the same thing for products
of size 𝑛 for any larger value of 𝑛. The accompanying diagram shows the
graph for 𝑛 = 5.
It’s harder to see, visually, that this graph is connected, but it is. We’d like
an argument which applies to all values of 𝑛 though, rather than treating
each one separately.
The easiest way to prove that all possible products for a given list are equal
is to prove that each is equal to some particular product. We’ll call the prod-
uct where we take our list and continue multiplying the two leftmost items
until there’s only a single item the leftmost product. In our earlier exam-
ple, starting with the original list (𝑤, 𝑥, 𝑦, 𝑧) wewould go through the steps
(𝑓 (𝑤, 𝑥), 𝑦, 𝑧), then (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧), then (𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧)) so the leftmost
product would be 𝑓 (𝑓 (𝑓 (𝑤, 𝑥), 𝑦), 𝑧), the second of the trees shown previ-
ously, and the one which leans to the left the most. This is the product
which we will show that all others are equal to. We won’t define the left-
most product of the empty list but the leftmost product of a list with only
a single item is just that item, which is the trivial case of the procedure
described above of multiplying the leftmost items until only a single item
remains.
We can start with the special case that the product of two leftmost products
is a leftmost product. In other words if 𝑝 is the leftmost product of some list
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f(v,f(w,f(x,f(y,z))))

f(v,f(w,f(f(x,y),z))) f(f(v,w),f(x,f(y,z)))

f(v,f(f(w,x),f(y,z)))f(v,f(w,f(f(x,y),z)))f(f(v,w),f(f(x,y),z))

f(f(f(v,w),x),f(y,z))

f(v,f(f(f(w,x),y,z)))

f(f(v,f(w,x)),f(y,z))

f(f(v,f(w,f(x,y)),z))

f(f(v,f(f(w,x),z)),z)

f(f(v,w),f(f(x,y),z)) f(f(f(v,f(x,y)),y),z)

f(f(f(f(v,w),x),y),z)

Figure 56: A graph for products of length 5

253



𝑃 of members of 𝐴 and 𝑞 is the leftmost product of some list 𝑄 of members
of 𝐴 then 𝑓 (𝑝, 𝑞) is equal to the leftmost product of the concatenation of the
list 𝑃 and the list 𝑄. If this were not true then there would be a shortest
list 𝑄 for which it failed. We’re not defining lists of length zero so 𝑄 is
either of length one or length greater than one. If it’s of length one then it
is just (𝑞) and the concatenation of 𝑃 and 𝑄 is the list 𝑃 with a 𝑞 appended
at the end. When we compute its leftmost product as described above we
first multiply all the items to the left of this final 𝑞, obtaining 𝑝 and then
multiply it with 𝑞, obtaining 𝑓 (𝑝, 𝑞), which is what we’re meant to find, so
the property cannot fail when 𝑄 is of length one. It follows that 𝑄 must of
length greater than one. Let 𝑅 be the list consisting of all but the last item
in 𝑄 and let 𝑠 be the last item. Let 𝑟 be the leftmost product of 𝑅. Then

𝑞 = 𝑓 (𝑟, 𝑠)

so
𝑓 (𝑝, 𝑞) = 𝑓 (𝑝, 𝑓 (𝑟, 𝑠))

and hence, by the associativity property,

𝑓 (𝑝, 𝑞) = 𝑓 (𝑓 (𝑝, 𝑟), 𝑠).

Now 𝑅 and (𝑠) are shorter then 𝑄 and 𝑄 is a list of the least length forwhich
the product of the leftmost products is not the leftmost product so 𝑓 (𝑝, 𝑟)
is the leftmost product of the concatenation of 𝑃 and 𝑅. and 𝑓 (𝑓 (𝑝, 𝑟), 𝑠) is
the leftmost product of the concatenation of that list with (𝑠), which is the
concatenation of 𝑃 with 𝑄. In other words 𝑓 (𝑝, 𝑞) is the leftmost product
of the concatenation of 𝑃 with 𝑄. We’ve just seen that even if we assume
we have a counterexample to the statement that the product of the leftmost
products is the leftmost product of the concatenation then we find out that
it isn’t one. There therefore isn’t a counterexample. This concludes the
proof of the special case.
We can now continue to the proof of the general case. Suppose there is a
product of a list which is not equal to the leftmost product. There must
then be a shortest such list. We haven’t defined products for lists of length
zero and there’s only one possible product for a list of length one so our
list must be of length greater than one and so must be of the form 𝑓 (𝑝, 𝑞)
where 𝑃 and 𝑄 are lists whose concatenation is this list and 𝑝 and 𝑞 are
some products of 𝑃 and 𝑄. But 𝑃 and 𝑄 are shorter than the whole list and
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so any product for them is equal to the leftmost product. The previous
paragraph therefore shows that 𝑓 (𝑝, 𝑞) is equal to the leftmost product of
the concatenation of 𝑃 and 𝑄, which is the list we started with. So again,
even if we assume the existence of a counterexample we find that it isn’t
one.
So now any two products for a list are equal to the leftmost product and
therefore equal to each other, and therefore all products for a list are equal.
We can therefore forget about the order of products in a semigroup.

Identity elements, monoids
Suppose (𝐴, 𝑓 ) is a semigroup, i.e. that 𝑓 is an associative binary operation
on the set 𝐴. A member 𝑖 of 𝐴 is said to be an identity element if for all
𝑥 ∈ 𝐴 we have

𝑓 (𝑖, 𝑥) = 𝑥
and

𝑓 (𝑥, 𝑖) = 𝑥.
Going back to our earlier examples of associative operations we can see
that all but one of them have identity elements.

• ∧ on Boolean truth values: the value false is an identity element.
• ∨ on Boolean truth values: the value true is an identity element.
• + on the natural numbers: 0 is an identity element.
• · on the natural numbers: 1 is an identity element.
• themaximumoperation on natural numbers: 0 is an identity element.
• the minimum operation on natural numbers: there is no identity ele-

ment.
• ∩ on the power set of a given set: the whole set is an identity element.
• ∪ on the power set of a given set: the empty set is an identity element.
• ∘ on the set of functions from a given set to itself: the identity function

is an identity element.
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• ∘ on the set of relations on a given set: the identity function is an
identity element.

• the concatenation operation on lists all of whose items belong to a
given set: the empty list is an identity element.

For the ones which do have an identity element it’s straightforward in each
case to see that the given element is indeed an identity. For the minimum
the non-existence of an identity is the statement that there is no natural
number 𝑖 such that

min(𝑖, 𝑥) = 𝑥
and

min(𝑥, 𝑖) = 𝑥
for all 𝑥, which is clear because the equations above would fail for 𝑥 = 𝑖 + 1.
I’ve referred to an identity rather than the identity above to allow for the
possibility that there might be more than one, but in fact this can’t happen.
Suppose 𝑖 and 𝑗 are identity elements. Then

𝑓 (𝑖, 𝑗) = 𝑗

because 𝑖 is an identity and
𝑓 (𝑖, 𝑗) = 𝑖

because 𝑗 is an identity so
𝑖 = 𝑗.

A semigroup with an identity element is called a monoid, so all the semi-
groups listed above, except for theminimumoperation on the natural num-
bers, are monoids.
A subsemigroup of a monoid which contains the identity element is also a
monoid, with the operation being the restriction of the original operation
and the identity being the identity from the larger monoid. The subsemi-
group is then called a submonoid. The set of even natural numbers, con-
sidered earlier as a subsemigroup of the natural numbers, is a submonoid.
Not all subsemigroups of a monoid are submonoids though.
Another example of a monoid is what’s called the bicyclic semigroup. The
set in this case is the set 𝑁2 of ordered pairs of natural numbers and the
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binary operation is

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐 − min(𝑏, 𝑐), 𝑏 + 𝑑 − min(𝑏, 𝑐)).

I will skip the straightforward but tedious verification that this operation
is associative and therefore that this is a semigroup. It is not commutative
since

𝑓 ((0, 1), (1, 0)) = (0, 0)
while

𝑓 ((1, 0), (0, 1)) = (1, 1).
We have

𝑓 ((0, 0), (𝑥, 𝑦)) = (𝑥, 𝑦)
and

𝑓 ((𝑥, 𝑦), (0, 0)) = (𝑥, 𝑦)
for all (𝑥, 𝑦) so (0, 0) is an identity element. This is therefore not just a
semigroup but a monoid. It would make more sense therefore to refer to
it as the bicyclic monoid, but for historical reasons it is referred to as the
bicyclic semigroup. That name isn’t wrong, since it is a semigroup, but it’s
imprecise.

Inverse elements and groups
Suppose (𝐴, 𝑓 ) is a monoid with identity element 𝑖. 𝑦 ∈ 𝐴 is said to be an
inverse to 𝑥 ∈ 𝐴 if

𝑓 (𝑥, 𝑦) = 𝑖
and

𝑓 (𝑦, 𝑥) = 𝑖
and 𝑥 is then said to be invertible. It’s immediate from the definition that
𝑦 is an an inverse to 𝑥 if and only if 𝑥 is an inverse to 𝑦. Also, the identity
element is its own inverse.
As previously with identity elements I’ve deliberately written “an” rather
than “the” to allow for the possibility that there might be more than one
but we can show that this can’t happen. Suppose 𝑦 and 𝑧 are inverses to 𝑥.
Then we have the following equations:

𝑓 (𝑦, 𝑖) = 𝑦,
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𝑓 (𝑥, 𝑧) = 𝑖,
𝑓 (𝑦, 𝑓 (𝑥, 𝑧)) = 𝑦,

𝑓 (𝑦, 𝑓 (𝑥, 𝑧)) = 𝑓 (𝑓 (𝑦, 𝑥), 𝑧),
𝑦 = 𝑓 (𝑓 (𝑦, 𝑥), 𝑧),

𝑓 (𝑦, 𝑥) = 𝑖,
𝑦 = 𝑓 (𝑖, 𝑧),
𝑓 (𝑖, 𝑧) = 𝑧,

𝑦 = 𝑧.
Each equation in this chain is one of the following: substitution one of two
equal values for the other, the definition of an identity element applied to
𝑖, the definition of an inverse applied to 𝑦 or to 𝑧, or the associativity of 𝑓 .
We can go through our list of monoids and identify the invertible elements,
if any, and their inverses. In almost all cases the only invertible element is
the identity. The only exception is ∘ on the set of functions from a given set
to itself, or on the set of relations on a set, where the identity function is
the identity element and the bijective functions are the invertible elements.
The inverse of a function is the inverse function.
In the case of the addition operation on the natural numbers we can extend
the operation to a larger monoid in such a way that every element acquires
an inverse. The larger monoid in this case is the set of integers and the
inverse of 𝑥 is just −𝑥. In the other examples this is not possible, though
this is easier to see in some cases than in others.
If 𝑎 and 𝑏 are invertible elements of a monoid (𝐴, 𝑓 ) 𝑓 (𝑎, 𝑏) is also invertible.
More precisely, let 𝑐 be the inverse of 𝑎 and 𝑑 the inverse of 𝑏. Then 𝑓 (𝑑, 𝑐)
is an inverse of 𝑓 (𝑎, 𝑏). The proof is as follows.

𝑓 (𝑓 (𝑎, 𝑏), 𝑓 (𝑑, 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑏, 𝑓 (𝑑, 𝑐)),

𝑓 (𝑎, 𝑓 (𝑏, 𝑓 (𝑑, 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑓 (𝑏, 𝑑), 𝑐)),
𝑓 (𝑎, 𝑓 (𝑓 (𝑏, 𝑑), 𝑐)) = 𝑓 (𝑎, 𝑓 (𝑖, 𝑐)),

𝑓 (𝑎, 𝑓 (𝑖, 𝑐)) = 𝑓 (𝑎, 𝑐),

258



and
𝑓 (𝑎, 𝑐) = 𝑖,

so
𝑓 (𝑓 (𝑎, 𝑏), 𝑓 (𝑑, 𝑐)) = 𝑖.

The same argument, with 𝑎 and 𝑑 swapped and 𝑏 and 𝑐 swapped gives

𝑓 (𝑓 (𝑑, 𝑐), 𝑓 (𝑎, 𝑏)) = 𝑖.

A monoid where every element is invertible is called a group.
Given a monoid the set of invertible elements has, as we just saw, the prop-
erty that 𝑓 (𝑎, 𝑏) is a member if 𝑎 and 𝑏 are, and so is a subsemigroup. It
has the identity as a member and so is a submonoid, and in particular is a
monoid. Every element is invertible so it’s actually a group.
A subset of a group is called a subgroup if it is a submonoid and has the
property that if 𝑥 is a member then so is the inverse of 𝑥. A subgroup is, as
the name suggests, a group.
In all but one of the examples of monoids considered above the set of in-
vertible elements is a trivial group, i.e. a groupwith no elements other than
the identity. The exception is the monoid of functions from a set to itself,
where we get the group of bijective functions on that set. In the impor-
tant special case where the set is finite the group is called a permutation
group. If the set on which our functions are defined had 𝑛 elements then
the corresponding permutation group has 𝑛! elements.
Other important examples of groups are the integers, with the operation
of addition, or the non-zero rationals, with the operation of multiplication,
or the set of invertible matrices with a given number of rows and columns,
with the operation of matrix multiplication. Another example of a group
is the set of rigid motions of Euclidean space, i.e. the set of rotations, reflec-
tions, translations and the identity.
One common source of groups is symmetries of some structure. For ex-
ample the set of isomorphisms of a graph is a group, with composition
as the operation and the identity function as the identity. The permuta-
tion groups arise in this way, as the isomorphism groups of the complete
graphs.
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Homomorphisms
Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are semigroups. A function ℎ from 𝐴 to 𝐵 is called
a semigroup homomorphism if it has the property that

𝑔(ℎ(𝑥), ℎ(𝑦)) = ℎ(𝑓 (𝑥, 𝑦))

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴.
A semigroup homomorphism need not be a bijective function but if it is
then its inverse function is also a semigroup homomorphism. In this case
it’s called a semigroup isomorphism and the two semigroups are called
isomorphic. In the particular case where both semigroups are the same
the isomorphisms are called automorphisms.
If𝐵 is a subsemigroupof𝐴 and 𝑔 is the restriction of 𝑓 to𝐵 then the inclusion
function is a semigroup homomorphism.
For a less trivial example, consider the natural numbers 𝑁, with maximum
as the operation, and the bicyclic semigroup 𝑁2 considered earlier. Then
the function ℎ defined by

ℎ(𝑥) = (𝑥, 𝑥)
is a semigroup homomorphism, since you can easily check that if 𝑔 is the
operation defined earlier,

𝑔((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐 − min(𝑏, 𝑐), 𝑏 + 𝑑 − min(𝑏, 𝑐)),

then
𝑔((𝑥, 𝑥), (𝑦, 𝑦)) = (max(𝑥, 𝑦),max(𝑥, 𝑦)).

Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are monoids. A function ℎ from 𝐴 to 𝐵 is called a
monoid homomorphism if it is a semigroup homomorphism and ℎ(𝑖) = 𝑗,
where 𝑖 is the identity element of (𝐴, 𝑓 ) and 𝑗 is the identity element of
(𝐵, 𝑔).
A monoid homomorphism need not be a bijective function but if it is then
its inverse function is also amonoid homomorphism. In this case it’s called
a monoid isomorphism and the twomonoids are called isomorphic. In the
particular case where both monoids are the same the isomorphisms are
called automorphisms.
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The inclusion of submonoid in a monoid is a monoid homomorphism.
The semigroup homomorphism from the natural numbers to the bicyclic
monoid considered above is amonoid homomorphism sincewe’ve already
seen that it’s a semigroup homeomorphism and we have ℎ(0) = (0, 0).
Another example of a monoid homomorphism is the length function on
lists of items in a given set. This is a homomorphism from the set of lists,
with the operation of concatenation, to the set of natural numbers, with the
addition operation.
Suppose (𝐴, 𝑓 ) and (𝐵, 𝑔) are groups. A function ℎ from 𝐴 to 𝐵 is called a
group homomorphism if it is a monoid homomorphism. One could add
the condition that ℎ takes inverses to inverses but that’s redundant.
A group homomorphism need not be a bijective function but if it is then its
inverse function is also a group homomorphism. In this case it’s called a
group isomorphism and the two groups are called isomorphic. In the par-
ticular case where both groups are the same the isomorphisms are called
automorphisms.
Note that the sets of semigroup automorphisms of a semigroup, monoid
automorphisms of a monoid and group automorphisms of a group are all
groups.

Quotients
Suppose (𝐴, 𝑓 ) is a semigroup and 𝑅 is an equivalence relation on 𝐴 with
the property that if

(𝑢, 𝑥) ∈ 𝑅
and

(𝑣, 𝑦) ∈ 𝑅
then

(𝑓 (𝑢, 𝑣), 𝑓 (𝑥, 𝑦)) ∈ 𝑅.
Let 𝐵 be the set of equivalence classes for the relation 𝑅. Let 𝐻 be the set
of (𝑥, 𝐶) ∈ 𝐴 × 𝐶 such that 𝑥 ∈ 𝐶. Each member of 𝐴 is a member of an
equivalence class so 𝐻 is left total. Every member of 𝐴 is a member of
only one equivalence class so 𝐻 is right unique. In other words 𝐻 is a func-
tion. This means it’s safe to use standard functional notation so I’ll write
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𝐶 = ℎ(𝑥) in place of (𝑥, 𝐶) ∈ 𝐻 or 𝑥 ∈ 𝐶 from now on. Let 𝐺 be the relation
from 𝐵2 to 𝐵 consisting of those ((𝐶, 𝐷), 𝐸) ∈ 𝐵2 × 𝐸 for which there are
𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐸 with 𝑧 = 𝑓 (𝑥, 𝑦). For any (𝐶, 𝐷) ∈ 𝐵2 we can find
𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷 since 𝑅 is an equivalence relation. Setting 𝑧 = 𝑓 (𝑥, 𝑦) and
𝐸 = ℎ(𝑧) we have ((𝐶, 𝐷), 𝐸) ∈ 𝐺, so 𝐺 is left total. Suppose ((𝐶, 𝐷), 𝐸) ∈ 𝐺
and ((𝐶, 𝐷), 𝐹) ∈ 𝐺. The fact that ((𝐶, 𝐷), 𝐸) ∈ 𝐺 means there are 𝑢 ∈ 𝐶,
𝑣 ∈ 𝐷 and 𝑤 ∈ 𝐸 such that 𝑤 = 𝑓 (𝑢, 𝑣) and the fact that ((𝐶, 𝐷), 𝐹) ∈ 𝐺
means there are 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐹 such that 𝑧 = 𝑓 (𝑥, 𝑦). Since 𝑢 ∈ 𝐶
and 𝑥 ∈ 𝐶 we have (𝑢, 𝑥) ∈ 𝑅 by the definition of an equivalence class. Sim-
ilarly, (𝑣, 𝑦) ∈ 𝑅. Because our assumptions about 𝑓 and 𝑅 we then have
(𝑓 (𝑢, 𝑣), 𝑓 (𝑥, 𝑦)) ∈ 𝑅, i.e. (𝑤, 𝑧) ∈ 𝑅. Since 𝑤 ∈ 𝐸 and 𝑧 ∈ 𝐹 it then follows
from the definition of an equivalence class that 𝐸 = 𝐹. So if ((𝐶, 𝐷), 𝐸) ∈ 𝐺
and ((𝐶, 𝐷), 𝐹) ∈ 𝐺 then 𝐸 = 𝐹. In other words 𝐺 is right unique. We’ve al-
ready seen that it’s left total so its a function. As with 𝐻 I’ll now switch
to functional notation and write 𝐸 = ℎ(𝐶, 𝐷) in place of ((𝐶, 𝐷), 𝐸) ∈ 𝐺
from now on. For any members 𝑥 and 𝑦 of 𝐴 if we set 𝑧 = 𝑓 (𝑥, 𝑦) then
((ℎ(𝑥), ℎ(𝑦)), ℎ(𝑧)) ∈ 𝐺, or, in functional notation ℎ(𝑧) = 𝑔(ℎ(𝑥), ℎ(𝑦)). We
can write this as

ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦)).
This equation is the one which appeared in the definition of a semigroup
homomorphism.
Functions from 𝐵2 to 𝐵 are binary operations on 𝐵 so 𝐺 is a binary opera-
tion. I claim that it’s associative. Suppose 𝐶, 𝐷 and 𝐸 are members of 𝐵.
Equivalence classes are always non-empty so there are members 𝑥, 𝑦 and 𝑧
of 𝐴 such that 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 and 𝑧 ∈ 𝐸. By the associativity of 𝑓 we have

𝑓 (𝑓 (𝑥, 𝑦), 𝑧) = 𝑓 (𝑥, 𝑓 (𝑦, 𝑧)),

from which it follows that

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = ℎ(𝑓 (𝑥, 𝑓 (𝑦, 𝑧))).

Now
ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(ℎ(𝑓 (𝑥, 𝑦)), 𝑔(𝑧))

and
ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦))

so
ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝑔(ℎ(𝑥), ℎ(𝑦)), ℎ(𝑧)).
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Also, ℎ(𝑥) = 𝐶, ℎ(𝑦) = 𝐷 and ℎ(𝑧) = 𝐸, so

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝑔(𝐶, 𝐷), 𝐸).

A very similar argument shows that

ℎ(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) = 𝑔(𝐶, 𝑔(𝐷, 𝐸)).

We therefore have

𝑔(𝑔(𝐶, 𝐷), 𝐸) = 𝑔(𝐶, 𝑔(𝐷, 𝐸)).

In other words, 𝑔 is an associative operation on 𝐵 and (𝐵, 𝑔) is a semigroup.
The semigroup (𝐵, 𝑔) is called the quotient of the semigroup (𝐴, 𝑓 ) by the
equivalence relation 𝑅. We’ve already seen that

ℎ(𝑓 (𝑥, 𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦))

so ℎ is a semigroup homomorphism.
It is straightforward to check that if 𝑖 is an identity for (𝐴, 𝑓 ) then 𝑗 = ℎ(𝑖) is
an identity for (𝐵, 𝑔). To see this, suppose 𝐶 ∈ 𝐵. Equivalence classes are
non-empty subsets so there is an 𝑥 ∈ 𝐶, i.e. an 𝑥 ∈ 𝐴 such that 𝑥 ∈ 𝐶. Then

𝑔(𝐶, 𝑗) = 𝑔(ℎ(𝑥), ℎ(𝑖)),

𝑔(ℎ(𝑥), ℎ(𝑖)) = ℎ(𝑓 (𝑥, 𝑖)),
𝑓 (𝑥, 𝑖) = 𝑥

and
ℎ(𝑥) = 𝐶

so
𝑔(𝐶, 𝑗) = 𝐶.

A similar argument shows that 𝑔(𝑗, 𝐶) = 𝐶, so 𝑗 is an identity for (𝐵, 𝑔). So
if (𝐴, 𝑓 ) is a monoid then (𝐵, 𝑔) is also a monoid and ℎ is a monoid homo-
morphism.
Suppose (𝐴, 𝑓 ) is a group. If 𝐶 ∈ 𝐵 then there is an 𝑥 ∈ 𝐶, i.e. an 𝑥 such that
ℎ(𝑥) = 𝐶. Every element of a group is invertible so there is a 𝑦 ∈ 𝐴 which
is an inverse of 𝑥. Then

𝑔(𝐶, ℎ(𝑦)) = 𝑔(ℎ(𝑥), ℎ(𝑦)),
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𝑔(ℎ(𝑥), ℎ(𝑦)) = ℎ(𝑓 (𝑥, 𝑦))),
𝑓 (𝑥, 𝑦) = 𝑖,

and
ℎ(𝑖) = 𝑗

so
𝑔(𝐶, ℎ(𝑦)) = 𝑗

and similarly 𝑔(ℎ(𝑦), 𝐶) = 𝑗 so ℎ(𝑦) is an inverse of 𝐶, which is therefore
invertible. 𝐶 was an arbitrary element of 𝐵 so every element of 𝐵 is is in-
vertible. In other words, (𝐵, 𝑔) is a group.
An argument similar to the two above shows that if 𝑓 is a commutative bi-
nary operation on 𝐴 then 𝑔 is a commutative binary operation on 𝐵, so if
(𝐴, 𝑓 ) is a commutative semigroup, monoid or group then (𝐵, 𝑔) is a com-
mutative semigroup, monoid or group.

Integers and rationals
I’ve referred to the integers informal and rationals a few times but haven’t
defined them. The usual construction is via equivalence classes, as above.
Consider the operation

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = (𝑎 + 𝑐, 𝑏 + 𝑑)

on 𝑁2. Note that this is a different operation than the one which I used in
defining the bicyclic semigroup.
We can define an equivalence relation 𝑅 on 𝑁2 by ((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅 if and
only if 𝑎 + 𝑑 = 𝑏 + 𝑐. It is straightforward to show that this equivalence
relation is compatible in the sense we considered in the previous section so
the equivalence classes form a commutative monoid. This monoid turns
out to be a group, even though 𝑁2 itself is not a group. The inverse element
to (𝑎, 𝑏) is (𝑏, 𝑎). This is easily verified because

𝑓 ((𝑎, 𝑏), (𝑏, 𝑎)) = (𝑎 + 𝑏, 𝑏 + 𝑎)

and
((𝑎 + 𝑏, 𝑏 + 𝑎), (0, 0)) ∈ 𝑅.
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The group of these equivalence classes is called the integers. The function
𝑔 is just addition. The function ℎ is just ℎ(𝑎, 𝑏) = 𝑎 − 𝑏. Of course to make
this look like the integers we need not just addition but also subtraction
and multiplication, and also our ≤ relation. We don’t need to, and indeed
can’t, define = because it’s already defined. Equivalence classes are sets
and equality of sets is determined by the Axiom of Extensionality. Sub-
traction is defined by adding the inverse.
Multiplication is more complicated. One would like to define it via the
equation

(𝑎 − 𝑏) · (𝑐 − 𝑑) = [(𝑎 · 𝑐) + (𝑏 · 𝑑)] − [(𝑎 · 𝑑) + (𝑏 · 𝑐)]

which in terms of ℎ is

ℎ(𝑎, 𝑏) · ℎ(𝑐, 𝑑) = ℎ((𝑎 · 𝑐) + (𝑏 · 𝑑), (𝑎 · 𝑑) + (𝑏 · 𝑐)).

This isn’t quite suitable as a definition though. What we really need to
do is to define 𝑥 · 𝑦 where 𝑥 and 𝑦 are equivalence classes. There certainly
are 𝑎 and 𝑏 such that ℎ(𝑎, 𝑏) = 𝑥 but there are many such pairs (𝑎, 𝑏). For
example ℎ(𝑎 + 1, 𝑏 + 1) = 𝑥. We need a definition in terms of 𝑥 itself, not
a particular element of the equivalence class. I won’t give the details, but
the idea is similar to the way we defined the 𝑔 in terms of 𝐺 in the previous
section. One first defines a binary relation and then shows that it is left
total and right unique and so defines a function.
The procedure for the ≤ relation is similar. We would like to define it by
saying that

𝑎 − 𝑏 ≤ 𝑐 − 𝑑
i.e.

ℎ(𝑎, 𝑏) ≤ ℎ(𝑐, 𝑑)
if and only if

𝑎 + 𝑑 ≤ 𝑏 + 𝑐
but this doesn’twork because 𝑎 and 𝑏 are not uniquely determined by ℎ(𝑎, 𝑏)
and 𝑐 and 𝑑 are not uniquely determined by ℎ(𝑐, 𝑑). We can resolve this in
a similar way to the one used for multiplication though.
There is one thing which is quite strange about this implementation of the
integers though. The natural numbers should be a subset of the integers
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but they aren’t. In this implementation integers are sets of ordered pairs of
natural numbers. The bestwe can do is to define amonoid homomorphism
𝑘 from the natural numbers to the integers, by

𝑘(𝑛) = ℎ((𝑛, 0)).

This is not just a monoid homomorphism but can be shown to preserve
multiplication and the ≤ relation as well, so in some sense the range of 𝑘
serves as an alternative implementation of the integers.
The usual way to deal with this problem is to ignore it. If that makes you
uncomfortable then there are two more honest, but more complicated ap-
proaches. The first is declare that the range of 𝑘 is the set of natural numbers
and that the things we previously called natural numbers are a distinct set,
though one with the same behaviour as the true natural numbers, and that
the integers are defined in terms of this other set, and the true natural num-
bers are a subset of the integers. This shouldn’t be particularly alarming.
We already sawmultiple implementations of the natural numbers and this
is just another one. An alternative approach is to keep the natural numbers
unchanged but to define the integers differently, specifically as the union of
the natural numbers and the complement in the set of equivalence classes
above of the range of 𝑘. Operations on this new implementation of the inte-
gers have a more complicated definition. Essentially we take the operands,
apply 𝑘 to any which are natural numbers, apply the operation on equiv-
alence classes, check whether the result is in the range of 𝑘, and replace it
with 𝑛 if it’s 𝑘(𝑛). This is somewhat awkward but it works, in the sense that
it gives a set and operations which behave correctly and have the natural
numbers, as defined previously, as a subset.
Just aswe can construct the integers from the natural numbers by a quotient
construction we can construct the rationals from the integers. If 𝑍 is the
group of integers then we define a binary operation on 𝑍 × (𝑍 ∖ {0}) by

𝑓 ((𝑎, 𝑏), (𝑐, 𝑑)) = ((𝑎 · 𝑑) + (𝑏 · 𝑐), 𝑐 · 𝑑)

and an equivalence relation by

((𝑎, 𝑏), (𝑐, 𝑑)) ∈ 𝑅

if and only if
𝑎 · 𝑑 = 𝑏 · 𝑐.
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These definitions are designed to make the homomorphism ℎ satisfy

ℎ(𝑎, 𝑏) = 𝑎/𝑏,

once we have defined division.
I will skip all the details of this construction. It does have an analogous
problem to the one we encountered earlier in this section though. The
integers are not a subset of the rationals. Again we can either choose to
ignore the problem, or resolve it one of the ways discussed earlier, by re-
defining the integers or the rationals. As before this involves a homomor-
phism, this time from the integers to the rationals, which gives us an iso-
morphic copy of the integers in the rationals. This time the homomorphism
is 𝑘(𝑥) = ℎ(𝑥, 1).
More complicated number systems are developed in a similar way. The
construction of the real numbers from the rationals is particularly difficult
but there are a number of standardmethods andmost of them use the quo-
tient construction with some appropriate choice of group and equivalence
relation. Once you have the reals you can easily construct the complex
numbers, again by the quotient construction.

The power function
Suppose (𝐴, 𝑓 ) is a semigroup and 𝑥 ∈ 𝐴. Then there is a function from the
positive natural numbers to 𝐴 obtained by taking the product of 𝑛 copies
of 𝑥, with the convention discussed in an earlier section of using the word
“product” to denote the result of repeated applications of the binary op-
eration 𝑓 . We don’t need to specify the order because of the generalised
associativity property proved in that section. Addition is an associative op-
eration on the positive natural numbers, making them into a semigroup,
and this function is a semigroup homomorphism. The proof of this de-
pends on the generalised associativity property. This function is not gen-
erally written with functional notation but with exponential notation. The
value of the function corresponding to a particular 𝑥 at a positive natural
number 𝑛 is written 𝑥𝑛. The property that the function is a semigroup ho-
momorphism is, in this notation,

𝑓 (𝑥𝑚, 𝑥𝑛) = 𝑥𝑚+𝑛.
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This notation is confusing in some examples. If, for example, the semi-
group in question is the natural numbers with the operation of addition
then 𝑥𝑛 is not in fact the number normally denoted by that expression but
rather is 𝑛 · 𝑥. If the operation is the maximum then 𝑥𝑛 is just 𝑥. With sets
and the operation of union or intersection 𝐴𝑛 would just be 𝐴, rather than
the set of lists of length 𝑛 of items in 𝐴. Unfortunately the exponential no-
tation is too well established to abolish entirely, but I’d suggest not using
it where it conflicts with an established notation.
In a commutative semigroup it’s possible to prove, by induction on 𝑛, that
𝑓 (𝑥𝑛, 𝑦𝑛) = 𝑓 (𝑥, 𝑦)𝑛. This is not generally true in a noncommutative semi-
group though.
If our semigroup is a monoid then we can extend the function described
above from the positive natural numbers to all natural numbers by defining
𝑥0 to be the identity. The resulting extension is a monoid homomorphism.
If the monoid is a group then we can extend it still further, by defining
𝑥−𝑛 to by 𝑦𝑛 where 𝑦 is the inverse of 𝑥. This extended function is a group
homomorphism. In this case we have the useful relation

𝑓 (𝑥, 𝑦)−1 = 𝑓 (𝑦−1, 𝑥−1).

Note the reversal of the order of the arguments. This identity was in fact
proved earlier, but in a different notation, in the course of proving that the
product of invertible elements is invertible.

Notation
If you only consider one semigroup, monoid or group, or if you consider
only a particular one and its subsemigroups, submonoids or subgroups,
then it’s convenient to use infix notation, with either · or an empty string
rather than functional notation. This makes some of the equations above
look more familiar.

𝑓 (𝑥𝑚, 𝑥𝑛) = 𝑥𝑚+𝑛,
for example, becomes

𝑥𝑚 · 𝑥𝑛 = 𝑥𝑚+𝑛

or just
𝑥𝑚𝑥𝑛 = 𝑥𝑚+𝑛.
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Also, because of the generalised associativity property, we don’t need
parentheses to indicate the order of operations, sowe canwrite expressions
like

𝑥𝑦𝑥−1𝑦−1

without specifying which of the five possible orders of operations are in-
tended. When using this notation there are two different conventions for
the identity element. Some authors use 1 and some use 𝑒.
This notation is less cumbersome than functional notation, and much less
cumbersome than the relational notation from the set theory chapter, but
it can be confusing in two situations. One is where we have multiple semi-
groups, each with its own binary operation. The other is where symbols
like · or 1 have previously established meanings which conflict with the
usage here, as when discussing the integers with their additive structure.

Regular languages
An important category of languages is the regular languages. These can
be characterised in a variety of ways, via regular grammars, finite state
automata, regular expressions, or syntactic monoids. It’s important to un-
derstand all of these points of view because often a problem which is hard
to solve using one description is easy in another.
To simplify things all of our examples in this chapter will be languages
where the tokens are single characters and we’ll write lists of tokens as
strings. When writing grammars each terminal symbol will have only a
single token, i.e. character, and will be denoted by that character. The char-
acters :, " and |which have a special meaning in our language for describ-
ing languages, will not be tokens in any of our example languages, nor will
any whitespace characters. Non-terminal symbols will always be denoted
by a string more than one character long. These aren’t limitations imposed
by the theory, just ways of making the examples easier for you to read.
List of characters are strings. Because all tokens in our examples are char-
acters all lists of tokens are strings. Strings are more familiar than lists of
tokens so I’ll often refer to them as strings when doing examples. I may
occasionally make the mistake of referring to strings rather than lists of
tokens in the general theory as well.
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Regular grammars
Definitions of regular grammars vary but usually it’s fairly easy to convert
a grammar satisfying one definition to one satisfying another which gener-
ates the same language. I’ll use the following definitions.
A left regular grammar is a phrase structure grammar where

• each alternate in the rule for the start symbol is a single non-terminal
symbol,

• the start symbol never appears on the right hand side of a rule, and
• each alternate in the rule for any other non-terminal symbol is either

empty or is a single non-terminal symbol followed by a single termi-
nal symbol.

A right regular grammar is a phrase structure grammar where
• each alternate in the rule for the start symbol is a single non-terminal

symbol,
• the start symbol never appears on the right hand side of a rule, and
• each alternate in the rule for any other non-terminal symbol is ei-

ther empty or is a single terminal symbol followed by a single non-
terminal symbol.

A simple, but not terribly useful, language is the language of any number
of x’s followed by any number of y’s. Here “any number” includes zero,
so the empty string, for example, belongs to this language. A left regular
grammar for this language is
weird : xxyy

xxyy : | xxyy "y" | xx "x"
xx : | xx "x" | error "y"
error : error "x" | error "y"
The symbols xxyy and xx have the empty string as a possible expansion.
The symbols start and error do not. The symbol error is not actually capa-
ble of generating any strings. Whenever we expand it we get another error
symbol. The symbol xx can generate a string with any number of x’s, in-
cluding zero. The symbol xxyy can generate any string with x’s followed
by y’s.
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A right regular grammar for the same language is
weird : xxyy

xxyy : | "x" xxyy | "y" yy
yy : | "y" yy | "x" error
error : "x" error | "y" error
A more complicated, but more interesting, example is the language of dec-
imal representations of integers, normalised in the usual way, i.e. there are
no leading zeroes except for the integer 0, there is at most one leading −
sign, no + sign, and there is no −0. We can write a right regular grammar
for this language as follows:
integer : zero | pos_int | neg_int

zero : "0" empty
empty :
neg_int : "-" pos_int
pos_int : "1" digits | "2" digits | "3" digits

| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

digits : | "0" digits
| "1" digits | "2" digits | "3" digits
| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

and a left regular grammar for the same language is
integer : zero | nonzero

zero : empty "0"
nonzero : nonzero "0" | nonzero "1" | nonzero "2" | nonzero "3"

| nonzero "4" | nonzero "5" | nonzero "6" | nonzero "7"
| nonzero "8" | nonzero "9" | head "1" | head "2"
| head "3" | head "4" | head "5" | head "6" | head "7"
| head "8" | head "9"

head : | empty "-"
empty :
Both of these languages have both a left regular grammar and a right regu-
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lar grammar. In fact every language which has a left regular grammar also
has a right regular grammar and vice versa, but we’re not yet in a position
to prove this.

Closure properties
We can construct complicated languages from simpler languages in a vari-
ety of ways. It’s useful to be able to construct a grammar for the more com-
plicated language from grammars for the simpler languages from which
it’s built.

Unions

Languages are sets of lists. As sets it makes sense to talk about unions, in-
tersections and relative complements. The union of two languages is again
a language, as is the intersection or relative complement. Given left regu-
lar grammars for a pair of languages can we give a left regular grammar
for their union? For the intersection? For the relative complement? The
answer in each case is yes, but this is only easy to do for the union. We just
need to create a new rule for the start symbol, which includes all the alter-
nates for the start symbols of the original two languages, and copy all the
rule for the other symbols, changing names if necessary to avoid duplicates.
So the union of the two languages above has the grammar
union : xxyy | zero | pos_int | neg_int

xxyy : | xxyy "y" | xx "x"
xx : | xx "x" | error "y"
error : error "x" | error "y"
zero : "0"
neg_int : "-" pos_int
pos_int : "1" digits | "2" digits | "3" digits

| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

digits : | "0" digits
| "1" digits | "2" digits | "3" digits
| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

272



Of course the same remarks apply to right regular grammars as well. The
union of two languages with right regular grammars has a right regular
grammar. Also, the construction above is easily adapted to the union of
finitely many languages.

Concatenation

We can also define a language whose members are the concatenation of a
member of the first language and a member of the second. As with the
union, we can construct a grammar for this new language from grammars
for the two old languages by a purely mechanical procedure, though this
time it’s rather more complicated. It may be easiest to understand the pro-
cedure through examples. Consider, then, the language consisting of inte-
gers followed by some number of x’s and then some number of y’s.
We can start from our right regular grammar for the integers. Instead of
an empty string at the end the of the input we should now have a string in
the xy language, so we replace the empty alternatives in the right regular
grammar for integers with the start symbol in the right regular grammar
for the xy language.
intxxyy : zero | pos_int | neg_int

zero : "0"
neg_int : "-" pos_int
pos_int : "1" digits | "2" digits | "3" digits

| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

digits : weird | "0" digits
| "1" digits | "2" digits | "3" digits
| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

In this case there was only empty alternative, in the rule for the digits
symbol. I haven’t added in the rules from the xxyy grammar yet because
we have a problem. weird is a non-terminal symbol and digits is also
a non-terminal symbol, but the alternatives in a rule for a non-terminal
symbol in a right regular grammar should be empty or a terminal followed
by a non-terminal. As a first step to fixing this we need to replace weird by
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its possible expansions.
digits : xxyy | "0" digits | "1" digits | "2" digits | "3" digits

| "4" digits | "5" digits | "6" digits | "7" digits
| "8" digits | "9" digits

There was in fact only one alternate, namely xxyy. This also isn’t suitable
as an alternate in a rule for a non-terminal symbol so we need to replace it
by its possible expansions.
digits : | "x" xxyy | "y" yy | "0" digits

| "1" digits | "2" digits | "3" digits
| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

Now we have a rule of the required form. We need to include more rules
from the right regular grammar for the xy language so we can expand the
symbols xxyy and yy. The complete grammar for the concatenation lan-
guage is
intxxyy : zero | pos_int | neg_int

zero : "0"
neg_int : "-" pos_int
pos_int : "1" digits | "2" digits | "3" digits

| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

digits : | "x" xxyy | "y" yy | "0" digits
| "1" digits | "2" digits | "3" digits
| "4" digits | "5" digits | "6" digits
| "7" digits | "8" digits | "9" digits

xxyy : | "x" xxyy | "y" yy
yy : | "y" yy | "x" error
error : "x" error | "y" error
We can also construct a left regular grammar for this concatenation lan-
guage from the left regular grammars for the integer language and the xy
language. This time we start from the left regular grammar for the xy lan-
guage and replace the empty alternateswith the start symbol for the integer
language.
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intxxyy : xxyy

xxyy : integer | xxyy "y" | xx "x"
xx : integer | xx "x" | error "y"
error : error "x" | error "y"
This grammar is not of the required form though so we need to replace in-
teger by its possible expansions. Those rules will still not be be of required
form, so we replace those replacements. The new rules for xxyy and xx are
then
xxyy : zero | nonzero | xxyy "y" | xx "x"
xx : zero | nonzero | xx "x" | error "y"
Those ruleswill still not be be of required form, sowe replace those replace-
ments. The new rules for xxyy and xx are then
xxyy : empty "0" | nonzero "0" | nonzero "1" | nonzero "2"

| nonzero "3" | nonzero "4" | nonzero "5" | nonzero "6"
| nonzero "7" | nonzero "8" | nonzero "9" | head "1"
| head "2" | head "3" | head "4" | head "5" | head "6"
| head "7" | head "8" | head "9" | xxyy "y" | xx "x"

xx : empty "0" | nonzero "0" | nonzero "1" | nonzero "2"
| nonzero "3" | nonzero "4" | nonzero "5" | nonzero "6"
| nonzero "7" | nonzero "8" | nonzero "9" | head "1"
| head "2" | head "3" | head "4" | head "5" | head "6"
| head "7" | head "8" | head "9" | xx "x" | error "y"

The full grammar is then
intxxyy : xxyy

xxyy : empty "0" | nonzero "0" | nonzero "1" | nonzero "2"
| nonzero "3" | nonzero "4" | nonzero "5" | nonzero "6"
| nonzero "7" | nonzero "8" | nonzero "9" | head "1"
| head "2" | head "3" | head "4" | head "5" | head "6"
| head "7" | head "8" | head "9" | xxyy "y" | xx "x"

xx : empty "0" | nonzero "0" | nonzero "1" | nonzero "2"
| nonzero "3" | nonzero "4" | nonzero "5" | nonzero "6"
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| nonzero "7" | nonzero "8" | nonzero "9" | head "1"
| head "2" | head "3" | head "4" | head "5" | head "6"
| head "7" | head "8" | head "9" | xx "x" | error "y"

error : error "x" | error "y"
head : | empty "-"
empty :
The general procedure constructing a grammar for the concatenation lan-
guage from the grammars for a pair of languages is as follows.

• Rename symbols to avoid name conflicts between the two grammars.
Optionally rename other symbols for clarity.

• If we’re constructing a left regular grammar start from a left regular
grammar for the right element of the pair of languages. If we’re con-
structing a right regular grammar start from a right regular grammar
for the left element of the pair of languages.

• Replace all empty alternates with all alternates for all alternates of
the start symbol in the other language.

• Add all rules from the other language other than the one for its start
symbol.

As a further example I’ll construct a right regular grammar for the concate-
nation of the xy language with itself. This time we’ll need the renaming
step mentioned above. We take two copies of the the right regular gram-
mar for the xy language.
weirdl : xxyyl

xxyyl : | "x" xxyyl | "y" yyl
yyl : | "y" yyl | "x" errorl
errorl : "x" errorl | "y" errorl
and
weirdr : xxyyr

xxyyr : | "x" xxyyr | "y" yyr
yyr : | "y" yyr | "x" errorr
errorr : "x" errorr | "y" errorr
We’re constructing a right regular grammar so we start from the grammar
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for the left language.
weirdl : xxyyl

xxyyl : | "x" xxyyl | "y" yyl
yyl : | "y" yyl | "x" errorl
errorl : "x" errorl | "y" errorl
We then replace both empty alternates with weirdr and then replace that
with xxyyr and then that with | x xxyyr | y yyr.
weirdl : xxyyl

xxyyl : | "x" xxyyr | "y" yyr | "x" xxyyl | "y" yyl
yyl : | "x" xxyyr | "y" yyr | "y" yyl | "x" errorl
errorl : "x" errorl | "y" errorl
Then we add in rules from the other language.
weirdl : xxyyl

xxyyl : | "x" xxyyr | "y" yyr | "x" xxyyl | "y" yyl
yyl : | "x" xxyyr | "y" yyr | "y" yyl | "x" errorl
errorl : "x" errorl | "y" errorl
xxyyr : | "x" xxyyr | "y" yyr
yyr : | "y" yyr | "x" errorr
errorr : "x" errorr | "y" errorr
It’s important to understandwhich languagewe’ve just constructed a gram-
mar for. A string is in this language if and only if it is the concatenation of
two strings in the xy language. Those two strings could be the same but
they don’t have to be. The question ofwhetherwe can construct a grammar
for the language of two repetitions of the same string is one we’ll return to
later.
Once we know how to construct a grammar for the concatenation of two
languages we can construct a grammar for the concatenation of finitely
many, by considering it at as a repeated concatenation.
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Kleene star

Given a left or right regular grammar we can, using the techniques of the
preceding section, construct, for each positive number 𝑛, a grammar for the
language whose members are concatenations of 𝑛 members of the original
language. Of course we can can also do this for 𝑛 = 0. In this case the
language consists of only the empty list and it has the grammar
start : empty

empty :
We can also construct a grammar for the language of concatenations of
between 𝑚 and 𝑛 members of a language, for natural numbers 𝑚 and 𝑛,
using the union construction earlier. What’s less obvious is that we can
construct a grammar for the language of concatenations of arbitrarilymany
members of a language.
Given a language the Kleene star of the language is set of all lists which
can be found by concatenating arbitrarily many members of the language.
This includes the empty list. The Kleene plus of the language is the set of
lists which can be obtained by concatenating an arbitrary positive number
of members of the language. If the original language had the empty list as
a member then its Kleene star and Kleene plus are the same. If not then
the Kleene star has the empty set as a member while the Kleene plus does
not, but otherwise they are the same.
Given a regular grammar for a languagewe can find a regular grammar for
its Kleene plus by looking through its rules for occurrences of the empty list
and then adding alternates to any such rules. The alternates to be added
are the alternates of alternates of the start symbol. To get a grammar for
the the Kleene star we can apply our union construction discussed earlier
to the Kleene plus grammar and the grammar given above for the language
with just the empty list.
Applying the construction above to the xy language gives the following
right regular grammar for its Kleene plus
weird : xxyy

xxyy : | "x" xxyy | "y" yy
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yy : | "y" yy | "x" error | "x" xxyy | "y" yy
error : "x" error | "y" error

and the following grammar for its Kleene star
weird : xxyy | empty

xxyy : | "x" xxyy | "y" yy
yy : | "y" yy | "x" error | "x" xxyy | "y" yy
error : "x" error | "y" error
empty :

The constructions above are meant to show that regular grammars can be
constructed for these languages. They do not attempt to find efficient gram-
mars for them. For example, the Kleene star of the xy language is just the
set of all lists of x’s and y’s. A much simpler grammar for this language is
ksxy : xyxy

xyxy : | "x" xyxy | "y" xyxy

Reversal

The reversal of a language is simply the set of the reversals of its members,
where the reversal of a list is the list with the same items in reverse order.
Given a left regular grammar for a language we can easily construct a right
regular grammar for its reversal and vice versa. We just take the alternates
in the rules for the grammar and reverse the order of the symbols. Here, for
example, is a right regular grammar for the reversed integers, constructed
from the left regular grammar for the integers.
integer : zero | nonzero

zero : "0" empty
nonzero : "0" nonzero | "1" nonzero | "2" nonzero | "3" nonzero

| "4" nonzero | "5" nonzero | "6" nonzero | "7" nonzero
| "8" nonzero | "9" nonzero | "1" head | "2" head
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| "3" head | "4" head | "5" head | "6" head | "7" head
| "8" head | "9" head

head : | "-" empty
empty :

What’s less clear is how to construct a left regular grammar for the reversal
from a left regular grammar for the original language or a right regular
grammar for the reversal from a regular regular grammar for the original.
This is a question we’ll return to later.

Finite state automata
What I’m going to call a finite state automaton is more typically called
a non-deterministic finite state automaton. Deterministic finite state au-
tomata, which will be considered in the next section, are a special case. I
won’t use the word non-deterministic except for emphasis. Unless a finite
state automaton is specifically stated to be deterministic you should not
assume that it is. Most other authors follow the reverse convention, as-
suming finite state automata are deterministic unless specifically allowed
to be non-deterministic.

Non-deterministic finite state automata

To specify a finite state automaton we need the following:
• A set 𝐴 of tokens,
• A finite set 𝑆 of states,
• A subset 𝐼 of 𝑆, the initial states,
• A subset 𝐹 of 𝑆, the accepting states, and
• A subset 𝑇 of 𝑆 × 𝐴 × 𝑆, the transition relation.

The interpretation of the ternary relation 𝑇 is that (𝑟, 𝑎, 𝑠) ∈ 𝑇 if the au-
tomaton can transition to the state 𝑠 when it reads an 𝑎 while in state 𝑟. The
automaton must start in one of the states in 𝐼. If it’s in one of the states in 𝐹
at the end of the input then it halts successfully. It halts unsuccessfully if it
is in a state not in 𝐹 at the end of the input, or if it never reaches the end of
the input because it reads a token in a state for which there is no transition
allowed by 𝑇. As with all the other forms of non-deterministic calculation
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we consider in this module the computation as whole is consider success-
ful if some computational path is successful, even if others are not. In this
case the finite state automaton is said to recognise the input. The set of
lists of tokens recognised by a finite state automaton is said to be language
recognised by it.
The non-determinism has two sources, the choice of initial state and the
choice of the next state depending on the current state and the token just
read. In most examples 𝐼 has only one member and the first source of non-
determinism is theoretical rather than real. Allowingmultiple initial states
is useful for the theory though, and sometimes in examples.
There is a traditional way of drawing diagrams for finite state automata,
with directed graphs whose vertices are the states and whose edges indi-
cate the allowed transitions, labelled to show which tokens allow that tran-
sition. The vertices in 𝐹 are doubly circled. Those in 𝑆 ∖ 𝐹 are singly circled.
Vertices in 𝐼 are indicated by unlabeled incoming arrowswhich don’t come
from any vertex. The accompanying diagrams show finite state automata
which recognise the xy language and the language of integers.

xxyy

x

yy
y

y

error
x

x,y

Figure 57: A finite state automaton for the the xy language

You may have noticed a similarity between these finite state automata and
the right regular grammars for these languages. In fact it’s possible to con-
struct a finite state automaton from a right regular grammar by a purely
mechanical procedure. The set 𝐴 of tokens is the same as for the grammar.
The set 𝑆 of possible states is the set of non-terminal symbols of the gram-
mar, except for the start symbol. The set 𝐼 is the set of alternates for the start
symbols. The set 𝐹 is the set of non-terminals for which the empty list is an
alternate. The set 𝑇 consists of those (𝑟, 𝑎, 𝑠) for which 𝑎𝑠 is an alternate for
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pos_int
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0

1,2,3,4,5,6,7,8,9
-

Figure 58: A finite state automaton for the the integer language

𝑟.
So every language which has a right regular grammar is recognised by a
finite state automaton.
Given a finite state automaton for a language we can easily construct a fi-
nite state automaton for the reverse language. 𝐴 and 𝑆 are unchanged. The
roles of 𝐼 and 𝐹 are reversed. The transition relation for the reversed gram-
mar consists of those triples (𝑟, 𝑎, 𝑠) for which (𝑠, 𝑎, 𝑟) belongs to the transi-
tion relation for the original language. If we have a left regular grammar for
a language then we can find a right regular grammar for the reversed lan-
guage, use it to construct a finite state automaton for the reversed language,
and then use the construction above to construct a finite state automaton
for the doubly reversed language, which is the original language. So every
language which has a left regular grammar is recognised by a finite state
automaton.

Deterministic finite state automata

A finite state automaton is called deterministic if the set of initial states has
at most one member and for any state 𝑟 and token 𝑎 there is at most one
allowed transition, i.e. at most one 𝑠 ∈ 𝑆 such that (𝑟, 𝑎, 𝑠) ∈ 𝑇. A determin-
istic finite state automaton therefore has at most computational path.
It is sometimes useful to strengthen the requirement of at least one start
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state and at least one allowed transition in each state for each input token
to exactly one start state and exactly one transition. The advantage of this
is that it prevents the automaton from halting before it has read all of its
input. I will call such automata strongly deterministic.
Our automaton above for the xy language is deterministic, and in fact
strongly deterministic. Our automaton for the language of integers is not
deterministic, since it has multiple initial states. A more common reason
for a finite state automaton to be non-deterministic is the existence of
multiple allowed transitions from a particular state on a particular input
but this automaton happens not to have that problem.
Deterministic finite automata might seem more useful computationally
than non-deterministic ones. This is only partly true. Other things being
equal it’s easier to work with a deterministic finite state automaton than
a non-deterministic one, but other things are rarely equal. Often the
simplest deterministic finite state automaton for a given language is much
larger than the simplest non-deterministic one and it is therefore more
efficient to accept the complications of non-determinism. It is nonetheless
important, at least for theoretical purposes, to know that any language
recognised by a finite state
Earlier I discussed how to take a finite state automaton which recognises a
language and construct from it a finite state automaton which recognises
the reversed language. This construction was simple, but it doesn’t gener-
ally construct deterministic finite state automata from deterministic finite
state automata. automaton is recognised by some deterministic finite state
automaton.
We’ve already discussed how to simulate non-deterministic computations
with deterministic ones. In general this is done with trees whose branches
represent computational paths. The computational path describes not just
the current state of the computation but also how it was arrived at. For
finite state automata this is overkill. The future evolution of the compu-
tation, including whether it can terminate successfully, depends only on
the current state, so we only need to keep track of the possible states the
automaton could be in at each point in the input.
To illustrate this, consider the non-deterministic finite state automaton for
the integers given earlier, and consider the input -17. Initially, i.e. before
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any tokens are read, we are in one of the states zero, neg_int, or pos_int.
We then read the token -. There are no transitions from the states zero
or pos_int for this token and there is only one from neg_int so the only
surviving computational path leaves us in pos_int. The next token is 1 and
there is only one allowed transition from there so next we find ourselves in
digits. Reading a 7 there leaves us in digits. At this point the input ends.
We are in an accepting state so the computation is successful.
At each point in the input there is a set of states the computation could be in.
This is initially the set 𝐼 of initial states. The computation succeeds if one of
the states it could be in at the end of the input is accepting, i.e. if the set of
possible states has non-empty intersectionwith 𝐹. For each input token and
set of states the system could be in before reading it we can compute the set
of states it could be in after reading it by checking the allowed transitions
for that token for each state.
The considerations above suggest the following power set construction.
Given a non-deterministic finite state automaton described by a set of
tokens 𝐴, a set of states 𝑆, a set of initial states 𝐼, a set of accepting states
𝐹 and a transition relation 𝑇 we construct a deterministic finite state
automaton with the same set of tokens 𝐴, a set of states 𝑆′, a set of initial
states 𝐼′, a set of accepting states 𝐹′ and a transition relation 𝑇′ according
to the following rules.

• 𝑆′ = 𝑃𝑆, the power set of 𝑆.
• 𝐼′ = {𝐼}, the set with a single element, which is 𝐼.
• 𝐹′ = {𝐵 ∈ 𝑃𝑆 ∶ 𝐵 ∩ 𝐹 ≠ ∅}, the set of subsets of 𝑆 whose intersection

with 𝐹 is non-empty.
• 𝑇′ = {(𝐵, 𝑎, 𝐶) ∈ 𝑃𝑆 × 𝐴 × 𝑃𝑆 ∶ 𝐶 = {𝑠 ∈ 𝑆 ∶ ∃𝑟 ∈ 𝐵 ∶ (𝑟, 𝑎, 𝑠) ∈ 𝑇}}.

In other words 𝐶 is the set of states to which there is an allowed
transition on the input token 𝑎 from a state in 𝐵.

This is indeed a deterministic finite state automaton because its set of ini-
tial states has only one element and for any 𝐵 ∈ 𝑆′ and 𝑎 ∈ 𝐴 there is only
one 𝐶 ∈ 𝑆′ such that (𝐵, 𝑎, 𝐶) ∈ 𝑇′. At every point in the input the state of
this automaton is the set of states the origin non-deterministic automaton
could be in at the same point in the input. The deterministic automaton
terminates successfully if and only if the non-deterministic one could ter-
minate successfully. So they recognise the same language.
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The construction above is called the power set construction, because the
state space for the constructed automaton is the power set of the state space
of the original automaton.
At this point I should give you an example of the construction but it’s hard
to find reasonable examples. Our automaton for the xy language is already
deterministic. We could still apply the power set construction to it, obtain-
ing a new automatonwith eight states, but there’s no point. Our finite state
automaton for the integer language is genuinely non-deterministic so the
power set construction does serve a purpose for it, but it gives us an au-
tomaton with 32 states. That’s certainly implementable on a computer but
its diagram wouldn’t fit on a single page.

Closure properties
Earlier we discussed set operations for languages generated by regular
grammars. More precisely, I showed that the union of two such languages
is such a language, but I didn’t answer the question for intersections or
relative complements. For languages recognised by finite state automata
I’ll answer the question for intersections and relative complements, but
not for unions. It’s actually fairly easy to answer the question for unions
as well, but it’s unnecessary, as we’ll see later.

Intersection

To construct a finite state automaton for the intersection of two languages
from finite state automata for each language individually we just need to
keep track of what states those two automata could be in at any point. To
be more precise, suppose the two automata have the same set of tokens
𝐴 and have sets of states 𝑆1 and 𝑆2, sets of initial states 𝐼1 and 𝐼2, sets of
accepting states 𝐹1 and 𝐹2, and transition relations 𝑇1 and 𝑇2. We construct
a finite state automaton with the same set of tokens 𝐴, a set of states 𝑆, a
set of initial states 𝐼, a set of accepting states 𝐹 and a transition relation 𝑇
which recognises those lists which are recognised by both these automata
as follows.

• 𝑆 = 𝑆1 × 𝑆2
• 𝐼 = 𝐼1 × 𝐼2
• 𝐹 = 𝐹1 × 𝐹2
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• 𝑇 = {((𝑟1, 𝑟2), 𝑎, (𝑠1, 𝑠2)) ∈ 𝑆 × 𝐴 × 𝑆 ∶ (𝑟1, 𝑎, 𝑠1) ∈ 𝑇1 ∧ (𝑟2, 𝑎, 𝑠2) ∈ 𝑇2}.
At every point in the input this automaton can be in the state (𝑠1, 𝑠2) if and
only if the first automaton can be in the state 𝑠1 and second can be in the
state 𝑠2. It therefore can reach an accepting state at the end of the input if
and only if both the original automata could.
So the intersection of two languages recognised by finite state automata is
a language recognised by a finite state automaton.

Relative complements

It might seem obvious how to modify this construction for relative com-
plements. We just need to replace accepting states by rejecting for one of
the automata, right? This isn’t completely wrong, but it’s not completely
right either. For one thing, it’s possible for a finite state automaton to halt
unsuccessfully before reaching the end of its input, if there are no allowed
transitions for the symbol just read from the current state. For another, the
fact that a non-deterministic automaton can endup in a rejecting state at the
end of the input doesn’t mean the input must be rejected, since some other
set of choices for the initial state or transitionsmight leave it in an accepting
state. Neither of these things can happen though if the finite state automa-
ton is one which was constructed by the power set construction though,
since those are always strongly deterministic, so if we first apply the power
set construction to our finite automata and then the naive version of the
relative complement construction described earlier it will work.
So the relative complement of two languages recognised by finite state au-
tomata is a language recognised by a finite state automaton.

Regular expressions
Regular expressions are both an important theoretical concept in comput-
ing and an important practical tool in programming. These two meanings
for regular expressions are not quite the same though. For theoretical pur-
poses it’s convenient to have a minimally expressive syntax for regular
expressions. The fewer ways to construct a regular expression the easier
it is to prove their properties. For practical programming it’s convenient
to have a maximally expressive syntax, to make it easier to write simple
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regular expressions for simple tasks. To complicate matters even further,
most regular expression libraries provide not just syntactic sugar to make
writing regular expressions easier but also extensions which increase their
power as a computational tool. That may sound good if you’re a program-
mer but it means that some of the statements I’ll make below about what
regular expressions can and can’t do are simply untrue when applied to
regular expressions as understood by those libraries. Since this module is
concerned with the theory of computation rather than practical program-
ming I will give the minimalist version but I will briefly mention the IEEE
standard regular expressions understood by most libraries.

The basic operations

A language is called regular if it can be build from finite languages by the
operations of union, concatenation and Kleene star. More precisely, sup-
pose 𝐴 is a finite set of tokens. Let 𝐹 be the set of finite languages with
tokens in 𝐴, i.e. the set of finite sets of lists of items in 𝐴. Let 𝑆 be the set of
all sets of languages defined by:

• 𝐹 ∈ 𝑆.
• For all 𝑅 ∈ 𝑆 if 𝐿1 ∈ 𝑅 and 𝐿2 ∈ 𝑅 then 𝐿1 ∪ 𝐿2 ∈ 𝑅.
• For all 𝑅 ∈ 𝑆 if 𝐿1 ∈ 𝑅 and 𝐿2 ∈ 𝑅 then 𝐿1 ∘ 𝐿2 ∈ 𝑅, where 𝐿1 ∘ 𝐿2 is

the set of lists which are concatenations of a list in 𝐿1 and a list in 𝐿2
• If 𝑅 ∈ 𝑆 and 𝐿 ∈ 𝑅 then 𝐿∗ ∈ 𝑅, where 𝐿∗ the set of all concatenations

of arbitrarily many members of 𝐿.
Then the set of regular languages for the set of tokens 𝐴 is ∩𝑆.
The notation ∘ for concatenation is unfortunate since it suggests composi-
tion but is in fact unrelated to it.
Intuitively, regular languages are built from finite languages using union,
concatenation and Kleene star and are only those languages which can be
built in a finite number of steps of those three types from finite languages.
Regular expressions are a notation for describing how a language is built
from a set of finite languages using those components. There are a few dif-
ferent notations for regular expressions. I’ll use onewhich is a subset of the
IEEE notation. This has the limitation that it only works when the tokens
are individual characters, but that’s the case of most practical interest.
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In IEEE regular expressions characters represent themselves, except that
a few characters are special. To represent a special character we need to
place a backslash \, before it. The special characters include \ itself, the
parentheses ( and ), used for grouping, the vertical bar |, used for the union
operation, and the asterisk *, used for the Kleene star operation. There
is no special character for concatenation. Concatenation is indicated by
concatenation.
There is exactly one regular language which cannot be expressed in this
notation: the empty language. The IEEE standard has no way of denoting
this language but I’ll use ∅ for it.

Examples

It is probably easier to understand this via examples. x* is a regular expres-
sion for the language consisting of arbitrarily many copies of the character
x. Similarly y* is a regular expression for arbitrarily many y’s. Then x*y* is
a regular expression for arbitrarily many x’s followed by arbitrarily many
y’s. In other words, x*y* is a regular expression for the xy language con-
sidered earlier.
Arbitrarily many includes zero, so the empty string is an element of this
language. If we wanted to ensure that there is at least one x and at least
one y we would have to use the regular expression xx*yy*, i.e. a single x,
followed by arbitrarily many x’s, followed by a single y, followed by arbi-
trarily many y’s. This is, of course, a different language from the one in the
preceding paragraph.
As our next example let’s try to build a regular expression for the language
of integers. It will be easiest to do this in stages. 0|1|2|3|4|5|6|7|8|9
is regular expression for the language of single digits. We don’t need
parentheses for grouping here because union is an associative operation.
To get strings of digits we apply Kleene star: (0|1|2|3|4|5|6|7|8|9)*.
The parentheses are needed for precedence, specifically to express the fact
that this arbitrarily many digits rather than either a non-9 or arbitrarily
many 9’s, which would be 0|1|2|3|4|5|6|7|8|(9*). The language
described by the regular expression (0|1|2|3|4|5|6|7|8|9)* includes
the empty string and also 007. The former is not an integer and the latter
is an integer but doesn’t satisfy the normalisation conditions we imposed
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earlier to make sure each integer has a unique representation. Both of
these problems can be fixed by making sure there’s a non-zero digit before
the (0|1|2|3|4|5|6|7|8|9)*. A regular expression for non-zero digits is
1|2|3|4|5|6|7|8|9 so we’re led to
(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*.
This is a regular expression for the language of positive integers. To allow
negative integers we concatenate the regular expression |- with this regu-
lar expression to get
(|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*.
A |- matches either the empty string or a single -. We now have a regu-
lar expression which matches all nonzero integers. A regular expression
which matches zero is just 0. The following regular expression therefore
matches all integers:
(0|(|-)(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*).
Towards the end of the example I started using the standard term “match”
for the situation where a string is a member of the language described by
a regular expression. It’s quite convenient and I’ll use it without comment
from now on.

From regular expressions to grammars

Converting a regular expression to a left or right regular grammar for the
language it recognises might seem difficult, and doing it efficiently is in-
deed difficult, but as long as we just want some regular grammar and don’t
care about efficiency it’s easy.
First of all, it’s easy to write down a grammar for a single character. For
example, here is a grammar for the language whose only string is a single
x:
start : one_x

one_x : "x" empty
empty :
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This is a right regular grammar. A left regular grammar for the same lan-
guagewould look the same, except the expansion for one_xwould be empty
x.
We’ve already seen how to construct regular grammars for the union, con-
catenation or Kleene star of languages from regular grammars for the origi-
nal languages though, and regular expressions are built up fromgrammars
for a single character or the empty string using those three operations so in
principle we know how to construct either a left or right grammar for the
language described by any regular expression. This procedure will gener-
ally give us an unnecessarily complicated grammar for the language, but
it will give us a grammar. It follows that every regular language can be
described by a left regular grammar and by a right regular grammar.

Regular expressions from automata

Any language which can be recognised by a finite state automaton can be
described by a regular expression. This is proved by induction on the num-
ber of states. To make the induction work though we first need to gener-
alise our notion of finite state automata. The automata we’ve considered
read single tokens andmake a state transition based on the token read. For
each pair of states 𝑟 and 𝑠 there is a set, possibly empty, of tokens which
all a transition from 𝑟 to 𝑠. We can represent this set of tokens by a regular
expression, consisting of those tokens with |’s between them.
A generalised finite state automaton will be one where for each pair of
states 𝑟 and 𝑠 there is a regular expression such that if the automaton reads
a list of tokens matching that regular expression while in the state 𝑟 then it
can transition to the state 𝑠. Every finite state automaton is a generalised fi-
nite state automaton, where the regular expression is just the one described
previously, i.e. the list of tokens separated by |’s. We can add two states to
this automaton to create a new one which has only a single initial state and
a single accepting state. To do this we demote the previous initial states
and accepting states to ordinary states and add a new initial state and a
new accepting state. We then allow transitions from the new initial state to
the old ones where the regular expression is the one matching the empty
list and transitions from the old accepting states to the new one, again with
the regular expression being the one for the empty list. The new automaton
can therefore go from the new initial state to one of the old ones without
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reading any input, then proceed as before, arrive at one of the old accept-
ing states at the end of its input, and then transition to the new accepting
state without reading any further input. The states other than the initial
and accepting states will be called intermediate states.
Suppose we have a generalised finite state automaton with a single initial
state and a single accepting state and at least one intermediate state. We
can construct another generalised finite state automaton which recognises
the same language, also with a single initial state and a single accepting
state, but with one intermediate state fewer, as follows.
We pick an intermediate state 𝑟. We want to remove 𝑟 but some computa-
tional paths go through 𝑟 sowewill need to replace themwith paths which
don’t. For each pair of other states 𝑞 and 𝑠 there are possibly paths which
go from 𝑞 to 𝑟 and then from 𝑟 to 𝑠. We can replicate the effect of those
paths by unioning the existing regular expression for transitions from 𝑞 to
𝑠 with the concatenation of the regular expression for transitions from 𝑞 to
𝑟 with the one for transitions from 𝑟 to 𝑠. This isn’t quite enough though,
since a computational path might stay at 𝑟 for an arbitrary number of steps
before moving on to 𝑠. So what we need to add to the regular expression
for transitions from 𝑞 to 𝑠 is a concatenation of three regular expressions:
the one for transitions from 𝑞 to 𝑟, the Kleene star of the one for transitions
from 𝑟 to itself, and then the one for transitions from 𝑟 to 𝑠. Once we’ve
done this for all pairs 𝑞 and 𝑠 the state 𝑟 is no longer needed and can be
removed.
Removing intermediate states one after another we eventually reach the
point where there are no intermediate states. We’re left with just initial and
accepting states. If we did the construction as described above then there
is one of each and there are no allowed transitions from the initial state
to itself or from the accepting state to itself or to the initial state. The only
allowed transition is one directly from the initial state to the accepting state.
Input will be accepted by this machine if and only if it matches the regular
expression for that transition. In this waywe’ve found a regular expression
whichmatches precisely those inputs recognised by the original finite state
automaton.
I’m not going to give an example of the construction above. The regular ex-
pressions it produces are horribly inefficient. The point of the construction
is just to prove that every language recognised by a finite state automaton
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is a regular language.

Reversal

One nice property of regular expressions is that given a regular expression
for a language it’s very easy to construct a regular expression for the re-
versed language. Unions and Kleene stars can be left unchanged and we
just need to reverse the order of the concatenations. For example, a regular
expression for the reversed integers is
(0|(0|1|2|3|4|5|6|7|8|9)*(1|2|3|4|5|6|7|8|9)(|-)).

Extended syntax

For practical purposes it’s useful to have more operations available than
just union, concatenation and Kleene star. We didn’t include those extra
operations in the definition to avoid needing to prove the corresponding
closure properties of regular grammars.
In the IEEE standard + is used for Kleene plus, i.e. a concatenation with at
least one member. ? is used for at most one member, but possibly zero.
Also explicit ranges are allowed, denoted by numbers in braces. For exam-
ple (0|1|2|3|4|5|6|7|8|9){3,5} would indicate a string of at least three
and at most five digits. Character ranges are also allowed, indicated by
brackets, so three to five digits could also be represented as [0-9]{3,5}.
Of course this requires +, ?, braces and brackets to be special characters,
which then have to be preceded by backslashes in order to represent them-
selves. There are a few other similar extensions. If you’re using regular
expressions for pattern matching, and you really should if you have to do
pattern matching, then you should consult the documentation for what-
ever library you’re using, both to see what extensions are available and to
see which characters are special. Even if you will never use an extension
you may need to know about it if it makes certain characters special and
therefore requires you to precede them with backslashes.
The extensions above are a matter of syntactic convenience. They don’t
change the set of languageswhich can be represented; they justmake it pos-
sible to represent some languages with shorter regular expressions. There
are other extensions in many implementations which change the set of rep-
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resentable languages. The new languageswhich these allow cannot be gen-
erated by regular grammars. None of what I say in this chapter about reg-
ular languages can be assumed to apply to the languages described using
these extensions.

Regular languages
We’ve now seen how to go from a left or right regular grammar to a finite
state automaton, from a finite state automaton to a deterministic finite state
automaton, from there to a generalised finite state automaton, from there
to a regular expression, and finally from a regular expression to a left or
right regular grammar. At each step the language is unchanged. We can
therefore conclude that the following sets of languages for a given set of
tokens are all the same:

• the set of languages with a left regular grammar
• the set of languages with a right regular grammar
• the set of languages recognised by a finite state automaton
• the set of languages recognised by a deterministic finite state automa-

ton
• the set of languages recognised by a generalised finite state automa-

ton
• the set of languages described by a regular expression

The last of these was our definition of a regular language, but we could
really have taken any of them as our definition.
The accompanying diagram describes all the constructions given above,
with black arrows representing ways to get one description of a regular
language from an other and the blue arrows representing ways to get a
description of a regular language from one of its reversal.
This equivalence now allows us to answer many questions which were left
unanswered in the sections from individual points of view.
I stated earlier, for example, that every language generated by a left reg-
ular grammar can also be generated by a right regular grammar and vice
versa. We know this is true. In theory the proof is even constructive. We
could take a left regular grammar, construct the corresponding finite state
automaton, use the power set construction to construct a deterministic fi-
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Figure 59: Descriptions of a language

nite state automaton, convert it to a generalised finite state automaton with
a single initial and single accepting state, kill all of its intermediate states
one by one, take the resulting regular expression, and then use it to find a
right regular grammar. All the steps in this process can in principle be car-
ried out in a purely mechanical way. You shouldn’t ever do this, of course.
The resulting grammar would be horrible.
We also considered closure of these sets of languages under various set op-
erations. It was easy, for example, to see that the union of languages with
a regular grammar has a regular grammar. We can now see that that’s true
of languages described by any of the three types of finite automata or by
regular expressions. This would be easy to prove directly for regular ex-
pressions but is quite tricky to prove for deterministic finite state automata.
On the other hand it was fairly straightforward to prove that the intersec-
tion of languages defined by such finite state automata is also defined by
such an automaton but this is far from obvious for languages defined by
regular grammars or regular expressions. It must be true though, since
these are all different ways of describing the same set of languages.
Similarly, reversal is an easy process to describe in terms of regular expres-
sions but it’s far from clear how to take, for example, a left regular grammar
and construct a left regular grammar for the reversed language, or to take
a deterministic finite state automaton for a language and construct a deter-
ministic finite state automaton for the reversed language. The equivalence
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of all of these descriptions of regular languages shows that it must be pos-
sible though.
In general if you want to prove a fact about regular languages you should
look for the description in terms of which this fact is easiest to prove. You
can evenmix them. If regular languages appear in both the hypotheses and
conclusion of a theorem you want to prove you might find it convenient to
use one characterisation for the hypotheses and another for the conclusion.

Pumping lemma
One consequence of the equivalence discussed in the preceding section is
that we have six different ways to show that a language is regular:

• give a left regular grammar which generates its members
• give a right regular grammar which generates its members
• give a finite state automaton which recognises its members
• give a deterministic finite state automaton which recognises its mem-

bers
• give a generalised finite state automaton which recognises its mem-

bers
• give a regular expression which matches its members

That’s nice, but we’ve seen zero ways so far of showing that a languages
isn’t regular. That’s a rather serious gap and none of the descriptions we
have are of much help here. We can hardly list all left regular grammars,
for example, and check that none of them generate the language. In order
to prove that a language isn’t regular you need to identify a propertywhich
all regular languages share and then show that this language does not have
that property. There are two properties which people use for this.
One of these is the subject of the Myhill-Nerode theorem, which we’ll dis-
cuss in the next section. The other is that of the Pumping lemma, which
I’ll discuss in this section. The Myhill-Nerode theorem is better in nearly
all respects than the Pumping lemma. It provides a necessary and suffi-
cient condition for regularity while the Pumping lemma just provides a
necessary condition and, although this is necessarily somewhat subjective,
I find it much easier to use. There are two reasons to introduce the Pump-
ing lemma anyway though. One is that it’s more popular. If you ever see
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someone outside of thismodule proving a language is not regular theywill
probably be doing so using the Pumping lemma so you should knowwhat
it is. The second reason is that there are two Pumping lemmas, one for
regular languages and one for context free languages. It’s the first of these
that we’re discussing in this chapter. The second will be discussed in the
next chapter. TheMyhill-Nerode theorem doesn’t have such a nice general-
isation to context free languages so we will need the second version of the
Pumping lemma in order to prove that various languages are not context
free in the next chapter. For this reason not only will I give a proof of the
Pumping lemma for regular languages but I’ll give one which, unlike the
usual proof, generalises well to context free languages.
I haven’t introduced a notation for concatenation yet. We’ll be encounter-
ing a lot of them in the remainder of this chapter and it’s convenient to have
a notation for them. I’ll take the simplest option and denote concatenation
by concatenation. In other words, if 𝑢 and 𝑣 are lists of tokens then 𝑢𝑣 will
be the list obtained by concatenating 𝑢 and 𝑣, in that order. I’ll also write
𝑢𝑛 for concatenation of 𝑛 copies of 𝑢.

The statement of the lemma

With those preliminaries out of the waywe can proceed to the statement of
the Pumping lemma, which is a bit weird. This will require some terminol-
ogy. We say that a natural number 𝑝 is a pumping length for a language 𝐿
is for every member 𝑤 of 𝐿 of length at least 𝑝 can write 𝑤 as a concatena-
tion of three lists 𝑎, 𝑏 and 𝑐, in that order, i.e. 𝑤 = 𝑎𝑏𝑐, with the following
properties:

• 𝑏 is not the empty list,
• 𝑎𝑏 has length at most 𝑝, and
• for every natural number 𝑛 the list 𝑎𝑏𝑛𝑐 is a member of 𝐿.

Note that 𝑝 depends on 𝐿 but not on 𝑤. The pumping length is a property
of the language, not any particular member.
A language is said to have the pumping property if it has a pumping length.
The Pumping lemma says that every regular language has the pumping
property. It does not say that every language with the pumping property
is regular, and indeed that’s not true.
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There are really two pumping lemmas for regular languages, a left pump-
ing lemma and a right pumping lemma. For some reason everyone seems
to state the version above, but there’s also a version which is identical ex-
cept that it’s 𝑏𝑐 which has length at most 𝑝.

Examples

Before giving a proof I’ll do an example to show how the Pumping lemma
can but used to show that a language isn’t regular.
Earlierwe considered a languagewhosemembers are all strings of the form
some number of x’s followed by some number of y’s. This was a regular
language. We know this because we’ve seen a left regular grammar for it,
a right regular grammar for it, a deterministic finite state automaton for it,
and a regular expression for it. Any one of these would suffice to prove
that it is regular. We therefore can’t expect to use the Pumping lemma to
show that it’s not regular. Consider, though, the language of strings which
are some number of x’s followed by the same number of y’s. We can show,
using the Pumping Lemma, that this language is not regular.
The proof is by contradiction. Suppose the language is regular. Then it
has the pumping property, i.e. there is some pumping length 𝑝 for this lan-
guage. Let 𝑤 be the string with 𝑝 x’s followed by 𝑝 y’s. It belongs to the
language so it can be written as 𝑎𝑏𝑐 as in the definition of the pumping
length. Because 𝑎𝑏 is of length at most 𝑝 and occurs at the beginning of 𝑤
both 𝑎 and 𝑏 must be strings of x’s. Consider the string 𝑎𝑐, thought of as
𝑎𝑏0𝑐 This is the case 𝑛 = 0 of 𝑎𝑏𝑛𝑐. and so is a member of 𝐿. 𝑏 is of positive
length and consists solely of x’s so by removing it we now have a string in
the language with fewer than 𝑝 x’s followed by 𝑝 y’s. But the language is
the language of strings where some number of x’s is followed by the same
number of y’s, so this is impossible.
The name of the Pumping lemma comes from the possibility of taking 𝑛
to be large, generating arbitrarily long language elements by a process of
“pumping”. We could have done that here but we didn’t need to. Instead
of lengthening our string to get a contradiction we shortened it.
This language, which we’ve just shown not to be regular, is a sublanguage
of our original xy language, which we already knew to be regular. It fol-
lows that not every sublanguage of a regular language is regular.
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The name of the Pumping lemma comes from the possibility of taking 𝑛
to be large, generating arbitrarily long language elements by a process of
“pumping”. We could have done that here but we didn’t need to. Instead
of lengthening our string to get a contradiction we shortened it.
The Pumping Lemma is only every used in proofs by contradiction. The
steps are always

• Assume the language is regular, so there is some pumping length 𝑝
for it.

• Choose a list (string), depending on 𝑝.
• Show that for the chosen string and every non-empty segment in the

first 𝑝 tokens (characters) there is some number of repetitions which
takes us outside the language.

• Conclude that the language wasn’t really regular, since it doesn’t sat-
isfy the pumping property.

Note that we we negate a statement all universal quantifiers become exis-
tential and vice versa, e.g. the negation of “there is a 𝑝 such that for all lists
of length at least 𝑝 there is a non-empty segment …” is “For all 𝑝 there is a
list of length at most 𝑝 such for all non-empty segments …”.
As another example, consider the language of balanced parentheses. For
this language we choose a string with 𝑝 (’s followed by 𝑝 )’s. This is a
member of the language of balanced parentheses. Any substring within
the first 𝑝 characters consists only of (’s. If we repeat that substring 0 times
we get fewer (’s than )’s. The last ) has no ( to match it, so this string is
not in the language, so we’re done; the language of balanced parentheses
is not regular. Here it was fairly easy to guess what string to chose. Often
it’s not.

Finite languages

Students occasionally get confused by one point about the Pumping lemma.
Finite languages are always regular. The Pumping lemma appears to allow
us to generate arbitrarily long strings in a regular language. How is this not
a contradiction? The resolution of this seeming paradox is that the Pump-
ing lemma only says something about sufficiently long strings, specifically
those greater than the pumping length of the language. A finite language
has a pumping length equal to the length of its longest string. There are
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no strings 𝑤 in the language with length longer than that so the statement
about being able to split 𝑤 into 𝑎, 𝑏 and 𝑐 with the given properties doesn’t
actually apply to any string and is vacuously true.

The proof of the lemma

Suppose 𝐿 is a regular language. It must then have a left regular grammar.
Let 𝑝 be the number of non-terminal symbols in this grammar. I will show
that 𝑝 is a pumping length for 𝐿. Suppose 𝑤 ∈ 𝐿 is of length 𝑚, which we
assume is at least 𝑝. The parse tree for 𝑤 is of a particularly simple form.
The root has one child. Almost every other node has two children, one
of which is a leaf with a terminal symbol and the other of which is a non-
terminal symbol, also with two children. The one exception is that the non-
terminal symbolwhich gets expanded to the empty list has no children and
is therefore also a leaf.
Our parse tree has 𝑚 leaves labelled by terminal symbols, each with a
distinct parent, labelled by a non-terminal symbol other than the start
symbol, and the one non-terminal symbol which is a leaf, for 𝑚 + 1
non-terminals other than the start symbol. Since 𝑚 + 1 is greater than 𝑝
some non-terminal is repeated symbol. There may well be more than but
there must be one within the last 𝑝 + 1 symbols. We can take the segment
of the tree between those symbols, including the one closest to the root
and excluding the one farthest from the root, and repeat this as many
times as we want to get parse trees for valid lists in the language. The part
of the tree below the repeated segment is our 𝑎, the repeated part is 𝑏 and
the part above is 𝑐.
The accompanying diagrams illustrate this construction on the string 2023
in the integer language. The string 02 between 2 and 3 can be repeated
arbitrarilymany times. The parse tree for the original string is shown along
with the trees for zero repetitions and two repetitions.
To get the version of the Pumping lemmawhere it’s 𝑏𝑐 which is of length at
most 𝑝 we would apply the same construction to a right regular grammar.
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Figure 60: Parse tree for the string 2023
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Figure 61: Parse tree for the string 23

The Myhill-Nerode theorem
One problem with the Pumping lemma is that it can be difficult to guess
which 𝑤 you need to take in order to find a contradiction. Another problem
is that there are languages with the pumping property which are nonethe-
less not regular. There is a nice necessary and sufficient condition for reg-
ularity but it will require some preliminaries.

From languages to automata

From a language we can directly construct an automaton which recognises
it, as described below. This automaton may or may not be finite.
We start with a set of tokens 𝐴 and a language 𝐿, i.e. a subset of 𝐵, the set
of all lists of members of 𝐴. Let 𝜀 be the empty list. We define a function 𝑓
from 𝐵 to 𝑃𝐵 by

𝑓 (𝑤) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝐿}.
We call 𝑓 (𝑤) the set of valid continuations of 𝑤, since 𝑧 ∈ 𝑓 (𝑤) if and only
if reading 𝑧 after reading 𝑤 gives us a member of the language. Note that
𝜀 ∈ 𝑓 (𝑤) if and only if 𝑤 ∈ 𝐿. Also, 𝑓 (𝜀) = 𝐿. Both of these statements fol-
low from the fact that 𝜀 is the identity for 𝐵 with the operation of concate-
nation. Let 𝐶 be the range of 𝑓 , i.e. the set of valid continuation sets.
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Figure 62: Parse tree for the string 202023
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We define an equivalence relation on 𝐵 by saying that 𝑢 and 𝑣 are equiv-
alent whenever 𝑓 (𝑢) = 𝑓 (𝑣). Let 𝐸 be the set of equivalence classes. Let 𝑔
be the function from 𝐵 to 𝐸 which takes each list to the equivalence class
to which it belongs. Every equivalence class is the equivalence class of
some list. One way to express this is to say that 𝑔 is a surjective function,
i.e. that if 𝑃 ∈ 𝐸 then 𝑃 = 𝑔(𝑢) for some 𝑢 ∈ 𝐵. If 𝑃 = 𝑔(𝑣) then 𝑢 and 𝑣
are equivalent, i.e. 𝑓 (𝑢) = 𝑓 (𝑣), so 𝑓 (𝑢) depends only on 𝑃 and not on the
particular 𝑢 chosen. It is therefore legitimate to define ℎ(𝑃) = 𝑓 (𝑢). ℎ is a
function from 𝐸 to 𝐶. It was defined in such a way that ℎ(𝑔(𝑢)) = 𝑓 (𝑢) for
all 𝑢, i.e. such that 𝑓 = ℎ ∘ 𝑔. ℎ is a injective because if ℎ(𝑃) = ℎ(𝑄) then
𝑃 = 𝑔(𝑢) and 𝑄 = 𝑔(𝑣) for some 𝑢 and 𝑣 in 𝐵, but then 𝑓 (𝑢) = 𝑓 (𝑣) so 𝑢 and
𝑣 are equivalent and so 𝑔(𝑢) = 𝑔(𝑣), or in other words 𝑃 = 𝑄. ℎ is surjec-
tive since if 𝑅 ∈ 𝐶 then 𝑅 = 𝑓 (𝑤) for some 𝑤 ∈ 𝐵 and then 𝑅 = ℎ(𝑔(𝑤)) and
hence 𝑅 = 𝑔(𝑃) for some 𝑃 ∈ 𝐸.
Suppose 𝑃 ∈ 𝐸 and 𝑤 ∈ 𝐵. Let

𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}

Now 𝑃 = 𝑓 (𝑢) for some 𝑢 ∈ 𝐵 so

𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑓 (𝑢)}

or
𝑅 = {𝑧 ∈ 𝐵 ∶ 𝑢𝑤𝑧 ∈ 𝐿}

and therefore
𝑅 = 𝑓 (𝑢𝑤).

𝑓 (𝑢𝑤) is a member of 𝐶 and 𝑔 is a bijective function from 𝐸 to 𝐶 so there is
a unique 𝑄 ∈ 𝐸 such that 𝑅 = 𝑔(𝑄), i.e. such that

𝑔(𝑄) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}.

We can therefore define a function 𝑡 from 𝐸 × 𝐵 to 𝐸 by

𝑔(𝑡(𝑃, 𝑤)) = {𝑧 ∈ 𝐵 ∶ 𝑤𝑧 ∈ 𝑃}.

An alternate way to describe this is that 𝑥 ∈ 𝑡(𝑃, 𝑤) if and only if there is
some 𝑢 ∈ 𝑃 such that 𝑥 = 𝑢𝑤.
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Given any list 𝑤 = (𝑎1, 𝑎2, … , 𝑎𝑛) of tokens we can form the list of equiva-
lence classes (𝑠0, 𝑠1, 𝑠2, … , 𝑠𝑛) where

𝑠0 = 𝑔(𝜀), 𝑠1 = 𝑡((𝑎1), 𝑠0), 𝑠2 = 𝑡((𝑎2), 𝑠1), ⋯ 𝑠𝑛 = 𝑡((𝑎𝑛), 𝑠𝑛−1).

By induction we have
𝑔((𝑎1, 𝑎2, … , 𝑎𝑗)) ∈ 𝑠𝑗

for all 𝑗 and so, in particular

𝑔(𝑤) ∈ 𝑠𝑛.

Then
𝑓 (𝑤) = ℎ(𝑠𝑛)

Now 𝑤 ∈ 𝐿 if and only if 𝜀 ∈ 𝑓 (𝑤), i.e. if and only if 𝜀 ∈ ℎ(𝑠𝑛). Let

𝐼 = {𝑔(𝜀)},

𝐹 = {𝑠 ∈ 𝐸 ∶ 𝜀 ∈ ℎ(𝑠)},
and

𝑇 = {(𝑟, 𝑎, 𝑠) ∈ 𝐸 × 𝐴 × 𝐸 ∶ 𝑠 = 𝑡(𝑠, (𝑎))}.
Then (𝑠0 ∈ 𝐼), (𝑠𝑗, 𝑎𝑗, 𝑠𝑗+1) for all 𝑗 < 𝑛 and 𝑤 ∈ 𝐿 if and only if 𝑠𝑛 ∈ 𝐹. In
other words, if we form the automaton whose state set is 𝐸, whose initial
and accepting sets are 𝐼 and 𝐹 respectively and whose transition relation is
𝑇 then this automaton recognises 𝐿. In particular if𝐸 is finite thenwehave a
finite state automaton which recognises 𝐿. We’ll see later that the converse
is also true, that if there is a finite state automaton which recognises 𝐿 then
𝐸 is finite, but first it may be helpful to do an example.

An example

We can use the construction above to find a finite state automaton for the
language of integers.
What are the equivalence classes of strings of the characters 0, 1, …, 9, and
-?

• We always have the equivalence class of the empty string, whose con-
tinuation set is just the language. There is no other string whose con-
tinuation set has all integers as members so the empty string is the
only member of this language.
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• There is also the equivalence class of the string 0. The only contin-
uation of 0 is the empty string. There are no other strings whose
only continuation is the empty string, so 0 is the only member of this
equivalence class.

• We also have the equivalence class of -. The continuations are just the
strings representing positive integers. There is no other string with
the same continuation set so - is the only member of this equivalence
class.

• There is also an equivalence class whose members are all non-zero
integers. These all have all strings of digits as their continuations.
That includes an empty string of digits.

• Finally, there is an equivalence class consisting of those strings with
no continuations. These are the stringswith some sort of syntax error,
like 0--.

These are all the equivalence classes. We’ve just seen that we can form a
finite state automaton whose states correspond to the equivalence classes.
The only initial state is the one corresponding to the equivalence class of
the empty set. The accepting states are the ones for which the empty list
is a valid continuation, which in this case is the class of 0 and the class of
non-zero integers.
There are two reasonable ways to label these states. One is with the equiv-
alence classes and the other is with the continuations. We saw in the last
section that there is a bijective function, which we called ℎ from equiva-
lence classes to continuations, so either will work. I find it easier to un-
derstand the version with states labelled by continuations. There is one
slightly tricky point. We have one state where the set of continuations is
empty and one where the only member of the set of continuations is the
empty list. We can’t label both of them empty. I’ll use that label for the sec-
ond one, and the label error for the first one, since that’s the state we’re in
if there has been a syntax error in the input. With these choices the finite
state automaton for the integer language is the one with the accompanying
diagram.
This finite state automaton is deterministic, and in fact strongly determin-
istic. This is not an accident. The construction from the previous section al-
ways gives a strongly deterministic automaton, and indeed gives one with
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integer

empty

error

0,1,2,3,4,5,6,7,8,9,-

digits

0,1,2,3,4,5,6,7,8,9

-

0

1,2,3,4,5,6,7,8,9

pos_int

-

0,1,2,3,4,5,6,7,8,9,-

1,2,3,4,5,6,7,8,9

0,-

Figure 63: A strongly deterministic finite state automaton for the integers

as few states as possible.

The converse

We’ve seen that if the set 𝐸 of equivalence classes is finite then there is a
finite state automaton which recognises the language. In this section we’ll
see that the converse is also true. If a language is recognised by a finite
state automaton then 𝐸 is finite.
Suppose we have a finite state automaton with 𝑆 as its set of states which
recognises the language 𝐿. As usual, 𝐹 will be the set of accepting states.
As before I’ll denote the set of all lists of members of 𝐴 by 𝐵. For each 𝑤 in
𝐵 let 𝑖(𝑤) be the subset of 𝑆 consisting of those states which the automaton
can be in after reading 𝑤. There could be more than one member of 𝑖(𝑤)
if the automaton is non-deterministic, and there could be none if it is not
strongly deterministic. If it is strongly deterministic then 𝑖(𝑤) has exactly
one member. Let 𝐷 be the range of 𝑖.
If 𝑧 is a continuation of 𝑤 then 𝑤𝑧 is a member of the language and so must
be accepted by the automaton, so there must be a computational path for
𝑧‵ from a member of 𝑖(𝑤) to a member of 𝐹. Conversely, if there is such a
path then 𝑤𝑧 must be a member of the language, so 𝑧 is a continuation of 𝑤.
In particular the set 𝑓 (𝑤) of continuations of 𝑤 depends only on 𝑖(𝑤). So if
we define 𝑗 to be the function from the range of 𝑖 in 𝑃𝑆 to 𝐶 which takes a
subset 𝐻 ⊆ 𝑆 to the set of strings which can be accepted by the automaton
from some state of 𝐻 then 𝑓 = 𝑗 ∘ 𝑖. Since we already have 𝑓 = ℎ ∘ 𝑔 we have
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𝑗 ∘ 𝑖 = ℎ ∘ 𝑔. Let 𝑘 = 𝑗 ∘ ℎ−1. This makes sense since ℎ was already shown
to be bijective. Then 𝑘 ∘ 𝑖 = 𝑔. 𝑘 is a surjective from the range of 𝑖, which is
a subset of 𝑃𝑆, to 𝐸. 𝑆 is finite, so 𝑃𝑆 is finite, so the range of 𝑖 is finite, and
therefore 𝐸 is finite.
In fact we can be more precise. If there are 𝑛 states then there are 2𝑛 mem-
bers of 𝑃𝑆 and so at most 2𝑛 members of the range of 𝑖 and then at most 2𝑛

members of 𝐸. If the finite state automaton is strongly deterministic then
every member of the range of 𝑖 has a single member and there are only 𝑛
such subsets of 𝑆, so we get the much stronger result that 𝐸 has at most 𝑛
members. In particular every strongly deterministic finite state automaton
which recognises 𝐿 has at least as many states as 𝐸 has members. In an ear-
lier section we constructed a strongly deterministic finite state automaton
with exactly that many members. We can now see that that automaton is
minimal, in the sense that it has the smallest possible number of states for
a strongly deterministic automaton which recognises 𝐿.
We can now state one form of the Myhill-Nerode theorem, that if 𝐿 is a
language and 𝐸 is the set of equivalence classes of lists with respect to 𝐿,
equivalence being defined by saying that lists are equivalent if they have
the same set of continuations, then 𝐿 is regular if and only if 𝐸 is finite.

The syntactic monoid
There are two other forms of theMyhill-Nerode theorem. One of these can
be proved by applying the previous version to the reversed language. The
reversed language is regular if and only if the original one is. In this second
version of the Myhill-Nerode theorem the set which we need to be finite is
the set of equivalence classes for the relation where 𝑢 and 𝑣 are equivalent
if and only if

{𝑧 ∈ 𝐵 ∶ 𝑧𝑢 ∈ 𝐿} = {𝑧 ∈ 𝐵 ∶ 𝑧𝑣 ∈ 𝐿}.
This is the same condition as in the definition of 𝐸, except that the order of
the concatenations has been reversed.
This form of the Myhill-Nerode theorem is somewhat less interesting than
the previous one, since it doesn’t lead to the construction of a deterministic
finite state automaton in the case where the grammar is regular.
There’s a third version of Myhill-Nerode, which does construct a strongly
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deterministic finite state automaton in the regular case. This finite state
automaton is not minimal in general but it does have one interesting prop-
ertywhich the onewe constructed earlier lacks. Strongdeterminismmeans
that if we know the current state and the next input token then we know
the next state. This new finite state automaton has the additional property
that if we know the current state and the last input token read then we
know the previous state.
The third version of Myhill-Nerode is based on continuations and equiv-
alence classes, but instead of consider right continuations, as in the first
version, or left continuations, as in the second version, we consider bidirec-
tional continuations.
For any list 𝑤 we say that (𝑢, 𝑧) is a bidirectional continuation of 𝑤 if
𝑢𝑤𝑧 ∈ 𝐿. We say that 𝑤 and 𝑥 are bidirectionally equivalent if they have
the same set of bidirectional continuations. Bidirectionally equivalent
lists are equivalent in the sense we considered earlier but the converse
generally isn’t true. The third version of the Myhill-Nerode theorem
says that the language is regular if and only if the set of bidirectional
equivalence classes is finite.
Bidirectional equivalence has one important property which ordinary
equivalence lacks. If 𝑢 is bidirectionally equivalent to 𝑥 and 𝑣 is bidirec-
tionally equivalent to 𝑦 then 𝑢𝑣 is bidirectionally equivalent to 𝑥𝑦. This
allows us to perform the quotient construction on 𝐵 considered as a
monoid with concatenation as the operation. The quotient is called the
syntactic monoid of the language. Various properties of the language
can be defined in terms of the syntactic monoid. The advantage of doing
this is that there is only one syntactic monoid for a language. If we try to
define properties of a language in terms of the structure of its grammar
we need to show that we get the same result regardless of which grammar
is used. Similarly, if we try to define properties of a language in terms of
the structure of a finite state automaton then we need to show that we get
the same result regardless of which automaton is used. The same problem
arises if we try to define properties in terms of regular expressions, but
not if we define them in terms of the syntactic monoid.

308



Context free languages
A context free grammar is a phrase structure grammar where every rule
gives a finite set of alternates for a non-terminal symbol, each alternate
being a finite list of symbols. The second “finite” is redundant because
lists are always finite. It’s just there as a reminder.
All of the phrase structure grammars we’ve considered are of the form de-
scribed above. They have the property that the possible expansions of a
symbol are independent of what symbols appear before or after it. That’s
where the term “context free” comes from. We could imaginemore general
grammars where the possible expansions are allowed to depend on other
symbols in the list. That would take us into the realm of context sensitive
grammars. We won’t do that this semester though.
A language is called context free if it can be generated by a context free
grammar. Left and right regular grammars are context free grammars so
regular languages are context free languages. Not every context free gram-
mar is regular though. We saw a context free grammar for the language of
balanced parentheses earlier, so it is context free, but we’ve already seen
that it is not regular.
As another example of a context free language which is not regular, con-
sider the language whose members are strings with some number of x’s,
followed by the same number of y’s, followed by any positive number of
z’s. We can show that this language is not regular using either the Pump-
ing lemma or the Myhill-Nerode theorem. It is context free though, since
we can write down the following simple phrase structure grammar for it.
%%
start : xsys zs

;

xsys : | x xsys y
;

zs : z | zs z
;

Similarly, the language with any positive number of x’s, followed by some
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number of y’s, followed by the same number of z’s is context free but not
regular. In this case it’s not possible to use the usual version of the Pumping
lemma but it is possible to use the second version, and it’s also possible
to use the Myhill-Nerode theorem. It is straightforward to write down a
phrase structure for this grammar, very similar to the one above.
Not all languages are context free. This follows from a simple counting ar-
gument since the set of phrase structure grammars for a non-empty count-
able set of tokens is countable but but the set of languages for the same set
of tokens is uncountable.
Natural languages tend not to be context free, although some of them aren’t
far off. Well designed computer languages typically are context free, which
makes it relatively straightforward to write parsers for them. Languages
designed bypeople or committeeswhodon’t have to implement themoften
fail to be context free, as do languages where the language specification
evolved from a preexisting compiler implementation.
I am cheating slightly though when I claim that well designed languages
have context free grammars, because there may be some programs which
parse correctly but are not valid due to constraints in the language specifi-
cation which cannot be implemented in a context free way, like declaration
before use requirements. Violating these constraints is not, strictly speak-
ing, a syntax error, but this is admittedly a fine distinction. There are pro-
gramming languages which are context free in the strictest possible sense
but you probably wouldn’t enjoy debugging a program written in one.

Closure properties
The union of two context free languages is context free. The construction
of a context free grammar for the union from context free grammars for the
individual languages is exactly the same as for regular languages. Similarly,
reversal, concatenation and Kleene star are okay, with essentially the same
constructions already saw for regular languages.
The intersection of two context free languages, or the relative complement
of one with respect to another, is generally not context free. For example,
we’ve seen that the language consisting of strings with some number of x’s
followed by the same number of y’s and then any positive number of z’s is
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context free. We’ve also seen that the language consisting of strings with
any positive number of x’s, then some number of y’s and then the same
number of z’s is context free. The intersection of these two languages is
the language of strings with some positive number of x’s followed by the
same number of y’s and then the same number of z’s. That language is not
context free, although we don’t yet have the tools to prove this. We will
return to this example later, once we have a pumping lemma for context
free languages.
Although the intersection of context free languages needn’t be regular it is
true that the intersection of a regular language and a context free language
is a context free language. It is also true that if 𝐿 is context free and 𝑀 is
regular then 𝐿 ∖ 𝑀 is context free, although 𝑀 ∖ 𝐿 needn’t be.

Pushdown automata
Just as the regular languages are those which can be recognised by a finite
state automaton the context free languages are those which can be recog-
nised by what’s called a pushdown automaton, essentially a finite state
automaton with access to a stack.
In addition to the tokens of the language we allow the finite state automa-
ton to use finitely many additional tokens on its stack.
Earlier we considered a language for zeroeth order logic, which had the
tokens 𝑝, 𝑞, 𝑟, 𝑠, 𝑢, !, ∧, ∨, ¬, ⊃, ⊼, ⊻, ≡, ≢, ⊂, (, ), [, ], { and }. We can
construct a pushdown automaton which recognises this language.
Our automaton starts by pushing a 𝑝 onto the stack. It then reads char-
acters one at a time, processing them as follows. In each case where I’ve
written that themachine pops a character off the stack I mean that it checks
whether the stack is empty, fails, and pops the the top character otherwise.
“Fail” here and below just means terminates unsuccessfully.

• If there is no character to read then it checks whether the stack is
empty and terminates successfully if it is and unsuccessfully if it isn’t.

• If the character it read is whitespace it does nothing.
• If the character it read is a 𝑝, 𝑞, 𝑟, 𝑠, 𝑢 it pops a character off the stack.

If the character it popped is a 𝑝 it pushes a ! onto the stack. Otherwise
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it fails.
• If the character it read is a ! then it continues on to read the next char-

acter.
• If the character it read is ∧, ∨, ⊃, ⊼, ⊻, ≡, ≢, or ⊂ it pops a character

off the stack. If the character it popped is a ∧ it continues on to read
the next character. If the character it popped is a ! then it pops off
another character and if that character is a ∧ it continues on to read
the next character. In all other cases it fails.

• If the character it read is a ¬ then it pops a character off the stack. If
the character it popped is a 𝑝 then it pops another character off the
stack. If that character is a ∧ then it continues on to read the next
character. In all other cases it fails.

• If the character it read is a ( then it pops a character off the stack. If
that character is a 𝑝 then it pushes a ), then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a [ then it pops a character off the stack. If
that character is a 𝑝 then it pushes a ], then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a { then it pops a character off the stack. If
that character is a 𝑝 then it pushes a }, then a 𝑝, then a ∧, and then
another 𝑝 onto the stack and continues on to read the next character.
In all other cases it fails.

• If the character it read is a ) then it pops a character off the stack. If the
character it popped is a ) then it continues on to read the next charac-
ter. If the character it popped is a ! then it pops another character. If
that character is ) then it continues on to read the next character. In
all other cases it fails.

• If the character it read is a ] then it pops a character off the stack. If
the character it popped is a ] then it and continues on to read the
next character. If the character it popped is a ! then it pops another
character. If that character is ] then it continues on to read the next
character. In all other cases it fails.
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• If the character it read is a } then it pops a character off the stack. If
the character it popped is a } then it and continues on to read the
next character. If the character it popped is a ! then it pops another
character. If that character is } then it continues on to read the next
character. In all other cases it fails.

Before explaining why this works it may be helpful to trace the computa-
tional path for a particular input. I’ll choose {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)}
as my input string. As the computation proceeds we need to keep track of
what portion of the input has been read and what the contents of the stack
is. The accompanying diagram does this.

{ [ ( 𝑝 ⊃ 𝑞 ) ∧ ( 𝑞 ⊃ 𝑟 ) ] ⊃ ( 𝑝 ⊃ 𝑟 ) }
𝑝 𝑝 𝑝 𝑝 ! 𝑝 ! ∧ 𝑝 𝑝 ! 𝑝 ! ] ∧ 𝑝 𝑝 ! 𝑝 ! }

∧ ∧ ∧ ∧ ) ) 𝑝 ] ∧ ∧ ) ) ∧ 𝑝 } ∧ ∧ ) )
𝑝 𝑝 𝑝 𝑝 ∧ ∧ ] ∧ 𝑝 𝑝 ] ] 𝑝 } 𝑝 𝑝 } }
} ] ) ) 𝑝 𝑝 ∧ 𝑝 ) ) ∧ ∧ } ) )

∧ ∧ ∧ ] ] 𝑝 } ] ] 𝑝 𝑝 } }
𝑝 𝑝 𝑝 ∧ ∧ } ∧ ∧ } }
} ] ] 𝑝 𝑝 𝑝 𝑝

∧ ∧ } } } }
𝑝 𝑝
} }

The interpretation of the diagram is that the column below each input char-
acter is the state of the stack after reading it and doing all the associated
stack operations. To the left all the input characters there’s a column with
just a single 𝑝, which represents the state of the stack just before reading
the first character.
At no point before the end of the input does the automaton terminate un-
successfully and the stack is empty at the end so the automaton terminates
successfully. In other words, this string is recognised as a member of the
language.
Youmay have guessed how this automaton uses its stack. After processing
a character the stack shows one valid continuation for the input at that
point. This continuation is chosen in such a way that even if the next input
character is not the first character of that continuation, i.e. the character at
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the top of the stack, we can easily adjust the stack to get a valid continuation
of the new input string, if there is such a valid continuation, and fail if
there is none. This is a strategy which happens to work for this language
and some others. It does not work for context free languages in general
though.
One feature of the pushdown automaton described above is that it always
terminates, either successfully or unsuccessfully. This is clear because at
each stage we read an input character and eventually we run out of input.
Another feature of the automaton is that it is deterministic. Whenever we
read an input token, check whether the stack is empty, or pop a token from
the stack there is at most one way to continue the calculation, although
theremay be none in those caseswherewe terminate unsuccessfully. These
two features are desirable but neither of them is required. Pushdown au-
tomata are allowed to have multiple options for their next step. As with
all non-deterministic computations we consider we say that the input is ac-
cepted if there is some computational path which terminates successfully,
even if others terminate unsuccessfully or not at all.

Parsing by guessing
The preceding section gave a deterministic pushdown automaton recog-
niser for a particular grammar. The method used was adapted to that par-
ticular language and doesn’t provide much inspiration if someone hands
us another language and asks for a pushdown automaton recogniser for it.
If we’re willing to give up determinism then there’s a simple recipe we can
use:

• Empty the stack, if necessary, and then push the grammar’s start sym-
bol onto it.

• Repeat the following indefinitely:
– If the stack and input are empty then terminate successfully.
– If the stack is empty and the input is non-empty then terminate

unsuccessfully.
– If neither of these things has happened the stack must be non-

empty. Pop the item at the top of of the stack. It will be a symbol
from the grammar, either terminal or non-terminal.
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– If it’s non-terminal then pick one of its alternates from the gram-
mar, terminating unsuccessfully if there are none, and push the
symbols from that alternate onto the stack in reverse order.

– If it’s a terminal symbol then read an input token, terminating
unsuccessfully if the input is empty. Check whether the token
belongs to the terminal symbol, terminating unsuccessfully if it
does not.

This doesn’t have to terminate. What’s different about this method from
the one we saw in the example is that this one processes one stack item at
a time rather than one input token at a time. The stack can shrink or grow,
while the remaining input only ever shrinks. In fact it’s very unusual for
all computational paths to terminate.
It’s also non-deterministic because of the stepwherewe choose an alternate
from the rule for a non-terminal symbol.
If the input belongs to the language then some computational path will
terminate successfully. If the input does not belong to the language then
it’s possible that all computational paths terminate unsuccessfully, but it’s
more likely that at least one fails to terminate at all. If so then the automa-
ton will never provide us with an answer because at any finite stage of the
computation we won’t know whether it would eventually succeed if given
more time.
I’ll illustrate this method with the same input as above for the language
of zeroeth order logic. It will be necessary to write this in a somewhat
different format from the previous example because of its size, and because
it’s organised somewhat differently, processing one stack item at a time
rather than one input character at a time.

1. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: statement
2. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression
3. input: {[(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: { expression binop ex-

pression }
4. input: [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-

sion }
5. input: [(𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: [ expression binop ex-

pression ] binop expression }
6. input: (𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-
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sion ] binop expression }
7. input: (𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ( expression binop expres-

sion ) binop expression ] binop expression }
8. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expres-

sion ) binop expression ] binop expression }
9. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable binop expression

) binop expression ] binop expression }
10. input: 𝑝 ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression )

binop expression ] binop expression }
11. input: ⊃ 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ) binop ex-

pression ] binop expression }
12. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ) binop expression

] binop expression }
13. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable ) binop expression ]

binop expression }
14. input: 𝑞) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter ) binop expression ]

binop expression }
15. input: ) ∧ (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ) binop expression ] binop ex-

pression }
16. input: ∧(𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ] binop expres-

sion }
17. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ] binop expression }
18. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: ( expression binop expression ) ]

binop expression }
19. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression binop expression ) ]

binop expression }
20. input: (𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable binop expression ) ] binop

expression }
21. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression ) ] binop ex-

pression }
22. input: 𝑞 ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter binop expression ) ] binop ex-

pression }
23. input: ⊃ 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression ) ] binop expression

}
24. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: expression ) ] binop expression }
25. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: variable ) ] binop expression }
26. input: 𝑟)] ⊃ (𝑝 ⊃ 𝑟)} stack: letter ) ] binop expression }
27. input: )] ⊃ (𝑝 ⊃ 𝑟)} stack: ) ] binop expression }
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28. input: ] ⊃ (𝑝 ⊃ 𝑟)} stack: ] binop expression }
29. input: ⊃ (𝑝 ⊃ 𝑟)} stack: binop expression }
30. input: (𝑝 ⊃ 𝑟)} stack: expression }
31. input: (𝑝 ⊃ 𝑟)} stack: ( expression binop expression ) }
32. input: 𝑝 ⊃ 𝑟)} stack: expression binop expression ) }
33. input: 𝑝 ⊃ 𝑟)} stack: variable binop expression ) }
34. input: 𝑝 ⊃ 𝑟)} stack: letter binop expression ) }
35. input: ⊃ 𝑟)} stack: binop expression ) }
36. input: 𝑟)} stack: expression ) }
37. input: 𝑟)} stack: variable ) }
38. input: 𝑟)} stack: letter ) }
39. input: )} stack: ) }
40. input: } stack: }
41. input: stack:

At no point before the stack emptied does the automaton terminate unsuc-
cessfully and the input is empty once the stack is so the automaton termi-
nates successfully. In other words, this string is recognised as a member of
the language.
Note that this is one possible computational path. It is, in fact, the only
one which terminates successfully. There are many others, some of which
terminate unsuccessfully and some of which fail to terminate at all. As dis-
cussed earlier we could represent the set of all computational paths with a
tree, but this tree would be infinite. It is possible to give a deterministic al-
gorithm by, for example, traversing this tree in breadth first order. There’s
no way for a deterministic pushdown automaton to do this, since main-
taining the full tree requires something more powerful than a stack, but
it could be done, for example, by a deterministic Turing machine. With a
breadth first traversal we would only see a finite portion of the full infinite
tree. I have chosen not to illustrate the portion which would be traversed
because this planet is unfortunately not large enough to contain it.

Deterministic pushdown automata
We’ve now seen two pushdown automata for the same language. We saw
in the preceding chapter that any language which can be recognised by
a finite state automaton can be recognised by a deterministic finite state

317



automaton. Although we haven’t defined Turing machines yet it is true
that every language which can be recognised by a Turing machine can be
recognised by a deterministic Turing machine. Since pushdown automata
are intermediate in power between finite state automata and Turing ma-
chines it would seem reasonable to expect that every language which can
be recognised by a pushdown automaton can also be recognised by a de-
terministic pushdown automation. The example considered above lends
some support to this expectation, since there’s a natural way to recognise
the language with a non-deterministic pushdown automaton but with a
certain amount of ingenuity one can also construct a deterministic push-
down automaton for the language. Unfortunately though there are context
free languageswhich cannot be recognised by anydeterministic pushdown
automaton.

From pushdown automata to context free grammars
I’ve described one way of constructing a pushdown automaton from a con-
text free grammar in such a way that the automaton recognises exactly
those lists which are generated by the grammar. The reverse construction
is also possible. Given a pushdown automaton we can construct from is a
context free grammar which generates those lists which are recognised by
the automaton.
As an example, consider a pushdown automaton working with the sym-
bols ( and ) set up as follows:

• The only state is the start state, so there are no state transitions.
• The stack is initially empty.
• The automaton reads the input one symbol at a time. Whenever it

reads a ( it pushes it. Whenever it reads a ) it attempts to pop what-
ever is at the top of the stack. If it can’t pop an item because the stack
is already empty then the computation terminates unsuccessfully.

• If it reaches the end of the output without having failed in the way
just described then it terminates, successfully if the stack is empty
and unsuccessfully if the stack it not empty.

We want a grammar for the language of lists of symbols which cause this
automaton to terminate successfully when given them as input.
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The key idea is to introduce a new symbol whose expansion should be
precisely those lists of symbols which leave us with an empty stack if we
started with an empty stack. In other words, although the automaton
might push new symbols onto the stack it will pop all of them off of the
stack by the time it reaches the end of the list and won’t attempt to pop off
more than it has pushed on. Lacking any more creative ideas, I will call
this new symbol new.
Although I described the set of expansions of new in terms of a stack which
is empty at the start and end of the list the behaviour of the automaton is
essentially the same with any other initial stack. It will end up with the
same stack at the end as at the start because it never dips below the current
stack of the top. If it did then it would cause a failurewhen given the empty
stack. For this reason we can describe the expansions of new as those lists
of symbols which, when fed to the automaton at a point where there are 𝑘
items on the stack will leave the stack with the same 𝑘 items and no others,
with the size of the stack never dipping below 𝑘 in between.
Although it’s obvious, it’s worth stating explicitly that the empty list has
the property described above and so should be a possible expansion for
the symbol new.
As described above, the stack has size 𝑘 at the start and end of any list of
symbols which are a valid expansion of new and it has size at least 𝑘 at any
point in between. It might ormight not have exactly 𝑘 at some intermediate
point.
If it has size 𝑘 at an intermediate point then that means we can split the list
in two at that point and each of those pieces will also be a valid expansion
of new.
If it doesn’t have size 𝑘 at any intermediate point then it has size greater
than 𝑘 everywhere in between, since the size can never be less than 𝑘. In
other words right at the start of the list we must have pushed a symbol
and this symbol isn’t popped off until the end of the list. In between those
operations we have a situation where the stack starts with size 𝑘 + 1, ends
with size 𝑘 + 1, and has size at least 𝑘 + 1 everywhere in between. In other
words, whatever list of symbols we read in between that first push and that
last pop must be an expansion of new. In this case it’s simple to figure out
what the first and last things we read are, since only a ( can cause a push
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and only a ) can cause a pop. So in the case we’re currently considering,
the one where the stack doesn’t have size 𝑘 at any intermediate point, we
must have a (, then something of type new, and then a ).
In the paragraphs above we’ve seen three things new could expand to: the
empty list, a concatenation of two news, or a ( followed by a new and a ).
It’s easy to see that these are the only possibilities. So the grammar rule for
new must be
new : | new new | "(" new ")"
What is the start symbol for this grammar? We’ve specified that the stack
is initially empty and the for a successful termination it should be empty
finally as well and that no attempt to pop from an empty stack occurs in be-
tween. The definition of new fits this description exactly, so we can just take
new to be the start symbol and the single rule above is the entire grammar.
As you may already have guessed, the language recognised by this ma-
chine is the language of balanced parentheses and the grammar above is a
grammar for it. It’s not the grammar we used previously. That grammar
was unambiguous while this one is ambiguous.
The sort of analysis we employed above can be applied, with some modi-
fications, to any pushdown automaton. The main complication is the pos-
sibility of multiple states. If we have multiple states then we need a new
symbol for each possible pair of initial and final state for lists of symbols
which preserve the stack in the way described above. Only for those where
those states are the same is the empty list a valid expansion. When we con-
sider those with an intermediate point where the stack is of the same size
as at the beginning and end we have to allow for the various states the
automaton could be in at that intermediate point. In the case where this
doesn’t happen, i.e. where we push something onto the stack at the start
and pop something off only at the end, we have to account for all the states
we could be in just after pushing and just before popping. We also need
to consider all the various choices for a symbol to push and pop. Finally,
if we have multiple states then we need to identify the start state or states
and the accepting state or states, those which represent a successful termi-
nation. The start state will then have an alternate for each pair of start and
accepting state. Considering all of these possible combinations of states
and symbols leads to complicated grammars, but conceptually the proce-
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dure isn’t really different from the one we employed in the language of
balanced parentheses example.

Pumping lemma
Just as there is a pumping lemma for regular languages there is one for
context free languages. The statement is of a similar kind, but more com-
plicated.
For every context free language there is a natural number 𝑝 such that every
𝑤 of 𝐿 of length at least 𝑝 can be written in the form 𝑤 = 𝑎𝑏𝑐𝑑𝑒 where the
lists 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 have the following properties:

• 𝑏𝑐𝑑 is of length at most 𝑝.
• 𝑏 and 𝑑 are not both empty.
• For every natural number 𝑛 the list 𝑎𝑏𝑛𝑐𝑑𝑛𝑒 is a member of 𝐿.

Application

Consider the language consisting of strings some positive number of x’s,
followed by the same number of y’s, followed by the same number of z’s.
We met this language earlier as the intersection of two context free lan-
guages. If this language is context free then there is a number 𝑝 as in the
statement of the lemma. Let 𝑤 be the string with 𝑝 x’s, followed by 𝑝 y’s,
followed by 𝑝 z’s. This is a member of the language and is of length at least
𝑝 so there should be strings 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 satisfying the conditions listed
in the statement of the lemma. The substring 𝑏𝑐𝑑 is of length at most 𝑝 so it
could contain x’s or z’s but not both. If we take 𝑛 = 0 we get the string 𝑎𝑐𝑒,
i.e. 𝑎𝑏𝑐𝑑𝑒 with 𝑏 and 𝑑 removed. If 𝑏𝑐𝑑 had no x’s then 𝑎𝑐𝑒 has 𝑝 x’s and is
of length less than 3𝑝. If it 𝑏𝑐𝑑 had no z’s then 𝑎𝑐𝑒 has 𝑝 z’s and is of length
less than 3𝑝. There are no members of the language which satisfy either of
those conditions though. This contradicts the statement of the lemma, so
our assumption that the language is context free must have been false. In
particular, we now have an example of two context free languages whose
intersection is not context free.
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Proof

By assumption our language is context free so it has a phrase structure
grammar of the type described previously. Let 𝑠 be the number of and 𝑟 be
the maximum number of symbols appearing in any rule.
In any parse tree for amember of the language the number of leaves among
the descendents of a node is at most 𝑟ℎ, where ℎ is the maximum of the
lengths of the branches starting from that node. The length of branches
here is the number of edges in a path from the node to the leaf, which is
one less than the number of nodes along that branch.
Let 𝑝 = 𝑟𝑠+1 and let 𝑤 be a member of 𝐿 of length at least 𝑝. The parse tree
for 𝑤 must then have a branch of length at least 𝑠 from the root node. I’ve
written “the” parse tree but there could bemore than one if the grammar is
ambiguous. What the argument above really shows is that every parse tree
for 𝑤 has such a branch. If there’s more than one parse tree we’ll choose
one with as few nodes in its parse tree as possible.
On the parse tree for 𝑤 choose a branch of maximal length. From what we
said above this length is at least 𝑠 + 1. The number of symbols appearing
is on this branch is one more than then length and so is greater than 𝑠 + 1.
If we look at the last 𝑠 + 1 symbols then one must be repeated. Any such
symbol in non-terminal because terminal symbols don’t have children in
the parse tree. Choose one, and choose two occurrences of it. We’ll call
the one closer to the root the outer occurrence and the one farther from the
root the inner occurrence. Let 𝑐 be the expansion of the inner occurrence
and let 𝑓 be the expansion of the outer occurrence. Let 𝑎 be the part of 𝑤
before 𝑓 and let 𝑒 be the part after 𝑤, so that 𝑤 = 𝑎𝑓 𝑒. Let 𝑏 be the part of 𝑓
before 𝑐 and let 𝑑 be the part after 𝑐, so that 𝑓 = 𝑏𝑐𝑑.
Now 𝑤 = 𝑎𝑏𝑐𝑑𝑒. 𝑓 , i.e. 𝑏𝑐𝑑, is of length less than 𝑝 because the maximal
branch length from the outer occurrence is at most 𝑠 + 1. Taking the parse
tree for 𝑤 and replacing the part of the tree descending from the outer
occurrence with the part of the tree descending from the inner occurrence
has the effect of replacing 𝑓 by 𝑐 in 𝑎𝑓 𝑒 and so gives a parse tree for 𝑎𝑐𝑒, which
must therefore also be amember of the language. This parse tree has fewer
nodes than the minimal parse tree for 𝑤 so 𝑎𝑐𝑒 is not 𝑤. In other words, 𝑏
and 𝑑 are not both empty. Also, 𝑎𝑏0𝑐𝑑0𝑒 is a member of the language. We
could also replace the part of the tree descending from the inner occurrence
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with the part descending from the outer occurrence, to get a parse tree for
𝑎𝑏𝑓 𝑑𝑒, for 𝑎𝑏2𝑐𝑑2𝑒, which must therefore also be a member of the language.
This construction is repeatable, sowe can replate that 𝑐 by an 𝑓 to get 𝑎𝑏3𝑐𝑑3𝑒
and so on. In this way we see that 𝑎𝑏𝑛𝑐𝑑𝑛𝑒 is a member of the language for
all natural numbers 𝑛.

Other idealised machines
More finite state automata
Our finite state automata can be thought of as machines with a restricted
stack, one we are only allowed to pop symbols off of. Initially this stack
contains the input, with the first symbol at the top of the stack and the last
symbol at the bottom.
We could, if we wanted to, consider finite state automata which have a
write-only stack rather than a read-only stack, i.e. ones which we can push
symbols onto but can pop symbols off of. These have no input but have an
output, i.e the final state of the stack, where can conventionally agree that
the top of the stack is the last output symbol and the bottom is the first.
It’s reasonable to ask which languages can be the set of outputs for such a
finite state automaton. If we restrict to deterministic finite state automata
then the answer is totally uninteresting, since these could only ever gen-
erate one list. If we allow non-deterministic finite state automata then the
answer is once again the regular languages, so we have yet another charac-
terisation of these languages.
We could even consider a generalisation of finite state automata with two
stacks, one read-only stack for the input and one write-only stack for the
output. These are generally called transducers. The other types of finite
state automata can be considered as special cases of the transducer. You
can, for example, consider the read-only automata from the earlier chap-
ter as ones which read the input and produce as output a single special
symbol, either accept or reject, depending on whether we end up in an
accepting or rejecting state. It’s easy to generalise this to a classifier, a ma-
chine which produces output from a finite set of options, not just two. In
fact this essentially is the job of a lexical analyser and a lexical analyser can
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be implemented by such an automaton, a special case of the transducer.

More pushdown automata
We can similarly consider the input to a pushdown automaton as as a sepa-
rate stack which, unlike its working stack, is read-only, i.e. allows only pop
operations and not push operations.
Every finite state automaton is a pushdown automaton, specifically a push-
down automaton which doesn’t ever touch its working stack, so anything
we can do with a finite state automaton can be done with a pushdown au-
tomaton. The converse is not true. We’ve already seen that every context
free language is recognised by a pushdown automaton and that every fi-
nite state automaton recognises a regular language. If every pushdown
automaton could be simulated with a finite state automaton then every
context free language would be regular, but we’ve already seen that this
is not true. The language of balanced parentheses, for example, is context
free but not regular.
Aswith finite state automatawe could consider instead a versionwhere the
other stack is write-only, so the automaton has no input but has an output.
Again this is uninteresting ifwe restrict ourselves to deterministic automata
but if we allow non-deterministic automata we get something useful. In
fact the languages which can be sets of outputs of such amachine is exactly
the context free languages. Arguably this is a more intuitive way to think
of the connection between languages and grammars since our generative
grammar is used to construct an actually generator rather than a recogniser.

Turing machines
So far we’ve considered idealised machines with up to two stacks and at
least one stack has always been restricted to either only push operations or
pop operations. What if we remove some of these restrictions.
The next simplest machine we could consider is one with two stacks whose
use is unrestricted. One will be the input stack and one will be the out-
put stack, with the output stack initially empty and the input stack finally
empty, but in betweenwe are allowed to push symbols onto the input stack
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or pop symbols off of the output stack if we wish. I’ll call such a machine
a Turing machine, although this terminology requires some comments.
Just as every finite state automaton was a pushdown automaton, every
pushdown automaton is a Turing machine, so anything which can be done
be a pushdown automaton can be done by a Turing machine.
The definition I’ve just given for a Turingmachine differs from the standard
one in two respects. First, I never specified that the machine is determinis-
tic. The standard definition requires this. Second, I allowed themachine to
operate independently on its two stacks. The standard definition of a Tur-
ing machine uses a single tape rather than a pair of stacks. At each point
the machine is at a given position on the tape, from which it’s allowed to
move left or right. It’s allowed to read or change symbols only at this po-
sition. We can simulate this with a pair of stacks, one for the symbols to
the left of this position and one for the symbols to its right. Any tape op-
eration then corresponds to coordinated operations on the stack. Moving
to an adjacent position, for example, involves popping from one stack and
pushing to the other. So the standard Turing machine is restricted in two
senses compared to what I’ve defined above. It’s deterministic and its per-
mitted stack operations are only those combinations which correspond to
tape operations. It turns out that both of these restrictions are more appar-
ent than real though. We saw earlier that any finite state automaton can be
simulated by a deterministic finite state automaton, via the power set con-
struction. The corresponding statement for pushdown automata is false
but the statement for Turing machines is true. It’s also possible simulate a
machine with unrestricted stack operations with one where the stack oper-
ations are paired in the way they would be for a standard Turing machine
with a tape. So although my definition of a Turing machine isn’t identical
to the standard one the set of computations the two types of machines can
do are identical.

A Turing machine
As proved in the last chapter, the language consisting of strings with a pos-
itive number of x’s followed by the same number of y’s followed by the
same number of zs is not context free and so cannot be recognised by a
pushdown automaton. We can construct a Turing machine which recog-
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nises it though.
There are two stacks, one of which initially holds the input and the other of
which is initially empty. I’ll refer to these as Stack I and Stack E, respectively.
While only x’s y’s and zs appear on the stacks initially it’s convenient to
allow the machine to push and pop X’s, Y’s and Z’s as well.
There are two phases to the computation. In the first phase we perform the
following action repeatedly:

• If Stack E is not empty we pop symbols off of it and push them onto
Stack I until Stack E is empty.

• We pop symbols off of Stack I and push them onto Stack E until the
symbol we pop off of Stack I is an x. Once this happens we push an X
onto Stack E instead of an x and move on to the next action. If Stack
I becomes empty before we see an x then we move on to the second
stage of the computation.

• We pop symbols off of Stack I and push them onto Stack E until the
symbol we pop off of Stack I is a y. Once this happens we push a Y
onto Stack E instead of a y and move on to the next action. If Stack I
becomes empty before we see a y then we halt and the computation
is unsuccessful.

• We pop symbols off of Stack I and push them onto Stack E until the
symbol we pop off of Stack I is a z. Once this happens we push a Z
onto Stack E instead of a z and move on to the next action. If Stack I
becomes empty before we see a z then we halt and the computation
is unsuccessful.

The second stage is simpler.
• If Stack E is not empty we pop symbols off of it and push them onto

Stack I until Stack E is empty.
• We pop symbols off of Stack I one at a time and push them onto Stack

E. If any of these symbols is a y or a z then we halt and the computa-
tion is unsuccessful.

• If Stack I becomes emptywithout any y’s or z’s having been seen then
we halt and the computation is successful.
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Conceptually this is fairly simple. In the first stage we replace the first x
by an X, the first y by a Y and the first z by a Z, then the second x by an X,
the second y by a Y and the second z by a Z, etc. If the input was in the
languages then at this point we should have with a positive number of X’s
followed by the same number of Y’s followed by the same number of Zs. If
it’s not in the language then either we have too few y’s or z’s in the input
or too many. If we have too few then the machine will already have halted
unsuccessfully when it empties Stack I while scanning for a y or a z. If we
have toomany then therewill be some y’swhich didn’t get changed to Y’s or
some z’s which didn’t get changed to Z’s. In that case the machine will halt
unsuccessfully during the second stage. Otherwise it will halt successfully
after the second stage.
This Turing machine has the rather nice property that no matter what in-
put we give it it will eventually halt, either successfully or unsuccessfully.
This is not true of Turing machines in general. A recogniser is required to
halt successfully on any input in the language and only on inputs in the
language but it is allowed to halt unsuccessfully or run forever on inputs
which are not in the language. A Turing machine which always halts un-
successfully on inputs which are not in the language, like this one does, is
called a decider for the language. Every decider is a recogniser, but not
vice versa. In fact there are languages for which it’s possible to construct a
recogniser but impossible to construct a decider.

The Church-Turing hypothesis
As discussed discussed previously, some additional restrictions we could
place on Turing machines, like determinism or coordinating operations on
the two stacks, turn out not to matter, as long as we’re only concerned with
what can or can’t be done by such amachine and not the precise mechanics
of how it is done. What about removing restrictions rather than adding
them? Could we, for example, do things with a three stack machine which
we can’t do with a two stack machine? The answer, both for three and for
any higher number, turns out to be no. It’s possible to simulate a machine
with more stacks on one with just two, just as we could simulate a non-
deterministic machine on a deterministic one.
The example above turns out to be typical. Every less restrictive idealised
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machine people have been able to imagine, as long as we allow only oper-
ations which could be mechanically realised in finite time, turns out to be
no more powerful than a Turing machine in terms of what it can compute.
This observation has led to what’s called the Church-Turing thesis, which
is essentially the statement that computable means computable by a Tur-
ing machine, i.e. that there is no more powerful notion of computability
waiting to be discovered. This thesis isn’t susceptible to rigorous proof, or
even really a rigorous formulation, but it is almost universally believed by
people who study the theory of computation.

Universal Turing machines
If you’ve ever used a computer you may find the sorts of idealised ma-
chines we’ve been considering odd. We have a separate machine for each
computational task. We can, for example, “build” a pushdown automaton
recogniser for any context free language but what we’d obviously prefer is
amachinewhich takes a grammar and a list of tokens and tells youwhether
the list belongs to the language, so that we can use the same machine on
any language.
Turing’s work predates physical computers so at the time he was writing
it really was necessary to have separate machines for each computational
task. Turing was aware that this was undesirable though, and so also con-
sidered the notion of a universal machine. He had in some sense been an-
ticipated in this regard by Babbage and Lovelace. In Turing’s formulation
the universal machine was a Turingmachine which took as input a descrip-
tion of a Turingmachine and of an input to that machine and told youwhat
the output of that machine would be on that input. He described, in some
detail, how to construct such a machine. In this picture there are two Tur-
ingmachines, the simulator and the simulated. The simulator corresponds
roughly to modern computer hardware and the simulated to modern com-
puter software. Because the simulator is universal you only need one com-
puter, not a separate one for each computational task.

The Halting Problem
Turing machines don’t have to halt. They can run forever. It would be
nice if we could determine in advance whether a given machine will halt
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on a given input, so we don’t waste time waiting for an answer will never
come. Note that although a universal Turing machine can simulate any
Turing machine on any input we can’t use it for this purpose. If we give a
universal Turingmachine as input a description of a Turingmachine and an
input on which that Turing machine doesn’t halt then the universal Turing
machine alsowon’t halt. Whatwewant is a Turingmachinewhichwill take
as input a description of a Turing machine and an input for that machine
and will always terminate, successfully if that Turing machine would halt
on that input and unsuccessfully if it would not. This is called the Halting
Problem.
There is, unfortunately no solution to the Halting Problem. This can be
proved as follows. Assume there is a Turing machine which solves the
Halting Problem. There will be several Turing machines to consider in this
proof, so we’ll number them. The one just considered will be Machine 0.
Machine 1 is some Turing machine which takes a pair of inputs of some
kind and which always halts, either successfully or not, no matter what
those inputs are. Machine two takes a single input and simulates running
Machine 1 on two copies of that input. It halts unsuccessfully if Machine
1 would have halted unsuccessfully and does not halt at all if Machine 1
would have halted successfully. Machine 0 and Machine 1 cannot be the
same. To see this, give them both, as input, two copies of the description
of Machine 2. If Machine 1 would terminate unsuccessfully on this input
thenMachine 2would halt unsuccessfullywhen given itself as inputwhich
means Machine 0 would halt successfully. If Machine 1 would terminate
successfully then Machine 2 wouldn’t halt and so Machine 0 would halt
unsuccessfully. In either case Machine 0 and Machine 1 have different be-
haviour on this input and so they are not the same machine. But Machine
1 was an entirely arbitrary Turing machine except for the requirement that
it always halts eventually and if the Halting problem has a solution then
Machine 0 is a Truing machine of that type, so we have a contradiction.
You may notice a similarity between this argument and Cantor’s diagonal-
isation argument from set theory, and also with the rather vague explana-
tion I gave to make Tarski’s Theorem plausible. Indeed all of these argu-
ments are related. Cantor’s was the first and inspired all of the others.
The unsolvability of the Halting Problem shows that some well defined
computational problems are provably unsolvable. Perhaps more surpris-
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ingly it also provides an effective method for proving large classes of prob-
lems to be unsolvable. The most commonly used technique for proving
unsolvability is to assume that there is a Turing machine which solves the
problem and then show how to construct from it a machine which solves
the Halting Problem.

Conclusion
An alternate title for these notes could have been Foundations of Mathe-
matics, but mathematics doesn’t really have a single foundational theory.
We need amix of logic, formal linguistics and computability. None of these
can really be understood without the others. Logic has to be expressed in
a formal language and the question of whether we can test the validity of
statements in this language is one of computability. Formal linguistics is
useless if languages can’t be parsed and presents difficulties of interpreta-
tion if they are ambiguous. These are computational questions and their
analysis requires some formof logical analysis. Similarly the theory of com-
putation is, as we just saw, closely intertwined with linguistic and logical
questions.
It’s not just that logic, languages and computability are each dependent
on the others. To some extent they are the same subject. The theory of
finite state automata, for example, isn’t just related to the theory of regular
languages; they are the same theory.
In addition to the complications just discussed, there is not not just one
version of most of these theories. Different authors use different defini-
tions. Some of these differences are merely annoying, like the different
definitions of “countable” for sets, but don’t change the content of the the-
ories. Some differences reflect the tension betweenmaking it easy to reason
within the system and making it easy to reason about the system. Some,
like the various axiom schemes for set theory, result from fundamental
disagreements about what is true. There are more of these disagreements
than I’ve had space to address in these notes. For example, even in zeroeth
order logic there are adherents of classical logic, which is the version I’ve
presented here, but also of intuitionist logic and minimal logic.
The main purpose of studying the foundations of mathematics is therefore
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not to find an agreed formal system which we can all use to make sure
that everything is guaranteed to be correct. The main thing we gain from
studying these formal systems is a better understanding of informal rea-
soning, which is what mathematicians spend almost all of our time doing.
If we can, for example, set out precise rules for substitution then we can
identify and avoid improper substitutions in informal arguments, and also
be more confident in correct uses. Similarly, an understanding of formal
languages is useful in understanding and creating mathematical notation.
Informal mathematical language is rarely unambiguous, but it’s important
to understand the ambiguities which do exist and to try not to create more
of them.
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