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Conditionals and type variables

The method used to generate the derivation on the last slide is more or less how
languages with type inference do it, but there are complications.
Consider the rule for conditionals:

` e1 : bool ` e2 : τ ` e3 : τ
` if e1 then e2 else e3 : τ

There are now three premises, one for each subexpression.
More interestingly, there is also a type variable τ . It’s needed because conditionals
should work with any type for the last two expressions, but they should be of the same
type. The full expression then has that type.
We say that conditionals are polymorphic, meaning not all the types are fixed.
Polymorphism complicates type inference but as long as the derivation ends with
values of fixed type we can always determine all the type variables.



Function types

Polymorphic types also come up when dealing with functions. We haven’t added
functions to our language yet (?) but suppose we do, and write unary functions, i.e.
functions of a single argument, like f ( x ). What is the typing rule?

` e1 : τ1 -> τ2 ` e2 : τ2
` e1(e2) : τ2

This has two type variables and also the type constructor ->. τ1 -> τ2 is the type of
functions taking an argment of type τ1 and producing a result of type τ2, so e1 is an
expression of functional type.
Suppose we had a function isZero such that isZero 0 reduces to true and
isZero v reduces to false otherwise.
This function takes an int and produces a bool so it should have type int -> bool.
If it doesn’t then our type system will be unsound.
In fact we also need a congruence rule, saying that if e1 reduces to e2 then isZero e1
reduces to isZero e2.



Arithmetic operators as functions

Instead of introducing grammatical rules, typing rules and reduction rules for isZero
it’s better to wait until we’ve created a way to define new functions within the
language and then define it.
I said we didn’t have functions yet, but really we do have functions. That’s what +, -,
and code * are.
We just can’t define new functions within the language yet.
For historical reasons these particular functions are written in a weird notation.
My rule was for unary functions, but these appear to be functions of two arguments.
What should we do?
- We could introduce new rules for binary functions, then presumably for ternary
functions, etc.
- We could introduce a new type constructor for ordered pairs, so that +, for example,
will be a function from ordered pairs of ints to ints.
- We could consider + as a function from ints to functions from ints to ints.



Ordered pairs

One option is to introduce a notation for assembling and disassembling ordered pairs.
We can write (17, 42), for example, for an ordered pair whose left element is 17 and
whose right element is 42.
Although we don’t need it now, we can consider ordered pairs with inhomogeneous
types, like (17, false).
The typing rule for pairs is

` e1 : τ1 ` e2 : τ2
` (e1,e2) : τ1*τ2

This is a polymorphic rule. Just as we had a type constructor -> for functional types,
we now have a constructor * for pairs.
Parentheses and commas are the standard notation for ordered pairs in mathematics,
and also in most programming languages which have ordered pairs.
Note that parentheses are used in at least three ways: constructing ordered pairs,
indicating order of operations, and for function evaluation, e.g. f (x).



Ordered pairs, continued

We also need a way to access the elements of a pair. We can use the (much less
standard notation) #1 and #2 for the left and right elements, with typing rules

` (e1,e2) : τ1*τ2
` #1 (e1,e2) : τ1

` (e1,e2) : τ1*τ2
` #2 (e1,e2) : τ2

We can now think of addition, for example, as a function from ordered pairs of ints to
ints, i.e. as something of type int * int -> int.
There is one notational awkwardness though. If we use parentheses for pairing and for
function arguments then applying a function f to the pair (x , y) should look like
f ((x , y)).
So let’s not use parentheses for function arguments.



Tuples

If we have pairs, why not triples, quadruples, etc.
We could simulate a triple with a pair, the second element of which is a pair, etc., but
it’s convenient to have them natively and most programming languages provide them.
More generally, we can consider n-tuples for any natural number n.
Any? How about 1-tuples?
The only real use for them is to make unary functions look like we expect, i.e. f (x)
can be understood f as f applied to the 1-tuple x , just as f (x , y) is f applied to the
ordered pair, i.e. 2-tuple, (x , y).
Then how about 0-tuples?
These are more useful than you might expect!
Eventually I will add ordered pairs to our language, but not just yet.



Currying

The last of our three options, considering + as a function from ints to functions from
ints to ints, is probably the least familiar.
It works especially well once we drop the parentheses from function evaluation, i.e. if
we write f x instead of f ( x ).
Now + m will be the function which takes an integer and adds m to it. This produces
an integer, so is of type int -> int. For example + 1 is the increment function.
+ is therefore a function which takes an integer and produces one of these functions, so
it is of type int -> (int -> int).
The parentheses show that this is a function from integers to functions from integers
to integers. ( int -> int ) -> int would be the type of a function from
functions from integers to integers to integers.
With this definition of + we write the sum of 1 and 2 as + 1 2. In other words, this is
prefix notation, but reinterpreted. Now it’s the increment function applied to 2.
This trick is known as currying, after Haskell Curry.



Pairs and currying in practice

In the evaluator from last week I typed in things like
eval pref "+ - 1 * 2 3 4";
eval inf "( ( 1 - ( 2 * 3 ) ) + 4 )";
eval postf "1 2 3 * - 4 +";
eval is the evaluator. It needs and evaluation order and a string to evaluate.
SML gives you information about types. When it started it printed some lines, including
val pref = fn : token * token stack -> token stack
val postf = fn : token * token stack -> token stack
val inf = fn : token * token stack -> token stack
val eval = fn : (token * token stack -> token stack) -> string -> int
What determines the evaluation order is what happens to the stack when we read the
next token from input, so I represented them by a function which takes a pair,
consisting of a token and a stack, and gives you the updated stack.
I could also have curried these, i.e. represented them as
token -> (token stack -> token stack), but chose not to.



Pairs and currying in practice, continued

The eval function is curried. It has type
(token * token stack -> token stack) -> string -> int.
The convention that -> is right associative, so this means
(token * token stack -> token stack) -> (string -> int).
I could instead have made this a function from pairs of evaluation order and string to
ints, i.e. a (token * token stack -> token stack) * string -> int.
But if we curry it then eval pref by itself, for example, is a function of type
string -> int, a prefix evaluator.
If I’m going to do a lot of prefix evaluation I can apply eval to pref once, and the
apply the resulting function to many different strings.
This is what’s called partial evaluation or staged evaluation.


