MAU11602
Lecture 3
2026-01-28

Natural languages

The way we describe formal languages, called generative grammar, originated with
natural languages, e.g. Sanskrit, English, Irish, Japanese, Toki Pona.
Here's a vastly oversimplified grammar for English:

clause ::= np vp | clause pp

np ::= NOUN | DET NOUN | np pp
PP = PREP np

vp = VERB np

This requires an initial lexing phrase to identify NOUNs, DETs, PREPs, and VERBs.
This is not really possible in English. Is saw a noun or a verb?

Even if we lex all the words correctly, parsing English is still highly ambiguous.
How do you interpret the headline Scientists discover emperor penguin colony in
Antarctica using satellite images?

Example parse tree

clause
clause \PP
clause pp PREP np
VAN 7N\ / N\
np vp PREP np DET NOUN
| 7\ /N
NOUN VERB np DET NOUN
/ N\
DET NOUN

Masaru saw a man in the apartment with a telescope

Another possible tree

clause

clause / \ p
/

np/ \vp

p
PREP \np
| 7\
NOUN VERB np np/ \pp
/ N\ /N /
DET NOUN | DET NOUN PREP np
/ N\
DET NOUN

Masaru saw a man in the apartment with a telescope

Yet another possible tree

clause

-

clause

N

np vp
| /
NOUN VERB \np
np pPp
/ N\ /
DET NOUN PREP np
/N
DET NOUN
Masaru saw a man in the apartment

\

pp

/

PREP

with

np

/N

DET NOUN

a telescope

A grammar for arithmetic with relations and boolean operators

expr ::= bexprO | iexprO
bexpr0 ::= "if" ws bexprO ws "then" ws bexprO ws "else" ws bexprO
| bexpril
bexprl ::= bexpr2 ws "orelse" ws bexprl | bexpr2
bexpr2 ::= bexpr3 ws "andalso" ws bexpr2 | bexpr3
bexpr3 ::= "(" bexprO ")" | iexprO rel iexprO | "true" | "false"
rel ::= "M | "=t ot=no| oU>=t | Msn
iexpr0O ::= "if" ws bexprO ws "then" ws iexprO ws "else" ws iexprO
| iexpr0 ws addop ws iexprO | iexprl
iexprl ::= iexprl ws mulop ws iexpr2 | iexpr2
iexpr2 ::= "(" iexpr0 ")" | int

I've added boolean operators and also conditionals. The rules for these are standard,
but complicated. orelse has lower precedence than andalso but higher precedence
than conditionals.

Unlike integer operators, which are left associative, the boolean operators are right
associative. That doesn’t matter yet, but will later.

Reduction semantics

The grammar does not specify the meaning of anything. For that we need to detail
how to reduce expressions.

false and true are values.

if false then e; else e reduces to ;. if true then e; else e reduces to e;.
The relations <, <=, =, >, and >= reduce as you would expect them to, e.g. v; >= v,
reduces to false if vy < v» and to true if v; > v». I've written v's here rather than
e's because we will only reduce this expression after both subexpressions have been
fully evaluated, i.e. reduced to values.

| never explicitly said what the reduction rules for +, —, and * are, but they're defined
similarly.

We also need what are called congruence rules to make this work, i.e. if e; reduces to
e then e; + e3 reduces to e» + e3 and v + e; reduces to v + es.

In other words, to evaluate a + expression we first evaluate the first subexpression to a
value, then evaluate the second subexpression to a value, and then add the values.
Similar remarks apply to the other arithmetic operators and the relations, but not to
conditionals!

Boolean operators

Why didn’t | do the same for conditionals? Because if | did then it would force us to
evaluate both branches, even though only one will be used.

false orelse e reduces to e and true orelse e reduces to true.

false andalso e reduces to false and true andalso e reduces to e.

So orelse is an inclusive or, not an exclusive or.

You might have expected false orelse false, false andalso false,

false andalso true, and true andalso false to reduce to false, and

false orelse true, true orelse false, true orelse true, and

true andalso true to reduce to true.

Is this equivalent? Yes, and no. It wouldn't affect the value of any expression, but it
would force us to fully evaluate the second subexpression in an orelse or andalso
expression even when its value won't be used.

If you're one of those people who likes to divide integers then it will matter. The
expression we don't evaluate might involve division by zero.

We often say things like if x =0 or y/x > 0. We mean for the second branch of the if
not to be evaluated when x = 0. In fact that’s probably why we put the first branch in.

