
MAU11602
Lecture 3

2026-01-28

Natural languages

The way we describe formal languages, called generative grammar, originated with
natural languages, e.g. Sanskrit, English, Irish, Japanese, Toki Pona.
Here’s a vastly oversimplified grammar for English:
clause ::= np vp | clause pp
np ::= NOUN | DET NOUN | np pp
pp ::= PREP np
vp ::= VERB np

This requires an initial lexing phrase to identify NOUNs, DETs, PREPs, and VERBs.
This is not really possible in English. Is saw a noun or a verb?
Even if we lex all the words correctly, parsing English is still highly ambiguous.
How do you interpret the headline Scientists discover emperor penguin colony in
Antarctica using satellite images?

Example parse tree

clause

clause

clause

np

NOUN

Masaru

vp

VERB

saw

np

DET

a

NOUN

man

pp

PREP

in

np

DET

the

NOUN

apartment

pp

PREP

with

np

DET

a

NOUN

telescope

Another possible tree

clause

clause

np

NOUN

Masaru

vp

VERB

saw

np

DET

a

NOUN

man

pp

PREP

in

np

np

DET

the

NOUN

apartment

pp

PREP

with

np

DET

a

NOUN

telescope

Yet another possible tree

clause

clause

np

NOUN

Masaru

vp

VERB

saw

np

np

DET

a

NOUN

man

pp

PREP

in

np

DET

the

NOUN

apartment

pp

PREP

with

np

DET

a

NOUN

telescope

A grammar for arithmetic with relations and boolean operators
expr ::= bexpr0 | iexpr0

bexpr0 ::= "if" ws bexpr0 ws "then" ws bexpr0 ws "else" ws bexpr0
| bexpr1

bexpr1 ::= bexpr2 ws "orelse" ws bexpr1 | bexpr2
bexpr2 ::= bexpr3 ws "andalso" ws bexpr2 | bexpr3
bexpr3 ::= "(" bexpr0 ")" | iexpr0 rel iexpr0 | "true" | "false"

rel ::= "<" | "<=" | "=" | ">=" | ">"
iexpr0 ::= "if" ws bexpr0 ws "then" ws iexpr0 ws "else" ws iexpr0

| iexpr0 ws addop ws iexpr0 | iexpr1
iexpr1 ::= iexpr1 ws mulop ws iexpr2 | iexpr2
iexpr2 ::= "(" iexpr0 ")" | int
I’ve added boolean operators and also conditionals. The rules for these are standard,
but complicated. orelse has lower precedence than andalso but higher precedence
than conditionals.
Unlike integer operators, which are left associative, the boolean operators are right
associative. That doesn’t matter yet, but will later.

Reduction semantics

The grammar does not specify the meaning of anything. For that we need to detail
how to reduce expressions.
false and true are values.
if false then e1 else e2 reduces to e2. if true then e1 else e2 reduces to e1.
The relations <, <=, =, >, and >= reduce as you would expect them to, e.g. v1 >= v2
reduces to false if v1 < v2 and to true if v1 ≥ v2. I’ve written v ’s here rather than
e’s because we will only reduce this expression after both subexpressions have been
fully evaluated, i.e. reduced to values.
I never explicitly said what the reduction rules for +, -, and * are, but they’re defined
similarly.
We also need what are called congruence rules to make this work, i.e. if e1 reduces to
e2 then e1 + e3 reduces to e2 + e3 and v + e1 reduces to v + e2.
In other words, to evaluate a + expression we first evaluate the first subexpression to a
value, then evaluate the second subexpression to a value, and then add the values.
Similar remarks apply to the other arithmetic operators and the relations, but not to
conditionals!

Boolean operators
Why didn’t I do the same for conditionals? Because if I did then it would force us to
evaluate both branches, even though only one will be used.
false orelse e reduces to e and true orelse e reduces to true.
false andalso e reduces to false and true andalso e reduces to e.
So orelse is an inclusive or, not an exclusive or.
You might have expected false orelse false, false andalso false,
false andalso true, and true andalso false to reduce to false, and
false orelse true, true orelse false, true orelse true, and
true andalso true to reduce to true.
Is this equivalent? Yes, and no. It wouldn’t affect the value of any expression, but it
would force us to fully evaluate the second subexpression in an orelse or andalso
expression even when its value won’t be used.
If you’re one of those people who likes to divide integers then it will matter. The
expression we don’t evaluate might involve division by zero.
We often say things like if x = 0 or y/x > 0. We mean for the second branch of the if
not to be evaluated when x = 0. In fact that’s probably why we put the first branch in.

