
MAU11602 Assignment 0
Due 2026-01-29

1. (a) Evaluate the postfix expression 1 2 3 4 * + 5 - 6 * + using
the stack based evaluation method described in lecture, showing
the stack contents at each step.

(b) The method given in lecture for parsing postfix expressions in-
volved keeping a running count of the number of integers seen
minus the number of operators seen. You don’t have to parse the
expression above but just list that count.

(c) Do you see a relation between this running count and the stack?
Can you prove that this relation holds in general, not just in the
example?

(d) For simplicity I left out one commonly used arithmetic operation,
the unary minus, i.e the operator which takes a single integer as
argument and changes its sign. Using a - to denote this, as is
usual, causes problems do to confusion with the - for subtraction.
One solution to this problem, adopted in SML, is to use ~ for unary
minus. We then need to add a rule to our stack based evaluator
to say that when we read a ~ then we pop the top element off the
stack and push its additive inverse. We also need to change the
parsing algorithm as well though. How should we change it?

2. Consider the postfix grammar for a language with arithmetic operators
and relations, as discussed at the end of Lecture 2, i.e.
expr ::= bexp | iexp
iexp ::= iexp ws iexp ws oper | int
bexp ::= iexp ws iexp ws rel
oper ::= "*" | "+" | "-"
rel ::= "<" | "<=" | "=" | ">" | ">="

(a) Prove that for every expression consistent with this grammar the
number of integers is the number of operators plus the number of
relations plus one.

(b) Show that the condition which was shown to be necessary in the
previous part is not sufficient by giving a list of tokens which can’t
be parsed even though the number of integers is the number of
operators plus the number of relations plus one.

1

