
MA 419 Assignment 6

Due 18 April 2007

Solutions

1. The Camassa-Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0

is in many ways very similar to the Korteweg de Vries equation. It has
soliton solutions and infinitely many essentially different conservation
laws. Prove the first two of these conservation laws, that the quantities

A =
∫ +∞

−∞

u dx

and

B =
∫ +∞

−∞

(u2 + u2
x) dx

are constant for reasonable solutions. You may take the word “reason-
able” to mean Schwartz class in the x variable, though much weaker
hypotheses would suffice.

Hint: This is best done by writing the conservation law in divergence
form, i.e. ∂P/∂t + ∂Q/∂x = 0, as explained in lecture. P is your
integrand. You need to find an appropriate Q.
Solution: In the first case we take

P = u Q = −utx +
3

2
u2 −

1

2
u2

x − uuxx

while in the second case we take

P = u2 + u2
x Q = u3 + u2uxx − 2uutx

In either case,
Pt + Qx = 0.

From here there are two ways to proceed. Either we apply the Diver-
gence Theorem to the rectangle

t1 ≤ t ≤ t2 x1 ≤ x ≤ x2

to obtain
∫ x2

x1

P |t=t2 dx −
∫ x2

x1

P |t=t2 dx =
∫ t2

t1
Q|x=x2

dt −
∫ t2

t1
Q|x=x1

dt.
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The right hand side tends to zero, because of the assumption that u is
of Schwartz class in x, so

∫ +∞

−∞

P |t=t2 dx =
∫ +∞

−∞

P |t=t1 dx

for all t1 and t2. Alternatively, we can differentiate under the integral
sign,

d

dt

∫ +∞

−∞

P dx =
∫ +∞

−∞

Pt dx = −
∫ +∞

−∞

Qx dx.

This is justified by the convergence of the resulting integral, which
again follows from the assumption that u is of Schwartz class in x. By
the Fundamental Theorem of the Calculus,

∫ +∞

−∞

Qx dx = lim
x1→−∞

x2→+∞

(Q(t, x2) − Q(t, x1)) .

The right hand side is zero, again because of the assumption that u is
of Schwartz class in x.

2. Prove the assertion made in lecture, that

ũ(x1, . . . , xn) = r2−nu
(

x1

r2
, . . . ,

xn

r2

)

is harmonic if and only if u is. Here, as in lecture, r2 = x2
1 + · · · + x2

n.
Solution: This is simply a calculation, though an exceptionally long
one. To make it slightly less ugly, set

x̃i =
xi

r2
.

Then

∂ũ

∂xj

(x1, . . . , xn) = r−n ∂u

∂x̃j

(x̃1, . . . , x̃n)

− 2
n
∑

k=1

r−n−2xjxk
∂u

∂x̃k

(x̃1, . . . , x̃n)

− (n − 2) r−nxju(x̃1, . . . , x̃n)

Differentiating each summand on the right,

∂

∂xj

(

r−n ∂u

∂x̃j
(x̃1, . . . , x̃n)

)

= r−n−2∂2u

∂x̃2
j

(x̃1, . . . , x̃n)

− 2
n
∑

k=1

r−n−4xjxk
∂2u

∂x̃j∂x̃k

(x̃1, . . . , x̃n)

− nr−n−2xj
∂u

∂x̃j
(x̃1, . . . , x̃n),
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∂

∂xj

(

n
∑

k=1

r−n−2xjxk
∂u

∂x̃k
(x̃1, . . . , x̃n)

)

=

n
∑

k=1

r−n−4xjxk
∂2u

∂x̃j∂x̃k
(x̃1, . . . , x̃n)

− 2
n
∑

k=1

n
∑

l=1

r−n−6x2
jxkxl

∂2u

∂x̃k∂x̃l
(x̃1, . . . , x̃n)

+
n
∑

k=1

r−n−2xk
∂u

∂x̃k
(x̃1, . . . , x̃n)

+ r−n−2xj
∂u

∂x̃j
(x̃1, . . . , x̃n)

− (n + 2) r−n−2x2
jxk

∂u

∂x̃k
(x̃1, . . . , x̃n)

and

∂

∂xj

(

r−n−2xju(x̃1, . . . , x̃n)
)

= r−n−4xj
∂u

∂x̃j
(x̃1, . . . , x̃n)

− 2
n
∑

k=1

r−n−6x2
jxk

∂u

∂x̃k
(x̃1, . . . , x̃n)

− n r−n−2x2
ju(x̃1, . . . , x̃n)

+ r−n−4u(x̃1, . . . , x̃n).

Combining these,

∂2ũ

∂x2
j

(x1, · · · , xn) = r−n−2∂2u

∂x̃2
j

(x̃1, . . . , x̃n)

− 4
n
∑

k=1

r−n−4xjxk
∂2u

∂x̃j∂x̃k
(x̃1, . . . , x̃n)

+ 4
n
∑

k=1

n
∑

l=1

r−n−6x2
jxkxl

∂2u

∂x̃k∂x̃l

(x̃1, . . . , x̃n)

− 2nr−n−4xj
∂u

∂x̃j
(x̃1, . . . , x̃n)

− 2
n
∑

k=1

r−n−2xk
∂u

∂x̃k
(x̃1, . . . , x̃n)

+ 4n r−n−2x2
jxk

∂u

∂x̃k
(x̃1, . . . , x̃n)

+ n(n − 2) r−n−2x2
ju(x̃1, . . . , x̃n)

− (n − 2)r−n−4u(x̃1, . . . , x̃n).

Summing over j gives

n
∑

j=1

∂2ũ

∂x2
j

= r−n−2
n
∑

j=1

∂2u

∂x̃2
j
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so
n
∑

j=1

∂2ũ

∂x2
j

= 0

if and only if
n
∑

j=1

∂2u

∂x̃2
j

= 0

3. Suppose that f is continuous and bounded on R
2 and that u is defined

in the upper halfspace

H = {(x, y, z): z ≥ 0}

by
u(x, y, 0) = f(x, y)

and by the Poisson formula

u(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

K(x, y, z, ξ, η)f(ξ, η) dξ dη

for z > 0, where

K(x, y, z, ξ, η) =
z

((x − ξ)2 + (y − η)2 + z2)3/2
.

Prove that u is harmonic in the interior of H.

Hint: The most straightforward way to do this is to differentiate under
the integral sign. In principle you should check that this is justified,
i.e. that the resulting integrals converge. There are less painful ways,
but these require an understanding of where the given K comes from.
It is probably easier to apply brute force than to try to be clever.
Solution: Differentiating,

∂K

∂x
= −3

(x − ξ)z

((x − ξ)2 + (y − η)2 + z2)5/2
,

∂2K

∂x2
= 15

(x − ξ)2z

((x − ξ)2 + (y − η)2 + z2)7/2

− 3
z

((x − ξ)2 + (y − η)2 + z2)5/2
,

∂K

∂y
= −3

(y − η)z

((x − ξ)2 + (y − η)2 + z2)5/2
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∂2K

∂y2
= 15

(y − η)2z

((x − ξ)2 + (y − η)2 + z2)7/2

− 3
z

((x − ξ)2 + (y − η)2 + z2)5/2
,

∂K

∂z
=

1

((x − ξ)2 + (y − η)2 + z2)3/2
− 3

z2

((x − ξ)2 + (y − η)2 + z2)5/2

and
∂2K

∂z2
= 15

z3

((x − ξ)2 + (y − η)2 + z2)7/2

− 9
z

((x − ξ)2 + (y − η)2 + z2)5/2
.

Summing
∂2K

∂x2
+

∂2K

∂y2
+

∂2K

∂z2
= 0.

Differentiating under the integral sign gives

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0.

In order to justify this we should check that the integrals

∫ +∞

−∞

∫ +∞

−∞

∂2K

∂x2
(x, y, z, ξ, η)f(ξ, η) dξ dη,

∫ +∞

−∞

∫ +∞

−∞

∂2K

∂y2
(x, y, z, ξ, η)f(ξ, η) dξ dη

and
∫ +∞

−∞

∫ +∞

−∞

∂2K

∂z2
(x, y, z, ξ, η)f(ξ, η) dξ dη,

converge. This follows, for example, from the fact that all of the inte-
grands are bounded by a a multiple of (1 + ξ2 + η2)−2, and the latter
is certainly integrable.

4. With u and f as in the previous problem, prove that u is bounded in H.

Hint: u is given by a convolution. Apply Young’s Inequality.
Solution:

u =
1

2π
K(x, y, z, ·, ·) ? f

so Young’s inequality gives

‖u‖Lr(R2) ≤
1

2π
‖K(x, y, z, ·, ·)‖Lp(R2)‖Lq(R2)
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if
1

p
+

1

q
=

1

r
+ 1.

For this problem we need the case p = 1, q = r = ∞. The finiteness of

‖K(x, y, z, ·, ·)‖L1(R2) =
∫ +∞

−∞

∫ +∞

−∞

z

((x − ξ)2 + (y − η)2 + z2)3/2
dξ dη

is fairly easy to prove. The numerical value is not needed here, but
will be calculated in the solution to the next problem, giving the sharp
estimate

‖u‖L∞(R2) ≤ ‖f‖L∞(R2).

5. With u and f as in the previous two problems, prove that u is contin-
uous on H.

Hint: I gave three different arguments for the Poisson Formula for the
unit disc in the plane. Each of these has analogues for the upper half
space in R

3, but some are easier than others. What I would recommend
is to make the substitution

s =
ξ − x

z
t =

η − y

z
in the integral, and then to use Lebesgue Dominated Convergence.
Solution: Continuity in the interior of the upper half space follows
immediately from differentiability. The hard part is therefore continuity
at the boundary. In other words, we need to establish that

lim
(x,y,z)→(X,Y,0)

u(x, y, z) = f(X, Y ).

for any (X, Y ) ∈ R
2.

Making the suggested substitution,

u(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

1

(1 + s2 + t2)3/2
f(x + sz, y + tz) ds dt.

By the Lebesgue Dominated Convergence Theorem,

lim
(x,y,z)→(X,Y,0)

u(x, y, z) =
1

2π

∫ +∞

−∞

∫ +∞

−∞

f(X, Y ) ds dt

(1 + s2 + t2)3/2
= F (X, Y ).

The integral was evaluated as follows. Switching to polar coordinates,
∫ +∞

−∞

∫ +∞

−∞

ds dt

(1 + s2 + t2)3/2
=
∫ 2π

0

∫

∞

0

r dr dθ

(1 + r2)3/2

=
∫ 2π

0

∫

∞

0

2πr dr

(1 + r2)3/2

=
∫

∞

1

π dv

v3/2
= 2π.
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