
MA 419 Assignment 5

Due 28 February 2007

Solutions

1. Prove that

u =

{

1
2c if −ct ≤ x ≤ ct

0 otherwise

is a distribution solution to the inhomogeneous wave equation

utt − c2uxx = δ.

Hint: After consulting the definitions, you should see that this is a state-
ment about the value of a certain integral. In order to prove that statement
it is convenient to switch to characteristic coordinates.
Solution: The definitions of derivatives of distributions and of the the
delta distribution show that the distribution equation utt − c2uxx = δ is
really just the statement that

∫

R2

(ψtt − c2ψxx)u dx dt = ψ(0, 0)

for all Schwartz class functions ψ. Changing variables to

ξ = x+ ct η = x− ct,

one sees that this statement is equivalent to

∫

R2

2cu

(

ξ − η

2c
,
ξ + η

2

)

ψξ,η dξ dη = ψ(0, 0)

or, using the definition of u,

∫ 0

−∞

∫ ∞

0

ψξη dξ dη = ψ(0, 0).

This statement follows from the Fundamental Theorem of the Calculus,
the boundary terms at infinity vanishing because of the assumption that
ψ is in Schwarz class.

2. Solve the homogeneous Laplace equation

uxx + uyy = 0

in the upper half plane with Dirichlet boundary conditions

u(x, 0) =
x2 − 1

x2 + 1
.

Solution: Using the Poisson Formula,

u(x, y) =
1

π

∫ +∞

−∞

F (x, y, z) dz.
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where

F (x, y, z) =
(z2 − 1)y

(z2 + 1)[(x− z)2 + y2]
.

F is a rational function of z with simple poles at the points ±i and x± iy

and a zero at infinity. Although it is possible to do the partial fractions
calculation with real polynomials using Linear Algebra it is easier to use
a bit of Complex Analysis. Since F has simple zeroes poles and a zero at
infinity

F (x, y, z) =
∑

F (w)=∞

Resz=w F (z)

z − w
.

Then

u(x, y) =
1

π

∫ +∞

−∞

F (x, y, z) dz

=
1

π
lim

R→∞

∫ R

−R

F (x, y, z) dz

=
∑

F (x,y,w)=∞

Res
z=w

F (x, y, z) lim
R→∞

1

π

∫ R

−R

dz

z − w

=
∑

F (x,y,w)=∞

Res
z=w

F (x, y, z) lim
R→∞

log
(

R−w
−R−w

)

π

=
∑

F (x,y,w)=∞

Res
z=w

F (x, y, z) lim
R→∞

log
(

− 1−w/R
1+w/R

)

π

=
∑

F (x,y,w)=∞

±2iRes
z=w

F (x, y, z)

where the ± is the sign of the imaginary part of w. Calculating the residues
using the relation

Res
z=w

F (x, y, z) = lim
z→w

(z − w)F (x, y, z),

we get

Res
z=i

F (x, y, z) =
i

(x− i)2 + y2
,

Res
z=−i

F (x, y, z) =
−i

(x + i)2 + y2
,

Res
z=x+iy

F (x, y, z) =
−i[(x+ iy)2 − 1]

2[(x+ iy)2 − 1]y

and

Res
z=x−iy

F (x, y, z) =
i[(x− iy)2 − 1]

2[(x− iy)2 − 1]y
.

Substituting, and doing a bit of algebra,

u(x, y) =
x2 + y2 − 1

x2 + y2 + 2y + 1
.
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3. Find an integral formula for the solution of the inhomogeneous Laplace
equation

uxx + uyy = f

in the half plane with Dirichlet boundary conditions

u(x, 0) = ϕ(x).

Hint: The equation is linear, so it suffices to solve the problems

uxx + uyy = 0 u(x, 0) = ϕ(x)

and
uxx + uyy = f u(x, 0) = 0

and then add the solutions. The former problem was solved in lecture.
The latter problem was not. I solved uxx + uyy = f in the whole plane
without boundary conditions. To get the solution in the half plane with
boundary conditions you can use the Method of Reflection.
Solution: As indicated in the hint, if we can find functions v and w such
that

vxx + vyy = 0 v(x, 0) = ϕ(x)

and
wxx + wyy = f w(x, 0) = 0

then
u = v + w

is the solution to our problem. The solution to the first problem, given in
lecture, is

v(x, y) =
1

π

∫ +∞

−∞

ϕ(z) dz

(z − x)2 + y2
dz.

To find the solution to the second, we use the Method of Reflection. We
extend f to the whole plane,

f̃(x, y) =

{

f(x, y) if y > 0
−f(x,−y) if y < 0

and solve
w̃xx + w̃yy = f̃

without boundary conditions in the whole plane,

w̃(x, y) =
1

4π

∫ +∞

−∞

∫ +∞

−∞

log
(

(x− ξ)2 + (y − η)2
)

f̃(ξ, η) dξ dη.

We then restrict to y > 0, splitting the integral,

w(x, y) = w̃(x, y) =
1

4π

∫ +∞

0

∫ +∞

−∞

log
(

(x− ξ)2 + (y − η)2
)

f̃(ξ, η) dξ dη

+
1

4π

∫ 0

−∞

∫ +∞

−∞

log
(

(x − ξ)2 + (y − η)2
)

f̃(ξ, η) dξ dη
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or

w(x, y) =
1

4π

∫ +∞

0

∫ +∞

−∞

log
(

(x− ξ)2 + (y − η)2
)

f(ξ, η) dξ dη

−
1

4π

∫ 0

−∞

∫ +∞

−∞

log
(

(x− ξ)2 + (y − η)2
)

f(ξ,−η) dξ dη

=
1

4π

∫ +∞

0

∫ +∞

−∞

log
(

(x− ξ)2 + (y − η)2
)

f(ξ, η) dξ dη

−
1

4π

∫ +∞

0

∫ +∞

−∞

log
(

(x− ξ)2 + (y + η)2
)

f(ξ, η) dξ dη

=
1

4π

∫ +∞

0

∫ +∞

−∞

log

(

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2

)

f(ξ, η) dξ dη

The final answer is therefore

u(x, y) =
1

π

∫ +∞

−∞

ϕ(z) dz

(z − x)2 + y2
dz

+
1

4π

∫ +∞

0

∫ +∞

−∞

log

(

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2

)

f(ξ, η) dξ dη.

4. Prove that there are constants Cj,k such that if u is harmonic in the open
disc of radius R about the point (ξ, η) and

|u(x, y)| ≤ K

for all (x, y) there, then

∣

∣

∣

∣

∂j+ku

∂xj∂yk
(ξ, η)

∣

∣

∣

∣

≤ Cj,kKR
−j−k

You don’t need to find explicit Cj,k’s and certainly shouldn’t worry about
finding the best possible constants. Hint: The case j = k = 0 is just
the Maximum Principle. The case j + k = 1 was done in lecture. The
method used there works in the general case as well, only the calculations
are messier. Try to avoid calculating more than you actually need to.
Solution: Choose a positive α < 1 By the Poisson Formula, applied to the
disc of radius a = αR about the point (ξ, η)we have

u(ξ+ r cos θ, η+ r sin θ) =
1

2π

∫ π

−π

K(r, θ, a, ϕ)u(ξ+ a cosϕ, η+ a sinϕ) dθ

where

K(r, θ, a, ϕ) =
a2 − r2

a2 − 2ar cos(θ − ϕ) + r2

It is convenient to switch to a mixture of polar and Cartesian coordinates,
i.e. to set

s = r cos θ = x− ξ t = r sin θ = y − eta

so that

u(x, y) =
1

2π

∫

−ππ

κ(s, t, a, ϕ)u(ξ + a cosϕ, η + a sinϕ) dϕ
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where

κ(s, t, a, ϕ) = K(r, θ, a, ϕ) =
a2 − s2 − t2

a2 − 2as cosϕ− 2at sinϕ+ s2 + t2
.

Since ξ and η are fixed there is no distinction between derivatives with
respect to x and derivatives with respect to s or between derivatives with
respect to t and derivatives with respect to y. Differentiation under the
integral sign therefore gives

∂j+ku

∂xj∂yk
(x, y) =

1

2π

∫

−ππ

∂j+kκ

∂sj∂tk
(s, t, a, ϕ)u(ξ + a cosϕ, η + a sinϕ) dϕ.

A simple inductive argument shows that

∂j+kκ

∂sj∂tk
(s, t, a, ϕ) =

pj,k(a, x, y, ϕ)

(a2 − 2as cosϕ− 2at sinϕ+ s2 + t2)j+k+1

where pj,k is a homogeneous polynomial of degree j + k + 2 in s, t and
a with coefficients which are continuous functions of ϕ. The base case is
clear and the inductive step uses the recurrence relations

pj+1,k = (a2−2as cosϕ−2at sinϕ+s2+t2)
∂pj,k

∂s
+2(j+k+1)(s−a cosϕ)pj,k

pj,k+1 = (a2−2as cosϕ−2at sinϕ+s2+t2)
∂pj,k

∂t
+2(j+k+1)(t−a sinϕ)pj,k.

Let cj,k,l,m(ϕ) be the coefficient of sltmaj+k−l−m+2 in pj,k,

pj,k(a, x, y, ϕ) =
∑

l+m≤j+k+2

cj,k,l,m(ϕ)sltmaj+k−l−m+2.

Then, setting s = t = 0,

∂j+ku

∂xj∂yk
(ξ, η) =

a−j−k

2π

∫

−ππ

cj,k,0,0(ϕ)u(ξ + a cosϕ, η + a sinϕ) dϕ.

and hence
∣

∣

∣

∣

∂j+ku

∂xj∂yk
(ξ, η)

∣

∣

∣

∣

≤ max |cj,k,0,0a
−j−k| max

(x−ξ)2+(y−η2)=a2

|u(x, y)| ≤

so the statement of the problem holds with

Cj−k = max |cj,k,0,0a
−j−k|α−j−k .

5. A function u in the plane is said to be of polynomial growth if there are
constants A, ρ and N such that

x2 + y2 ≥ ρ2

implies
|u(x, y)| ≤ A(x2 + y2)N/2.
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Assuming the result of the previous problem, even if you didn’t manage
to prove it, prove that every harmonic function of polynomial growth is
a polynomial. Hint: It follows from Taylor’s theorem that a function is
a polynomial if and only if all but finitely many of its partial derivatives
are identically zero. Apply the result of the preceding problem to discs of
large radius about an arbitrary point.
Solution: Suppose

R > r + ρ

and
r =

√

ξ2 + η2.

Then the circle of radius R about (ξ, η) is contained between the circles
of radius ρ and R + r about the origin. It follows from the definition of
polynomial growth that

|u(x, y)| ≤ A(x2 + y2)N/2 ≤ A(R+ r)N ≤ 2NARN

on this circle, and hence, by the maximum principle, throughout the disc
of radius R about (ξ, η). By the result of the preceding exercise,

∣

∣

∣

∣

∂j+ku

∂xj∂yk
(ξ, η)

∣

∣

∣

∣

≤ 2NACj,kR
N−j−k

Letting R tend to infinity we see that

∂j+ku

∂xj∂yk
(ξ, η) = 0

if j + k > N . No assumption was made about the point (ξ, η), so the
derivatives of order greater than N vanish identically. It follows that the
remainder term in the Taylor formula of order N is zero, and hence that
u is a polynomial of order N .
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