
MA 419 Assignment 4

Due 31 January 2007

Solutions

1. Prove that any bounded weak solution of the Wave Equation

utt − c2uxx = 0

is a solution in the sense of distributions. Is it true that any weak
solution is a distribution solution?
Solution: After consulting the definition of distribution derivatives we
see that we need to prove

∫

R2

u(ϕtt − c2ϕxx = 0

for all ϕ in the Schwarz class S(R2). From the definition of weak
solutions we know that

∫

R2

u(ψtt − c2ψxx = 0

for all compactly supported smooth ψ. This holds in particular for

φ = ρϕ

where
ρ(t, x) = θ(t/R, x/R),

R > 0 and θ is a smooth compactly supported function equal to 1 in
the unit ball. Then

u(ϕtt − c2ϕxx) = u(ψtt − c2ψxx) − uρtϕt + c2uρxϕx − uϕ(ρtt − c2ρxx)
+(1 − ρ)u(ϕtt − c2ϕxx)

We now integrate both sides over R
2. The integral of the first term on

the right is then zero, as we just saw. The integral of the second term
is bounded by

‖u‖L∞(R2)‖ρt‖L∞(R2)‖ϕt‖L1(R2).

Note that

‖ρt‖L∞(R2) =
1

R
‖θt‖L∞(R2),
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so the integral of the second term tends to zero as R tends to infinity.
Similar remarks apply to the third and fourth terms. The integral of
the last term is ∫

R2

(1 − ρ)u(ϕtt − c2ϕxx),

but we may restrict the integral to the complement of the ball BR of
radius R, since the factor 1 − ρ ensures that the integrand is zero on
BR. Thus the integral is bounded by

‖1 − ρ‖L∞(R2)‖u‖L∞(R2)‖ϕtt − c2ϕxx‖L1(R2
−BR).

The first two factors are independent of R, while the last tends to zero
as R tends to infinity. Thus we see that

∫

R2

u(ϕtt − c2ϕxx)

tends to zero as R tends to infinity. But the integral is independent of
R, and must therefore be zero.

The hypothesis that u is bounded, which was used several times in
the argument above, can be weakened, but cannot be removed entirely.
The difficulty is that there are perfectly good weak solutions, like

exp(x− ct)

which are not tempered distributions.

2. Consider the function

u(x, y) =
1

4π
log(x2 + y2)

as a distribution in the usual way, i.e.

〈u, ϕ〉 =
∫

R2

u(x, y)ϕ(x, y) dx dy.

Prove that
uxx + uyy = δ

where the derivatives are to be interpreted in the sense of distributions
and δ is the Dirac distribution

〈δ, ϕ〉 = ϕ(0, 0).
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Solution: What we need to prove is that
∫

R2

u(ϕxx + ϕyy) = ϕ(0, 0)

for all ϕ ∈ S(R2). This can be proved by splitting the integral into
an integral over the ball BR of radius R < 1 and its complement. The
integral over BR is bounded by

‖ϕxx + ϕyy‖
∫

BR

|u| = ‖ϕxx + ϕyy‖πR
2
(

1

2
− logR

)

which tends to zero as R tends to zero. In the integral over the com-
plement of BR we apply Green’s second identity. Since uxx + uyy = 0
only the boundary terms survive.

∫

R2−BR

u(ϕxx + ϕyy) =
∫

CR

ϕ

2πR
ds−

∫

CR

logR

2π
ϕ ds.

As R tends to zero the first term on the right tends to ϕ(0, 0) while the
second tends to zero. Adding the integrals over BR and its complement,
we see that

∫

R2

u(ϕxx + ϕyy)

tends to ϕ(0, 0) as R tends to zero. Since the integral is independent
of R it must be identically equal to ϕ(0, 0).

3. Prove, by evaluating the integral, that the Poisson Formula

u(r, θ) =
1

2π

∫

a2 − r2

a2 − 2ar cos(θ − ϕ) + r2
f(ϕ) dϕ

gives the correct answer when f is constant.
Solution: First we make the substitution ψ = ϕ− θ to get

u(r, θ) =
1

2π

∫

a2 − r2

a2 − 2ar cos(ψ) + r2
f dψ

and then the rationalising substitution

cosψ =
1 − t2

1 + t2
sinψ =

2t

1 + t2
dψ =

dt

1 + t2

which gives

u(r, θ) =
1

2π

∫ +∞

−∞

a2 − r2

(a− r)2 + (a+ r)2t2
f dt.
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Finally we make the substitution

s =
a + r

a− r
t

to get

u(r, θ) =
1

2π

∫ +∞

−∞

f ds

1 + s2

This is just equal to f .

4. Suppose (xP , yP ) and (x′P , y
′

P ) are points in the unit disc x2 + y2 <
1 and that the four points (−1, 0), (xP , yP ), (x′P , y

′

P ) and (1, 0) lie
on a common circle. Prove that there is a symmetry of the Laplace
equation which leaves the disc, the circle and the points (−1, 0) and
(1, 0) invariant, while taking (xP , yP ) to (x′P , y

′

P ).
Solution: There is, as shown in class, a Lorentz transformation which
takes any three distinct points to any other three distinct points, and
therefore there is one which takes (−1, 0), (1, 0) and (xP , yP ) to (−1, 0),
(1, 0) and (x′P , y

′

P ). Lorentz transformations take circles or lines to
circles or lines and any three distinct points uniquely determine a circle
or line. If follows that the Lorentz transformation must leave invariant
the circle, which I will call C, through (−1, 0), (xP , yP ), (x′P , y

′

P ) and
(1, 0). All we have left to show is that the unit circle is also invariant.
The unit circle is uniquely determined by the fact that it passes through
(−1, 0) and (1, 0) by the angle at which it intersects C at those points.
Since the Lorentz transformation leaves points (−1, 0) and (1, 0) and
the circle C invariant it must also leave the unit circle invariant.

5. Let u be the solution to the Dirichlet problem

uxx + uyy = 0

u(cos θ, sin θ) =
{

−1 if −π < θ < 0
+1 if 0 < θ < π

Prove that u is constant on each circle passing through the points
(−1, 0) and (1, 0). You may use the result of the preceding problem,
even if you didn’t succeed in proving it.
Solution: Let ϕ be the symmetry from the previous problem and let
ũ = u ◦ ϕ. u and ũ satisfy the Laplace equation, because u does and
ϕ is a symmetry of the Laplace equation, and satisfy the same bound-
ary conditions, because ϕ preserves the unit circle and the two points
(−1, 0) and (1, 0) which separate the positive and negative angles θ.
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By the uniqueness of solutions to the Dirichlet problem u and ũ are
therefore the same function. But then

u(xP , yP ) = ũ(xP , yP ) = u(x′P , y
′

P ).

Since (xP , yP ) were arbitrary points on the circle it follows that u is
constant on the circle.
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