MA 419 Assignment 4
Due 31 January 2007
Solutions

1. Prove that any bounded weak solution of the Wave Equation

Ugp — 02um =0

is a solution in the sense of distributions. Is it true that any weak
solution is a distribution solution?

Solution: After consulting the definition of distribution derivatives we
see that we need to prove

/ U(Qﬁtt - 02909090 =0
R2

for all ¢ in the Schwarz class S(R?). From the definition of weak
solutions we know that

/ u(wtt - C2¢:cx =0
R2
for all compactly supported smooth 1. This holds in particular for

¢ = pp

where

pt,x) = 0(t/ R, z/R),

R > 0 and @ is a smooth compactly supported function equal to 1 in
the unit ball. Then

w(ou — o) = u(y — Ayr) — uprpr + Aupppr — up(py — prs)
+(1 = p)u(py — paz)

We now integrate both sides over R?. The integral of the first term on
the right is then zero, as we just saw. The integral of the second term
is bounded by

||UHL°°(R2)||Pt||L°°(R2)HSOtHLl(RZ)-

Note that ]

||pt||L°°(R2) = EH‘%HLOO(R?),



so the integral of the second term tends to zero as R tends to infinity.
Similar remarks apply to the third and fourth terms. The integral of

the last term is
/ (1= p)u(py — C2<Pm),
R2

but we may restrict the integral to the complement of the ball By of
radius R, since the factor 1 — p ensures that the integrand is zero on
Bpr. Thus the integral is bounded by

11— pllzoe @) lull e @2) 01 — EPaellLr®2—52)-

The first two factors are independent of R, while the last tends to zero
as R tends to infinity. Thus we see that

2
/R2 u(‘Ptt —C Qomm)

tends to zero as R tends to infinity. But the integral is independent of
R, and must therefore be zero.

The hypothesis that u is bounded, which was used several times in
the argument above, can be weakened, but cannot be removed entirely.
The difficulty is that there are perfectly good weak solutions, like

exp(z — ct)
which are not tempered distributions.

. Consider the function
1

= log(z? + y?)

u(z,y) =

as a distribution in the usual way, i.e.

(w,¢) = [ ula.v)p(e,y)dody.

Prove that
Upg + Uyy = 0

where the derivatives are to be interpreted in the sense of distributions
and 0 is the Dirac distribution

(6, 0) = ¢(0,0).



Solution: What we need to prove is that

/R? u(@mm + SOyy) = 90(07 0)

for all ¢ € S(R?). This can be proved by splitting the integral into
an integral over the ball By of radius R < 1 and its complement. The
integral over Bg is bounded by

1
[eo + @l [ Tul = lpu + el mR? (5 = log R)
Br 2

which tends to zero as R tends to zero. In the integral over the com-
plement of Br we apply Green’s second identity. Since g, + 1y, = 0
only the boundary terms survive.

B © B / log R
/R2_BR Wpas + Pyy) = /CR 2R ds Cr 2T v ds.

As R tends to zero the first term on the right tends to ¢(0, 0) while the
second tends to zero. Adding the integrals over By and its complement,
we see that

/R? u(‘Pm + @yy)

tends to ¢(0,0) as R tends to zero. Since the integral is independent
of R it must be identically equal to ¢(0,0).

. Prove, by evaluating the integral, that the Poisson Formula

u(r,@):i/ @

27 J a? — 2ar cos(0 — ) + 12

2

f(p)dp

gives the correct answer when f is constant.
Solution: First we make the substitution ¢ = ¢ — 6 to get

2 2

1 a®—r
u(r,0) = o / a? — 2ar cos(v) + rzfdw

and then the rationalising substitution

11—t 2t dt
coszpzlet2 snlwzl_l_t2 dwzl—l—t?
which gives
1 too a?—r?
0=/ dt.
u(r,6) 21 J—oo (a—71)2+ (a+ r)2t2f

3



Finally we make the substitution

a-+r
il t
a—r

S =

to get
1 [too fds
=5 [ T
U(T, ) 21 J - 1+82
This is just equal to f.

. Suppose (xp,yp) and (z’p,yp) are points in the unit disc z? + y? <
1 and that the four points (—1,0), (zp,yp), (¢, yp) and (1,0) lie
on a common circle. Prove that there is a symmetry of the Laplace
equation which leaves the disc, the circle and the points (—1,0) and
(1,0) invariant, while taking (zp,yp) to (2, yp).

Solution: There is, as shown in class, a Lorentz transformation which
takes any three distinct points to any other three distinct points, and
therefore there is one which takes (—1,0), (1,0) and (zp,yp) to (—1,0),
(1,0) and (25,yp). Lorentz transformations take circles or lines to
circles or lines and any three distinct points uniquely determine a circle
or line. If follows that the Lorentz transformation must leave invariant
the circle, which I will call C, through (—1,0), (zp,yp), (¥, yp) and
(1,0). All we have left to show is that the unit circle is also invariant.
The unit circle is uniquely determined by the fact that it passes through
(—1,0) and (1,0) by the angle at which it intersects C' at those points.
Since the Lorentz transformation leaves points (—1,0) and (1,0) and
the circle C' invariant it must also leave the unit circle invariant.

. Let u be the solution to the Dirichlet problem

Ugg + Uyy = 0

-1 ift—7<6<0

+1 if0<fb<nm

Prove that u is constant on each circle passing through the points
(—=1,0) and (1,0). You may use the result of the preceding problem,
even if you didn’t succeed in proving it.

Solution: Let ¢ be the symmetry from the previous problem and let
= uo . uand u satisfy the Laplace equation, because v does and
v is a symmetry of the Laplace equation, and satisfy the same bound-
ary conditions, because ¢ preserves the unit circle and the two points
(—1,0) and (1,0) which separate the positive and negative angles 6.

u(cosf,sinf) = {



By the uniqueness of solutions to the Dirichlet problem u and 4 are
therefore the same function. But then

U(IPJJP) = ﬂ(ﬂ?P, yP) = U(xioa y}:)-

Since (xp,yp) were arbitrary points on the circle it follows that u is
constant on the circle.



