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1 Stereographic Projection

To every point on the unit sphere

x2

S + y2

S + z2

S = 1

except for the North Pole (0, 0, 1) we associate a
point in the plane

P = (xP , yP )

as follows. The line through (0, 0, 1) and

S = (xS , yS, zS)

intersects the xy-plane in the single point

(

xS

1 − zS

,
yS

1 − zS

, 0

)

.

We take the first two coordinates to be xP and
yP ,

xP =
xS

1 − zS

,

yP =
yS

1 − zS

.

Similarly, the line through (0, 0, 1) and
(xP , yP , 0) intersects the unit sphere in two

points, one of which is (0, 0, 1) and the other of
which is (xS , yS , zS),

xS =
2xP

x2

P + y2

P + 1
,

yS =
2yP

x2

P + y2

P + 1
,

zS =
x2

P + y2

P − 1

x2

P + y2

P + 1
.

In order to make the correspondence complete
we add a “point at infinity” to the plane to ob-
tain a set which we call the extended plane.

2 Projectivisation

Next we introduce projective coordinates
tL, xL, yL, zL in in R

3,

xL = xS/tS ,
yL = yS/tS ,
zL = zS/tS .

The choice of tL, xL, yL, zL corresponding to a
point (xS , yS , zS) ∈ R

3 is, of course, far from
unique. Any nonzero point on the same line
through the origin in R

4 will give the same point
in R

3. Conversely, two points in R
4 give the
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same point in R
3 if and only if they lie on a line

through the origin.
The correspondence between points in R

3 and
lines through the origin in R

4 is not, however
complete. Lines in the hyperplane tL = 0 do not
correspond to points. We may obtain a complete
correspondence by adjoining a “plane at infin-
ity.” The resulting set is called real projective
three space and denoted RP

3.
The preceding construction is quite general,

but here we need it only for points on the unit
sphere

x2

S + y2

S + z2

S = 1.

These correspond to lines through the origin in
the cone

t2L − x2

L − y2

L − z2

L = 0.

In this case there is no need to introduce the
plane at infinity, since there are no such lines in
the hyperplane tL = 0.

Combining the ideas of Stereographic Projec-
tion and Projectivisation, we identify points in
the extended plane with lines through the origin
in R

4 which lie in the cone. In coordinates,

xP =
xL

tL − zL

,

yP =
yL

tL − zL

and

tL = s
x2

P + y2

P + 1

2
xL = sxP ,
yL = syP ,

zL = s
x2

P + y2

P + 1

2
where s is a nonzero constant which may be cho-
sen arbitrarily. The point at infinity corresponds
to the lines through the point

N = (1, 0, 0, 1).

3 Minkowski Inner Product

It is natural at this point to introduce the
Minkowski inner product on R

4,

〈L1, L2〉 = tL1tL2 − xL1xL2 − yL1yL2 − zL1zL2

where
L1 = (tL1, xL1, yL1, zL2)

and
L2 = (tL2, xL2, yL2, zL2).

In terms of this inner product, L lies in the cone
if and only if its inner product with itself is zero.
The Minkowski inner product is nondegenerate,
in the sense that for any L1 6= 0 there is an L2

such that 〈L1, L2〉 6= 0.
Following the standard terminology of Special

Relativity, a nonzero vector in R
4 will be called

timelike if its inner product with itself is pos-
itive, lightlike if the inner product is zero and
spacelike if the inner product is negative. Lines
through the origin are called timelike, lightlike
or spacelike according to the character of their
nonzero vectors. The combination of R

4 with
the Minkowski inner product is called Minkowski
space. sectionMetrics For nonzero vectors X,
L1 and L2 with L1 and L2 lightlike we define
d2

X(L1, L1) by

d2

X(L1, L2) =
2 〈L1, L2〉

〈L1, X〉 〈X,L2〉

provided neither L1 nor L2 is orthogonal to
X. If d2

X(L1, L1) is nonnegative then we define
dX(L1, L1) to be its square root.

Note that

d2

X(s1L1, s2L2) = d2

X(L1, L2)

for any nonzero s1 and s2, so d2

X and dX can be
considered as functions on the extended plane,
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or on a subset thereof. Though it’s far from ob-
vious, dX is a metric on the space on which it is
defined. This will be proved later. Multiplying
X by a nonzero factor does change d2

X and dX ,
but in a very simple way,

d2

sX(L1, L1) = s−2d2

X(s1L1, s2L2),

dsX(L1, L1) = |s|−1dX(s1L1, s2L2).

The ratio between different metrics is given by

dX(L1, L2)

dY (L1, L2)
=

√

〈L1, Y 〉 〈Y,L2〉

〈L1, X〉 〈X,L2〉
.

For nearby points we have

lim
L2→L1

dX(L1, L2)

dY (L1, L2)
=

∣

∣

∣

∣

〈L1, Y 〉

〈L1, X〉

∣

∣

∣

∣

.

4 Planar and Spherical Metrics

If we take

X = N = (1, 0, 0, 1)

then it is convenient to express the arguments of
d2

X in terms of planar coordinates.

Lj =

(

x2

Pj + y2

Pj + 1

2
, xPj, yPj,

x2

Pj + y2

Pj − 1

2

)

.

Here I have used the fact that the value of
d2

X(L1, L2) depends only on the lines through L1

and L2 in order to choose convenient representa-
tives, specifically those with tLj −zLj = 1. Then
we can calculate the inner products

〈N,Lj〉 = 1

2 〈L1, L2〉 = (xP1 − xP2)
2 + (yP1 − yP2)

2

so

d2

N (L1, L1) = (xP1 − xP2)
2 + (yP1 − yP2)

2.

Thus dN is just the Euclidean distance between
the points P1 and P2 in the plane.

If
X = S = (1, 0, 0, 0)

then it is more convenient to express the argu-
ments of d2

X in terms of spherical coordinates

Lj = tLj(1, xSj , ySj, zSj)

rather than planar coordinates. Again I have
used the fact that dX(L1, L2) depends only on
the lines through L1 and L2 to choose conve-
nient representative points, this time by choos-
ing tLj = 1. Then

〈Lj, S〉 = 1

2 〈L1, L2〉 = 2 − 2xS1xS2 − 2yS1yS2 − 2zS1zS2.

Since
x2

Sj + y2

Sj + z2

Sj = 1

we can rewrite this as

2 〈L1, L2〉 = (xS1−xS2)
2+(yS1−yS2)

2+(zS1−zS2)
2.

From this we see that

d2

S(L1, L2) = (xS1−xS2)
2+(yS1−yS2)

2+(zS1−zS2)
2

and hence that dS(L1, L2) is the Euclidean dis-
tance between the points S1 and S2 on the unit
sphere.

5 Circles

The point P2 is at a distance r from the point P1

if and only if

dN (L1, L2) = r2.

This happens if and only if

2 〈L1, L2〉 − r2 〈L1, N〉 〈N,L2〉 = 0.
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Equivalently 〈C,L2〉 = 0 where

C = L1 −
r2

2
〈L1, N〉N.

Since
〈C,C〉 = −r2 〈L1, N〉2

C is necessarily a spacelike vector.

〈C,N〉 = 〈L1, N〉 ,

so r may be recovered from C by

r2 = −
〈C,C〉

〈C,N〉2
.

and location of the centre L1 is

L1 = C −
1

2

〈C,C〉

〈C,N〉
N.

6 Circles and Lines

As shown in the preceding section, circles in
the plane correspond to spacelike vectors in
Minkowski space. More precisely, for every cir-
cle in the plane there is a spacelike vector C in
Minkowski space such that P = (xP , yP ) lies on
the circle if and only if

〈C,L〉 = 0,

where L = (tL, xL, yL, zL) are related in the
usual way by stereographic projection and pro-
jectivisation. It is clear from the equation that
any nonzero multiple of C will define the same
circle, so we may consider circles in the plane
as defining spacelike lines in Minkowski space.
Since the radius and centre are given by

√

−
〈C,C〉

〈C,N〉2

and

C −
1

2

〈C,C〉

〈C,N〉
N

this correspondence is one to one, but it is not
onto.

Consider an arbitrary spacelike vector

C = (τ, ξ, η, ζ).

If

L = s(
x2

P + y2

P + 1

2
, xP , yP ,

x2

P + y2

P − 1

2
)

then

〈C,L〉 =
s

2
(τ −ζ)(x2

P +y2

P )−2ξxP −2ηyP −τ −ζ

If τ = ζ, i.e. if 〈C,N〉 = 0, then the equa-
tion 〈C,L〉 = 0 determines a line in the extended
plane. Since 〈C,N〉 = 0 we should consider the
point at infinity to lie on this line. On the other
hand, if τ 6= ζ then 〈C,L〉 = 0 determines the
circle

(xP − xc)
2 + (yP − yc)

2 +
τ2 − ξ2 − η2 − ζ2

(τ − ζ)2
= 0

with centre

(xc, yc) =

(

ξ

τ − η
,

η

τ − ζ

)

and radius

√

−
τ2 − ξ2 − η2 − ζ2

(τ − ζ)2

which is easily seen to agree with the formulae
of the previous section.
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7 Angles and Intersections

In Euclidean space the angle between two
nonzero vectors X and Y is given by

cos θ =
〈X,Y 〉

√

〈X,X〉 〈Y, Y 〉
.

In Minkowski space this definition is problem-
atic. The quantity under the square root sign
need not be positive. In fact it will positive if
and only if X and Y are either both spacelike or
both timelike. Even if this is the case, it can still
happen that the quotient is outside the range
[−1,+1]. There is, however, and important case
in which the angle is well-defined and carries use-
ful geometric information.

Suppose C1 and C2 are spacelike vectors.
These correspond, as we saw in the preceding
sections, to circles of radii

r1 =

√

−
〈C1, C1〉

〈C1, N〉2

and

r2 =

√

−
〈C2, C2〉

〈C2, N〉2

The centres of these circles are located at the
points in the plane corresponding to the lightlike
vectors

L1 = C1 −
1

2

〈C1, C1〉

〈C1, N〉
N

and

L2 = C2 −
1

2

〈C2, C2〉

〈C2, N〉
N.

The distance between the centres is then

r12 = dN (L1, L2) =

√

2 〈L1, L2〉

〈L1, N〉 〈N,L2〉
.

The inner products are easily calculated.

〈L1, N〉 = 〈C1, N〉 ,

〈L2, N〉 = 〈C2, N〉

and

2 〈L1, L2〉 = 2 〈C1, C2〉 −
〈C1, C1〉 〈C2, N〉

〈C1, N〉

−
〈C2, C2〉 〈C1, N〉

〈C2, N〉

so

d2

N (L1, L2) = 2
〈C1, C2〉

〈C1, N〉 〈N,C2〉
+ r2

1 + r2

2.

or, equivalently,

r2

12 = r2

1 + r2

2 ± 2µr1r2

where

µ = −
〈C1, C2〉

√

〈C1, C1〉 〈C2, C2〉

and the ± sign is to be interpreted as positive
if 〈C1, N〉 and 〈C2, N〉 are of the same sign and
negative if they are of opposite signs.

If µ < −1 or µ > 1 then either

r12 < |r1 − r2|

or
r12 > r1 + r2

and the circles do not intersect. If µ = ±1 then
either

r12 = |r1 − r2|

or
r12 = r1 + r2

and the two circles have a common tangent line.
The circles intersect in a single point, which must
be that corresponding to

L3 =
√

−〈C2, C2〉C1 +
√

−〈C1, C1〉C2

if µ = −1 or

L4 =
√

−〈C2, C2〉C1 −
√

−〈C1, C1〉C2
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if µ = 1, as this point is on both circles.
If −1 < µ < 1 then

|r1 − r2| < r12 < r1 + r2

and the circles intersect in two points. The angle
of intersection can be determined by use of the
Law of Cosines applied to a triangle with vertices
at the centres of the two circles and at one of the
points of intersection. This shows that the angle
of intersection of the two circles is θ where

cos θ = ±µ,

the determination of the sign ± being as before.
Similar remarks apply when one or both of the

vectors C corresponds to a line. The details are
left as an exercise.

8 Lorentz Transformations

Linear transformations of Minkowski space
which preserve its inner product are called
Lorentz Transformations. Since such transfor-
mations necessarily take lightlike lines to light-
like lines we can think of a Lorentz transfor-
mation as acting on the extended plane. Since
Lorentz transformations take spacelike likes to
spacelike lines the corresponding action on the
extended plane takes circles or lines to circles or
lines. In addition, since Lorentz transformations
preserve inner products, the angle of intersec-
tion, if any, of a pair of lines or circles is also
unchanged. For historical reasons this property
is referred to a conformal invariance.

If X, L1 and L2 are transformed to X ′, L′

1 and
L′

2 then

d2

X(L1, L2) =
〈L1, L2〉

〈L1, X〉 〈X,L2〉

=
〈L′

1, L
′

2〉

〈L′

1
, X ′〉 〈X ′, L′

2
〉

= d2

X′(L′

1, L
′

2).

It follows, in particular, that Lorentz trans-
formations which leave N invariant correspond
to rigid motions of the plane, i.e. they leave
the Euclidean distance between pair of points
unchanged. Similarly, Lorentz transformations
which leave S invariant correspond to rigid mo-
tions of the unit sphere, i.e. rotations or reflec-
tions of R

3 or the composition of a rotation and
a reflection.

9 Rotations

The one parameter family of Lorentz transfor-
mations

t′L = tL
x′

L = xL cos θ − yL sin θ
y′L = xL sin θ + yL cos θ
z′L = zL

preserves both N and S. A quick calculation
gives

x′

P =
x′

L

t′L − z′L

=
xL cos θ − yL sin θ

tL − zL

=
xL

tL − zL

cos θ −
yL

tL − zL

sin θ

= xP cos θ − yP sin θ,

and similarly

y′P = xP sin θ + yP cos θ

so the corresponding action on the plane is just
a rotation through an angle θ about the origin.

In the spherical picture we have, by an even
easier calculation,

x′

S = xS cos θ − yS sin θ
y′S = xS sin θ + yS cos θ
z′S = zS

so we have a rotation through an angle θ about
the z-axis.
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10 Translations

The two parameter family of translations

x′

P = xP − a y′P = yP − b

preserve distances, so the corresponding Lorentz
transformations, if any, must leave N invariant.
Which Lorentz transformations are these?
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