## MA 216 Assignment 1

## Due Wednesday 25 October 2006

## **Solutions**

- 1. For each of the following, say whether it is a scalar equation or system, give the order, and state whether it is linear or non-linear. If linear, state whether it is homogeneous or inhomogeneous.
  - (a) Van der Pol's Equation:

$$x''(t) + (1 - x(t)^{2})x'(t) + x(t) = 0$$

(b) Bessel's Equation:

$$t^2x''(t) + tx'(t) + (t^2 - \nu^2)x(t) = 0$$

(c) The Emden-Fowler Equation

$$tx''(t) + 2x'(t) + at^{\nu}x(t)^{n} = 0.$$

(d) The Lotka-Volterra Model:

$$x'(t) = x(t)(\alpha - \beta y(t))$$
  $y'(t) = -y(t)(\gamma - \delta x(t))$ 

Solution:

- (a) Van der Pol's Equation is a second order nonlinear scalar equation.
- (b) Bessel's Equation: is a second order linear homogeneous scalar equation.
- (c) The Emden-Fowler Equation is a second order nonlinear scalar equation, unless n = 1, in which case it is linear homogeneous, or n = 0, in which case it is linear inhomogeneous.
- (d) The Lotka-Volterra Model is a first order nonlinear system.
- 2. Which of the equations (or systems) from the preceding exercise have translation symmetry in the independent variable (t as the equations are written above)?

Solution: Only Van der Pol's equation and the Lotka-Volterra system have translation symmetry.

3. (a) Prove that

$$z(t) = x(t)y(t)$$

is an invariant of the system

$$x'(t) = x(t) \qquad y'(t) = -y(t).$$

Note: although the system is easy to solve, there is no need to do so.

(b) Prove that

$$x'(t)^2 + x(t)^4$$

is an invariant of

$$x''(t) + 2x(t)^3 = 0$$

and use this fact to prove that all solutions of the equation are bounded.

Solution:

(a) The familiar properties of the derivative, e.g. the sum and product rule, show that

$$z'(t) = x'(t)y(t) + x(t)y'(t) = x(t)y(t) - x(t)y(t) = 0,$$

so z is constant.

(b) Similarly, setting

$$w(t) = x'(t)^2 + x(t)^4,$$

one sees that

$$w'(t) = 2x'(t)x''(t) + 4x(t)^{3}x'(t) = 2x'(t)(x''(t) + 2x(t)^{3}) = 0,$$

so w is constant. It follows, since  $x'(t)^2$  is non-negative, that

$$-\sqrt[4]{w(0)} \le x(t) \le \sqrt[4]{w(0)}.$$

4. Prove that

$$||AB||_{\infty} \le ||A||_{\infty} ||B||_{\infty}.$$

Solution: Set

$$C = AB$$
.

Then, by definition,

$$c_{il} = \sum_{j=1}^{k} a_{ij} b_{jl}$$

and, by the triangle inequality,

$$|c_{il}| \le \sum_{j=1}^k |a_{ij}| |b_{jl}|$$

and

$$\sum_{l=1}^{k} |c_{il}| \le \sum_{l=1}^{k} \sum_{j=1}^{k} |a_{ij}| |b_{jl}|.$$

The sums being finite, the order of summation is unimportant,

$$\sum_{l=1}^{k} |c_{il}| \le \sum_{j=1}^{k} \sum_{l=1}^{k} |a_{ij}| |b_{jl}|.$$

In the inner sum, the factor  $|a_{ij}|$  is independent of l and may be pulled outside the sum,

$$\sum_{l=1}^{k} |c_{il}| \le \sum_{j=1}^{k} |a_{ij}| \sum_{l=1}^{k} |b_{jl}|.$$

For any j the definition of  $||B||_{\infty}$  shows that

$$\sum_{l=1}^k |b_{jl}| \le ||B||_{\infty}$$

and hence

$$\sum_{l=1}^{k} |c_{il}| \le \sum_{j=1}^{k} |a_{ij}| ||B||_{\infty}.$$

The factor  $||B||_{\infty}$  is independent of j, and hence may be pulled outside the sum,

$$\sum_{l=1}^{k} |c_{il}| \le ||B||_{\infty} \sum_{j=1}^{k} |a_{ij}| \le ||B||_{\infty} ||A||_{\infty}.$$

This is true for all i, so

$$||C||_{\infty} = \max_{1 \le i \le k} \sum_{l=1}^{k} |c_{il}| \le ||B||_{\infty} ||A||_{\infty}.$$

5. A vector valued function x is said to be continuous at t if, for all positive  $\epsilon$ , there is a positive  $\delta$ , such that

$$|s-t| < \delta$$

implies

$$||x(s) - x(t)|| < \epsilon.$$

Show that it doesn't matter which norm we take,  $||x||_1$  or  $||x||_{\infty}$ , in this definition, *i.e.* that the same set of functions are continuous regardless of which norm is used.

Solution: First, note that for all vectors v in  $\mathbf{R}^k$ ,

$$||v||_{\infty} \le ||v||_1$$

and

$$||v||_1 \le k||v||_{\infty}.$$

This follows immediately from the definitions.

Suppose that x is continuous, continuity being defined in terms of the 1-norm. For any positive  $\epsilon$  there is then a positive  $\delta$  such that

$$|s-t| < \delta$$

implies

$$||x(s) - x(t)||_1 < \epsilon.$$

Then, since  $||x(s) - x(t)||_{\infty} \le ||x(s) - x(t)||_{1}$ ,

$$|s-t| < \delta$$

implies

$$||x(s) - x(t)||_{\infty} < \epsilon$$
.

Thus x is continuous, continuity being defined in terms of the  $\infty$ -norm.

Suppose now that x is continuous, continuity being defined in terms of the  $\infty$ -norm. For any positive  $\theta$  there is then a positive  $\delta$  such that For any positive  $\epsilon$  there is then a positive  $\delta$  such that

$$|s-t| < \delta$$

implies

$$||x(s) - x(t)||_{\infty} < \theta.$$

In particular, for any positive  $\epsilon$  one has  $\frac{\epsilon}{k} > 0$  and hence there is a positive  $\delta$  such that

$$|s-t| < \delta$$

implies

$$||x(s) - x(t)||_{\infty} < \frac{\epsilon}{k}.$$

Then, since  $||x(s) - x(t)||_1 \le k||x(s) - x(t)||_{\infty}$ ,

$$|s-t|<\delta$$

implies

$$||x(s) - x(t)||_1 < k \frac{\epsilon}{k} = \epsilon.$$

Thus x is continuous, continuity being defined in terms of the 1-norm.