
MA 216 Assignment 1

Due Wednesday 25 October 2006

Solutions

1. For each of the following, say whether it is a scalar equation or system,
give the order, and state whether it is linear or non-linear. If linear,
state whether it is homogeneous or inhomogenous.

(a) Van der Pol’s Equation:

x′′(t) + (1 − x(t)2)x′(t) + x(t) = 0

(b) Bessel’s Equation:

t2x′′(t) + tx′(t) + (t2 − ν2)x(t) = 0

(c) The Emden-Fowler Equation

tx′′(t) + 2x′(t) + atνx(t)n = 0.

(d) The Lotka-Volterra Model:

x′(t) = x(t)(α − βy(t)) y′(t) = −y(t)(γ − δx(t))

Solution:

(a) Van der Pol’s Equation is a second order nonlinear scalar equation.

(b) Bessel’s Equation: is a second order linear homogeneous scalar
equation.

(c) The Emden-Fowler Equation is a second order nonlinear scalar
equation, unless n = 1, in which case it is linear homogeneous, or
n = 0, in which case it is linear inhomogeneous.

(d) The Lotka-Volterra Model is a first order nonlinear system.

2. Which of the equations (or systems) from the preceding exercise have
translation symmetry in the independent variable (t as the equations
are written above)?
Solution: Only Van der Pol’s equation and the Lotka-Volterra system
have translation symmetry.
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3. (a) Prove that
z(t) = x(t)y(t)

is an invariant of the system

x′(t) = x(t) y′(t) = −y(t).

Note: although the system is easy to solve, there is no need to do

so.

(b) Prove that
x′(t)2 + x(t)4

is an invariant of
x′′(t) + 2x(t)3 = 0

and use this fact to prove that all solutions of the equation are
bounded.

Solution:

(a) The familiar properties of the derivative, e.g. the sum and product
rule, show that

z′(t) = x′(t)y(t) + x(t)y′(t) = x(t)y(t) − x(t)y(t) = 0,

so z is constant.

(b) Similarly, setting
w(t) = x′(t)2 + x(t)4,

one sees that

w′(t) = 2x′(t)x′′(t) + 4x(t)3x′(t) = 2x′(t)(x′′(t) + 2x(t)3) = 0,

so w is constant. It follows, since x′(t)2 is non-negative, that

− 4

√

w(0) ≤ x(t) ≤ 4

√

w(0).

4. Prove that
‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

Solution: Set
C = AB.

Then, by definition,

cil =
k

∑

j=1

aijbjl
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and, by the triangle inequality,

|cil| ≤
k

∑

j=1

|aij||bjl|

and
k

∑

l=1

|cil| ≤
k

∑

l=1

k
∑

j=1

|aij||bjl|.

The sums being finite, the order of summation is unimportant,

k
∑

l=1

|cil| ≤
k

∑

j=1

k
∑

l=1

|aij||bjl|.

In the inner sum, the factor |aij| is independent of l and may be pulled
outside the sum,

k
∑

l=1

|cil| ≤
k

∑

j=1

|aij|
k

∑

l=1

|bjl|.

For any j the definition of ‖B‖∞ shows that

k
∑

l=1

|bjl| ≤ ‖B‖∞

and hence
k

∑

l=1

|cil| ≤
k

∑

j=1

|aij|‖B‖∞.

The factor ‖B‖∞ is independent of j, and hence may be pulled outside
the sum,

k
∑

l=1

|cil| ≤ ‖B‖∞
k

∑

j=1

|aij| ≤ ‖B‖∞‖A‖∞.

This is true for all i, so

‖C‖∞ = max
1≤i≤k

k
∑

l=1

|cil| ≤ ‖B‖∞‖A‖∞.

5. A vector valued function x is said to be continuous at t if, for all positive
ε, there is a positive δ, such that

|s − t| < δ
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implies
‖x(s) − x(t)‖ < ε.

Show that it doesn’t matter which norm we take, ‖x‖1 or ‖x‖∞, in this
definition, i.e. that the same set of functions are continuous regardless
of which norm is used.
Solution: First, note that for all vectors v in R

k,

‖v‖∞ ≤ ‖v‖1

and
‖v‖1 ≤ k‖v‖∞.

This follows immediately from the definitions.

Suppose that x is continuous, continuity being defined in terms of the
1-norm. For any positive ε there is then a positive δ such that

|s − t| < δ

implies
‖x(s) − x(t)‖1 < ε.

Then, since ‖x(s) − x(t)‖∞ ≤ ‖x(s) − x(t)‖1,

|s − t| < δ

implies
‖x(s) − x(t)‖∞ < ε.

Thus x is continuous, continuity being defined in terms of the ∞-norm.

Suppose now that x is continuous, continuity being defined in terms of
the ∞-norm. For any positive θ there is then a positive δ such that For
any positive ε there is then a positive δ such that

|s − t| < δ

implies
‖x(s) − x(t)‖∞ < θ.

In particular, for any positive ε one has ε
k

> 0 and hence there is a
positive δ such that

|s − t| < δ

implies

‖x(s) − x(t)‖∞ <
ε

k
.
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Then, since ‖x(s) − x(t)‖1 ≤ k‖x(s) − x(t)‖∞,

|s − t| < δ

implies

‖x(s) − x(t)‖1 < k
ε

k
= ε.

Thus x is continuous, continuity being defined in terms of the 1-norm.
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