MA2331 Solutions Tutorial Sheet 1!
October 8, 2014

Problem Sheet 1

1. Find the Fourier series representation of the sawtooth function f defined by f(z) = «

for —m <x <mand f(z+27) = f(z).
Solution: f is odd so a, = 0 for all n.
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The integral on the RHS is zero since it is just a cosine integrated over a full period
(or n periods). Thus b, = —2cos(nm)/n = —2(—1)"/n which gives

f(z) = —22 (=1" sin nx.

n

. Establish that

™ s
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if m # n (both m and n are integers).

Solution:In this question m and n will be taken as positive integers. The problem
can be tackled using complex exponentials or trig identities. Using the identity

2sin Asin B = cos(A — B) — cos(A + B),

™ 1 ™
/ dx sinmzxsinnr = 5 / dx [cos(m —n)x — cos(m + n)x],
which is zero (integral of cosine over full periods) provided m — n and m + n are

non-zero. To show that i

dx cosmx cosnx = 0,
use
2cos Acos B = cos(A + B) + cos(A — B).

3. The periodic function f is defined by

sine O<z<m
f(x)_{o —rT<x<0

and f(z +2m) = f(z).
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(a)

Represent f(z) as a Fourier series.

Solution:This function is neither odd nor even, though the only non-zero b,

coefficient is by = 3 (since f(z) = 3(sinz + |sinz|) and |sinz| is even). Now to

the a,, coefficients
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This can be computed via complex exponentials or through the identity
2sin Acos B = sin(A + B) + sin(A — B):

0
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n = 5 i dx [sin(1 +n)x +sin(l — n)z] = ~5- (Cosg _:—nmx + COSg — nn)x)
Now cos(1 + n)m = cos(1 — n)mr = —(—1)", and so
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This is ambiguous for n = 1; it is trivial to check that a; = 0. Putting everything
together
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Derive the remarkable formula
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Solution: f(0) = 0 leads to the amazing formula
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