MA2331 Solutions Tutorial Sheet 1¹

October 8, 2014

Problem Sheet 1

1. Find the Fourier series representation of the sawtooth function f defined by f(x) = x for $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$.

Solution: f is odd so $a_n = 0$ for all n.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} dx \ x \sin nx = -\frac{x \cos nx}{n\pi} \Big|_{\pi}^{-\pi} + \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos nx}{n}.$$

The integral on the RHS is zero since it is just a cosine integrated over a full period (or n periods). Thus $b_n = -2\cos(n\pi)/n = -2(-1)^n/n$ which gives

$$f(x) = -2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx.$$

2. Establish that

$$\int_{-\pi}^{\pi} dx \sin mx \sin nx = \int_{-\pi}^{\pi} dx \cos mx \cos nx = 0,$$

if $m \neq n$ (both m and n are integers).

Solution: In this question m and n will be taken as positive integers. The problem can be tackled using complex exponentials or trig identities. Using the identity

$$2\sin A\sin B = \cos(A - B) - \cos(A + B),$$

$$\int_{-\pi}^{\pi} dx \sin mx \sin nx = \frac{1}{2} \int_{-\pi}^{\pi} dx \left[\cos(m-n)x - \cos(m+n)x \right],$$

which is zero (integral of cosine over full periods) provided m-n and m+n are non-zero. To show that

$$\int_{-\pi}^{\pi} dx \cos mx \cos nx = 0,$$

use

$$2\cos A\cos B = \cos(A+B) + \cos(A-B).$$

3. The periodic function f is defined by

$$f(x) = \begin{cases} \sin x & 0 < x < \pi \\ 0 & -\pi < x < 0 \end{cases}$$

and $f(x+2\pi) = f(x)$.

¹Stefan Sint, sint@maths.tcd.ie, see also http://www.maths.tcd.ie/~sint/MA2331/MA2331.html

(a) Represent f(x) as a Fourier series.

Solution: This function is neither odd nor even, though the only non-zero b_n coefficient is $b_1 = \frac{1}{2}$ (since $f(x) = \frac{1}{2}(\sin x + |\sin x|)$ and $|\sin x|$ is even). Now to the a_n coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} dx \cos nx \ f(x) = \frac{1}{\pi} \int_{0}^{\pi} dx \cos nx \sin x$$

This can be computed via complex exponentials or through the identity $2 \sin A \cos B = \sin(A+B) + \sin(A-B)$:

$$a_n = \frac{1}{2\pi} \int_0^{\pi} dx \left[\sin(1+n)x + \sin(1-n)x \right] = -\frac{1}{2\pi} \left(\frac{\cos(1+n)x}{1+n} + \frac{\cos(1-n)x}{1-n} \right) \Big|_0^{\pi}.$$

Now $\cos(1+n)\pi = \cos(1-n)\pi = -(-1)^n$, and so

$$a_n = -\frac{1}{2\pi}(-(-1)^n - 1)\left(\frac{1}{1+n} + \frac{1}{1+n}\right) = \frac{1}{\pi}(1+(-1)^n)\frac{1}{1-n^2}.$$

This is ambiguous for n = 1; it is trivial to check that $a_1 = 0$. Putting everything together

$$f(x) = \frac{1}{\pi} + \frac{2}{\pi} \sum_{n > 0 \text{ eVen}} \frac{\cos nx}{1 - n^2} + \frac{1}{2} \sin x,$$

or

$$f(x) = \frac{1}{\pi} + \frac{2}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2mx}{1 - 4m^2} + \frac{1}{2} \sin x.$$

(b) Derive the remarkable formula

$$\frac{1}{2^2 - 1} + \frac{1}{4^2 - 1} + \frac{1}{6^2 - 1} + \dots = \frac{1}{2}.$$

Solution: f(0) = 0 leads to the amazing formula

$$\frac{1}{2^2 - 1} + \frac{1}{4^2 - 1} + \frac{1}{6^2 - 1} + \dots = \frac{1}{2}.$$