MA2331 Tutorial Sheet 5, Solutions.¹

4 December 2014 (Due 12 December 2014 in class)

Questions

- 1. Compute the line integrals:
 - (a) $\int_C (dx \ xy + \frac{1}{2}dy \ x^2 + dz)$ where C is the line segment joining the origin and the point (1,1,2).
 - (b) $\int_C (dx\ yz\ + dy\ xz\ + dz\ yx^2)$ where C is the same line as in the previous part

Solution:

A quick way here is to note that \mathbf{F} is conservative.

$$\mathbf{F} = xy\mathbf{i} + \frac{1}{2}x^2\mathbf{j} + \mathbf{k} = \nabla\phi \tag{1}$$

where $\phi = \frac{1}{2}x^2y + z$. Hence

$$\int_{C} \mathbf{F} \cdot d\mathbf{l} = \phi(1, 1, 2) - \phi(0, 0, 0) = \frac{5}{2}.$$
 (2)

For the next part, use the parametrization x(u) = u, y(u) = u, z(u) = 2u $(0 \le u \le 1)$.

$$\frac{d\mathbf{r}}{du} = \mathbf{i} + \mathbf{j} + 2\mathbf{k},$$

$$\mathbf{F} \cdot \frac{d\mathbf{r}}{du} = 2u^2 + 2u^2 + 2u^3 = 4u^2 + 2u^3 \tag{3}$$

SO

$$\int_C \mathbf{F} \cdot d\mathbf{l} = \int_0^1 du \left(4u^2 + 2u^3 \right) = \frac{4}{3} + \frac{1}{2} = \frac{11}{6}.$$
 (4)

2. For each of the following vector fields compute the line integral $\oint_C \mathbf{F} \cdot \mathbf{dl}$ where C is the unit circle in the xy-plane taken anti-clockwise.

¹Stefan Sint, sint@maths.tcd.ie, see also http://www.maths.tcd.ie/~sint/MA2331/MA2331.html

(a)
$$\mathbf{F} = x\mathbf{i} + y\mathbf{j}$$

(b)
$$\mathbf{F} = y\mathbf{i} - x^2y\mathbf{j}$$
.

Solution:

In the first part $\mathbf{F} = \nabla \frac{1}{2}(x^2 + y^2)$ so that \mathbf{F} is conservative giving $\oint_C \mathbf{F} \cdot \mathbf{dl}$. In the second part parametrize curve:

$$\begin{aligned}
 x(u) &= \cos u \\
 y(u) &= \sin u \\
 z(u) &= 0
 \end{aligned} (5)$$

where $0 \le u \le 2\pi$ or $\mathbf{r}(u) = \cos u\mathbf{i} + \sin u\mathbf{j}$. Now

$$\frac{d\mathbf{r}(u)}{du} = -\sin u\mathbf{i} + \cos u\mathbf{j}.\tag{6}$$

and

$$\mathbf{F} \cdot \frac{d\mathbf{r}}{du} = -y\sin u - x^2y\cos u = -\sin^2 u - \cos^3 u\sin u. \tag{7}$$

Thus

$$\oint_C \mathbf{F} \cdot \mathbf{dl} = \int_0^{2\pi} du \left(-\sin^2 u - \cos^3 u \sin u \right) = -\pi, \tag{8}$$

since the average value of $\sin^2 u$ is $\frac{1}{2}$ and $\int_0^{2\pi} du \cos^3 u \sin u = 0$ by symmetry.

- 3. Evaluate the line integrals $\int_C \mathbf{F} \cdot \mathbf{dl}$ for
 - (a) $\mathbf{F} = (x^2y, 4, 0)$ with C given by $\mathbf{r}(t) = (\exp(t), \exp(-t), 0)$ with t going from zero to one;
 - (b) $\mathbf{F} = (z, x, y)$ with C given by $\mathbf{r}(t) = (\sin t, 3\sin t, \sin^2 t)$ with t going from zero to $\pi/2$.

Solution:

For the first one

$$\mathbf{r} = (\exp(t), \exp(-t), 0) \tag{9}$$

SO

$$\frac{d\mathbf{r}}{dt} = (\exp(t), -\exp(-t), 0) \tag{10}$$

and, on the curve,

$$\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = e^{2t} - 4e^{-t} \tag{11}$$

and hence

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} = \int_{0}^{1} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt = \int_{0}^{1} (e^{2t} - 4e^{-t}) dt = \frac{1}{2} e^{2} + 4e^{-1} - \frac{9}{2} \quad (12)$$

For the second one

$$\mathbf{r} = (\sin t, 3\sin t, \sin^2 t) \tag{13}$$

SO

$$\frac{d\mathbf{r}}{dt} = (\cos t, 3\cos t, 2\sin t\cos t) \tag{14}$$

and, on the curve,

$$\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = (7\sin^2 t + 3\sin t)\cos t \tag{15}$$

and hence

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} = \int_{0}^{\pi/2} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt$$

$$= \int_{0}^{\pi/2} (7\sin^{2}t + 3\sin t)\cos t dt$$

$$= \int_{0}^{1} (7u^{2} + 3u) du = \frac{23}{6} \tag{16}$$

where we have used a substitution $u = \sin t$.

- 4. For each of these fields determine if **F** is conservative, if it is, by integration or otherwise, find a potential: ϕ such that $\mathbf{F} = \nabla \phi$.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F} = 3y^2\mathbf{i} + 6xy\mathbf{j}$
 - (c) $\mathbf{F} = e^x \cos y \mathbf{i} e^x \sin y \mathbf{j}$
 - (d) $\mathbf{F} = (\cos y + y \cos x)\mathbf{i} + (\sin x x \sin y)\mathbf{j}$

Solution:

So, in the first case, it is easy to see the curl is zero, having done that we want $\mathbf{F} = \nabla \phi$, hence $F_1 = \partial_x \phi$ or

$$\frac{\partial}{\partial x}\phi = x\tag{17}$$

and hence $\phi = x^2/2 + C(y, z)$, where C(y, z) is an arbitrary function of y and z, substitute that back in to get

$$\frac{\partial}{\partial y}C = y \tag{18}$$

giving $\phi = x^2/2 + y^2/2 + C(z)$ where C(z) = C a constant follows from $F_3 = 0$.

For the next one the curl is again zero so there is a potential,

$$\partial_x \phi = 3y^2 \tag{19}$$

so $\phi = 3y^2x + C(y, z)$. Substituting into the y equation gives

$$\partial_y \phi = 6xy + \partial_y C(y, z) = 6xy \tag{20}$$

and hence $\partial_y C(y,z) = 0$ so C(y,z) = C(z), further substituting this into $\partial_z \phi = 0$ shows C(z) = C a constant and $\phi = 3y^2x + C$.

For the next one the curl is again zero so there is a potential,

$$\partial_x \phi = e^x \cos y \tag{21}$$

so $\phi = e^x \cos y + C(y, z)$. Substituting into the y equation and z equation show that C(y, z) = C a constant and $\phi = e^x \cos y + C$.

Finally the last one also has zero curl and

$$\partial_x \phi = \cos y + y \cos x \tag{22}$$

giving $\phi = x \cos y + y \sin x + C(y, z)$ and, again, substituting in to the y equation and z equation show that C(y, z) = C a constant and $\phi = x \cos y + y \sin x + C$. It won't always work out like this with arbitrary function turning out to be an arbitrary constant, it is just an accident that I ask you three examples like this!

5. Consider the 'point vortex' vector field

$$\mathbf{F} = \frac{y}{x^2 + y^2} \mathbf{i} - \frac{x}{x^2 + y^2} \mathbf{j}.$$

Show that curl $\mathbf{F} = 0$ away from the z-axis. Establish that \mathbf{F} is not conservative in the (non simply-connected) domain $x^2 + y^2 \ge \frac{1}{2}$. Is \mathbf{F} conservative in the domain defined by $x^2 + y^2 \ge \frac{1}{2}$, $y \ge 0$? If so obtain a scalar potential for \mathbf{F} .

Solution:

$$\nabla \times \mathbf{F} = \frac{1}{2} \mathbf{k} \left[\partial_x \left(\frac{-x}{x^2 + y^2} \right) + \partial_y \left(\frac{y}{x^2 + y^2} \right) \right]$$

$$= \frac{1}{2} \mathbf{k} \left[-\frac{1}{x^2 + y^2} + \frac{2x^2}{(x^2 + y^2)^2} - \frac{1}{x^2 + y^2} + \frac{2y^2}{(x^2 + y^2)^2} \right]$$

$$= 0. \tag{23}$$

To show that \mathbf{F} is not conservative consider $\oint_C \mathbf{F} \cdot \mathbf{dl}$ where C is the unit circle. Using the obvious parametrization

$$\oint_C \mathbf{F} \cdot \mathbf{dl} = \int_0^{2\pi} du \left(-\sin^2 u - \cos^2 u \right) \\
= -2\pi \neq 0,$$
(24)

therefore \mathbf{F} is not conservative.

The domain $x^2 + y^2 \ge \frac{1}{2}$, $y \ge 0$ is simply connected and **F** is irrotational and smooth is the domain. Thus **F** is conservative.

Write $\mathbf{F} = \nabla \phi$. Seek a $\phi(x, y)$ such that

$$\frac{\partial \phi}{\partial x} = \frac{y}{x^2 + y^2}, \qquad \frac{\partial \phi}{\partial y} = -\frac{x}{x^2 + y^2}.$$
 (25)

Integrate first equation by treating y as a constant

$$\phi(x,y) = y \int \frac{dx}{x^2 + y^2} = \tan^{-1} \frac{x}{y} + C(y).$$
 (26)

Assume that x and y are non-negative, then

$$\tan^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x} = \frac{\pi}{2},$$

so that $\phi(x,y) = -\tan^{-1}\frac{y}{x} + \text{a possibly }y\text{-dependent constant.}$ However it is easy to check that $\phi = -\tan^{-1}\frac{y}{x}$ satisfies $\frac{\partial \phi}{\partial y} = -\frac{x}{x^2+y^2}$. Clearly, $\tan^{-1}\frac{y}{x}$ is the usual polar angle θ , that is $\phi = -\theta$.

Can try to extend this back to the original domain $x^2 + y^2 \ge \frac{1}{2}$, but ϕ will suffer a branch cut discontinuity at, say $\theta = \frac{3}{2}\pi$.

6. Find the flux of $\mathbf{F} = e^{-y}\mathbf{i} - y\mathbf{j} + x\sin z\mathbf{k}$ across the portion of the paraboloid

$$\mathbf{r}(u,v) = 2\cos v\mathbf{i} + \sin v\mathbf{j} + u\mathbf{k} \tag{27}$$

with $0 \le u \le 5$ and $0 \le v \le 2\pi$, oriented to give a positive answer. Solution:

NOTE: this is not really a paraboloid, there was a mix-up with a different question! Anyhow, using the given parameterization, we have

$$\frac{\partial \mathbf{r}}{\partial u} = \mathbf{k}
\frac{\partial \mathbf{r}}{\partial v} = -2\sin v \mathbf{i} + \cos v \mathbf{j}$$
(28)

giving

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} = \begin{pmatrix} -\cos v \\ -2\sin v \\ 0 \end{pmatrix}$$
 (29)

On the surface

$$\mathbf{F}(\mathbf{r}(u,v)) = e^{-\sin v}\mathbf{i} - \sin v\mathbf{j} + 2\cos v\sin u\mathbf{k}$$
(30)

and the flux is

$$\phi = \int_0^5 du \int_0^{2\pi} dv \left(-\cos v e^{-\sin v} + 2\sin^2 v \right)$$
 (31)

Now,

$$-\int_0^{2\pi} dv \cos v e^{-\sin v} = \int_0^{2\pi} dv \frac{d}{dv} e^{-\sin v} = e^{-\sin v}|_0^{2\pi} = 1 - 1 = 0 \quad (32)$$

This leaves the other bit of the integral, which we do using the usual

$$2\sin^2 x = 1 - \cos 2x \tag{33}$$

giving

$$\phi = 10\pi \tag{34}$$

which is a positive answer, so the orientation was chosen correctly.

7. Use Green's Theorem to evaluate

$$\oint_c (y^2 dx + x^2 dy) \tag{35}$$

where C is the square with vertice (0,0), (1,0), (1,1) and (0,1) and oriented anti-clockwise.

Solution:

By Green's theorem

$$\oint_{C} (y^{2}dx + x^{2}dy) = \int_{0}^{1} dx \int_{0}^{1} dy (2x - 2y) = \int_{0}^{1} dx (2x - 1) = 0 \quad (36)$$

8. Calculate directly and using Stokes' Theorem

$$\int_{S} \mathbf{F} \cdot \mathbf{dS} \tag{37}$$

where $\mathbf{F} = (z - y)\mathbf{i} + (z + x)\mathbf{j} - (x + y)\mathbf{k}$ and S is the paraboloid $z = 9 - x^2 - y^2$ oriented upwards with z > 0.

Solution:

So, to calculate directly, choose some parameterization

$$\mathbf{r} = \rho \cos \phi \mathbf{i} + \rho \sin \phi \mathbf{j} + (9 - \rho^2) \mathbf{k}$$
 (38)

works. Now

$$\frac{\partial \mathbf{r}}{\partial \phi} = -\rho \sin \phi \mathbf{i} + \rho \cos \phi \mathbf{j}$$

$$\frac{\partial \mathbf{r}}{\partial \rho} = \cos \phi \mathbf{i} + \sin \phi \mathbf{j} - 2\rho \mathbf{k}$$
(39)

and, choosing the other order to make the normal point upwards,

$$\frac{\partial \mathbf{r}}{\partial \rho} \times \frac{\partial \mathbf{r}}{\partial \phi} = \begin{pmatrix} 2\rho^2 \cos \phi \\ 2\rho^2 \sin \phi \\ \rho \end{pmatrix} \tag{40}$$

Now, writing this as $(2\rho x, 2\rho y, \rho)$ and doing the dot product with **F** we are left with only terms which are linear in x or y and since the ϕ integral goes all the way around, we see the answer is zero.

Next, using Stokes

$$\int_{S} \operatorname{curl} \mathbf{A} \cdot \mathbf{dS} = \oint_{C} \mathbf{A} \cdot \mathbf{dl}$$
 (41)

hence, to apply Stokes, we have to write \mathbf{F} as $\operatorname{curl} \mathbf{A}$, in other words, find a vector potential for \mathbf{F} . It is easy to check that $\operatorname{div} \mathbf{F} = 0$ so this should be possible. We will use the formula that was used to prove the existence of vector potential for divergenceless fields on star-shapped domains. Hence

$$\mathbf{A} = \int_{0}^{1} \mathbf{F}(t\mathbf{r}) \times t\mathbf{r}$$

$$= \frac{1}{3} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ z - y & z + x & -(x+y) \\ x & y & z \end{vmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} z^{2} + xz + xy + y^{2} \\ -x^{2} - xy - z^{2} + yz \\ zy - y^{2} - xz - x^{2} \end{pmatrix}$$

$$(42)$$

where I got the third by noting that the overall factor of t^2 came out of the determinant, and then integrating it. Since this formula is complicated it would certainly be a good idea to check $\mathbf{F} = \nabla \times \mathbf{F}$.

Now, to apply Stoke's theorem:

$$\int_{S} \operatorname{curl} \mathbf{A} \cdot \mathbf{dS} = \oint_{C} \mathbf{A} \cdot \mathbf{dl}$$
 (43)

where C is the circle of radius three around the origin in the xy-plane: $x^2 + y^2 = 9$ and z = 0. We parameterize with

$$\mathbf{r} = 3\cos t\mathbf{i} + 3\sin t\mathbf{j} \tag{44}$$

so that

$$\frac{d\mathbf{r}}{dt} = -3\sin t\mathbf{i} + 3\cos t\mathbf{j} \tag{45}$$

Restricting A to the curve and doing the dot product gives

$$\oint_{c} \mathbf{A} \cdot \mathbf{dl} = 9 \int_{0}^{2\pi} (-cs^{2} - s^{3} - c^{3} - c^{2}s) dt = 0$$
 (46)

where $c = \cos t$ and $s = \sin t$ and we are using the usual anti-symmetry argument that odd powers of sine and cosine integrate to zero over their entire period.