MA2331 Tutorial Sheet 5.¹

4 December 2014 (Due 12 December 2014 in class)

Useful facts:

• To evaluate the line integral for a parameterized curve $C: t \to \mathbf{r}(t)$:

$$\int_{c} \mathbf{F} \cdot \mathbf{dl} = \int_{t_{1}}^{t_{2}} \mathbf{F} \cdot \frac{d\mathbf{r}}{dt} dt \tag{1}$$

where t_1 and t_2 are the parameter values corresponding to the beginning and end of the curve.

• To evaluate the surface integral for a parameterized surface $S:(u,v)\to \mathbf{r}(u,v)$:

$$\int \int_{S} \mathbf{F} \cdot \mathbf{dA} = \int \int_{S} \mathbf{F} \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du dv \tag{2}$$

• Stokes' theorem: for an orientable piecewise smooth surface S with an orientable piecewise smooth boundy C oriented so that $\mathbf{n} \times \mathbf{dl}$ points into S with \mathbf{n} the normal and \mathbf{dl} a tangent to C and \mathbf{F} a vector field defined in a region containing S, then

$$\int_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{dA} = \int_{C} \mathbf{F} \cdot \mathbf{dl}$$
(3)

• Green's theorem on the plane: led D be a region in the xy-plane bounded by a piecewise continuous curve C, if f(x,y) and g(x,y) have continuous first derivatives

$$\int_{D} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx dy = \int_{C} \left(f dx + g dy \right) \tag{4}$$

- A vector field **F** is **conservative** if **F** = grad ϕ for some scalar field ϕ . ϕ is often called a **potential** for **F**.
- A vector field is path-independent if its line integral between any two points is independent of the path.
- An irrotational field on a simply connected domain is conservative.
- To find a potential by integration: let $\partial_x \phi = F_1$ and integrate to find ϕ determined up to an arbitrary function of y and z, substitute back into $\partial_y \phi = F_2$ to determine it up to an arbitrary function of z and then determine this, up to an arbitrary constant, by substituting into $\partial_z \phi = F_3$

¹Stefan Sint, sint@maths.tcd.ie, see also http://www.maths.tcd.ie/~sint/MA2331/MA2331.html

Questions

- 1. Compute the line integrals:
 - (a) $\int_C (dx \ xy + \frac{1}{2}dy \ x^2 + dz)$ where C is the line segment joining the origin and the point (1, 1, 2).
 - (b) $\int_C (dx yz + dy xz + dz yx^2)$ where C is the same line as in the previous part

(2 marks)

- 2. For each of the following vector fields compute the line integral $\oint_C \mathbf{F} \cdot \mathbf{dl}$ where C is the unit circle in the xy-plane taken anti-clockwise.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F} = y\mathbf{i} x^2y\mathbf{i}$.

(2 marks)

- 3. Evaluate the line integrals $\int_C \mathbf{F} \cdot \mathbf{dl}$ for
 - (a) $\mathbf{F} = (x^2y, 4, 0)$ with C given by $\mathbf{r}(t) = (\exp(t), \exp(-t), 0)$ with t going from zero to one:
 - (b) $\mathbf{F} = (z, x, y)$ with C given by $\mathbf{r}(t) = (\sin t, 3\sin t, \sin^2 t)$ with t going from zero to $\pi/2$.

(2 marks)

- 4. For each of these fields determine if **F** is conservative, if it is, by integration or otherwise, find a potential: ϕ such that $\mathbf{F} = \nabla \phi$.
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j}$
 - (b) $\mathbf{F} = 3y^2\mathbf{i} + 6xy\mathbf{j}$
 - (c) $\mathbf{F} = e^x \cos y \mathbf{i} e^x \sin y \mathbf{j}$
 - (d) $\mathbf{F} = (\cos y + y \cos x)\mathbf{i} + (\sin x x \sin y)\mathbf{j}$

(2 marks)

5. Consider the 'point vortex' vector field

$$\mathbf{F} = \frac{y}{x^2 + y^2} \mathbf{i} - \frac{x}{x^2 + y^2} \mathbf{j}.$$

Show that curl $\mathbf{F} = 0$ away from the z-axis. Establish that \mathbf{F} is not conservative in the (non simply-connected) domain $x^2 + y^2 \ge \frac{1}{2}$. Is \mathbf{F} conservative in the domain defined by $x^2 + y^2 \ge \frac{1}{2}$, $y \ge 0$? If so obtain a scalar potential for \mathbf{F} .

(2 marks)

6. Find the flux of $\mathbf{F} = e^{-y}\mathbf{i} - y\mathbf{j} + x\sin z\mathbf{k}$ across the portion of the paraboloid

$$\mathbf{r}(u,v) = 2\cos v\mathbf{i} + \sin v\mathbf{j} + u\mathbf{k} \tag{5}$$

with $0 \le u \le 5$ and $0 \le v \le 2\pi$, oriented to give a positive answer.

(2 marks)

7. Use Green's Theorem to evaluate

$$\oint_{\mathcal{C}} (y^2 dx + x^2 dy) \tag{6}$$

where C is the square with vertice (0,0), (1,0), (1,1) and (0,1) and oriented anti-clockwise.

(2 marks)

8. Calculate directly and using Stokes' Theorem

$$\int_{S} \mathbf{F} \cdot \mathbf{dS} \tag{7}$$

where $\mathbf{F} = (z - y)\mathbf{i} + (z + x)\mathbf{j} - (x + y)\mathbf{k}$ and S is the paraboloid $z = 9 - x^2 - y^2$ oriented upwards with z > 0.

(2 marks)