
MA2331 Tutorial Sheet 4, Solutions.1

17 November 2014
(Due 25 November 2014 in class)

Questions

1. Check that the Jacobian for the transformation from cartesian to spher-
ical coordinates is

J = r2 sin θ. (1)

Consider the hemisphere defined by

√

x2 + y2 + z2 ≤ 1, z ≥ 0 (2)

Using spherical coordinates compute its volume and centroid2.

Solution:

The change of variables is

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ (3)

and the functional determinant is then

J =

∣

∣

∣

∣

∣

∣

∂rx ∂φx ∂θx
∂ry ∂φy ∂θy
∂rz ∂φz ∂θz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

cosφ sin θ −r sinφ sin θ r cosφ cos θ
sinφ sin θ r cosφ sin θ r sinφ cos θ

cos θ 0 −r sin θ

∣

∣

∣

∣

∣

∣

= −r2 cos2 φ sin3 θ − r2 sin2 φ sin θ − r2 cos2 φ cos2 θ sin θ

= −r2 sin θ (4)

Hence we confirm the result for J up to a sign, J = −r2 sin θ. In
fact there is a sign ambiguity as long as one does not fix the order of
the coordinates e.g. (r, φ, θ) vs. (r, θ, φ), as this determines the column
order in the determinant. For the change of variables in the integral
this does not matter as this involves the absolute value |J |.

1Stefan Sint, sint@maths.tcd.ie, see also http://www.maths.tcd.ie/~sint/MA2331/MA2331.html
2Recall that the centroid is the geometric mean, which coincides with the centre of

mass provided the mass density is constant.
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To compute the centroid of the half sphere, the symmetry implies that
the centroid r0 defined by

r0 =

∫

Bh

(x, y, z)dµxyz
∫

Bh

dµxyz

, (5)

where Bh is the half sphere. Changing to spherical coordinates, the
denominator integral is given by

∫

Bh

dµxyz =

∫

1

0

r2dr

∫

2π

0

dφ

∫ π/2

0

sin θdθ = 2π

∫

1

0

r2dr =
2

3
π (6)

as expected for the half sphere. Computing the numerator integrals we
get 0 for x0 and y0 as this is proportional to the integrals of either cosφ
or sinφ over the full period from 0 to 2π. For z0 one then obtains

z0 =
3

2π

∫

1

0

r3dr

∫

2π

0

dφ

∫ π/2

0

sin θ cos θdθ

=
3

2π
2π

1

4

∫ π/2

0

sin θ cos θdθ

= −
3

4

∫

0

1

udu =
3

8
(7)

Hence the centroid has coordinates (0, 0, 3/8)

2. Show div r = 3 and grad |r| = r/|r|.

Solution:

We have
∇r = ∂xx+ ∂yy + ∂zz = 1 + 1 + 1 = 3 (8)

For the gradient we need:

∂xr =
1

2
√

x2 + y2 + z2
2x =

x

r
(9)

∂yr =
1

2
√

x2 + y2 + z2
2y =

y

r
(10)

∂zr =
1

2
√

x2 + y2 + z2
2z =

z

r
(11)
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so that

∇r =
(x, y, z)

r
=

r

r
. (12)

3. Find ∇(1/|r|). Solution:

We have

∇(1/r) = (∂x(1/r), ∂y(1/r), ∂z(1/r) = −
1

r2
∇r (13)

Using the result from the preceding question this gives −r/r3.

4. Show grad f(r) = f ′(r)r̂. If F(r) = f(r)r find divF(r). Find div grad f(r).

Solution:

By the chain rule and question 2 we have

∇f(r) = (∂xf(r), ∂yf(r), ∂zf(r)) = f ′(r)∇r = f ′(r)r̂ (14)

Next, we have, again using question 2,

∇ · f(r)r = ∂x(xf(r)) + ∂y(yf(r)) + ∂z(zf(r)

= 3f(r) + f ′(r)r · ∇r

= 3f(r) + rf ′(r) (15)

Finally, using these results we have

∇ · ∇f(r) = ∇ · f ′(r)
r

r
= ∂x(xf

′(r)/r) + ∂y(yf
′(r)/r) + ∂z(zf

′(r)/r) (16)

By the chain rule one then finds

∇·∇f(r) = 3f ′(r)/r+((f ′(r)/r)′
x2 + y2 + z2

r
= f ′′(r)+2

f ′(r)

r
. (17)

5. Show that away from the origin the vector field

F =
r̂

r2
=

r

r3
(18)

is irrotational.
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Solution:

We need to calculate the curl of this vector field and show that it
vanishes away from the origin.

∇×
r

r2
= i(z∂yr

−2 − y∂zr
−2)

+j(x∂zr
−2 − z∂xr

−2)

+k(y∂xr
−2 − x∂yr

−2) (19)

Now, since

∂xr
−2 = −2r−3∂xr = −2

x

r4
, ∂yr

−2 = −2
y

r4
, ∂zr

−2 = −2
z

r4
(20)

we have for the first component,
(

∇×
r

r2

)

1

= z∂yr
−2 − y∂zr

−2 = −2r−4(zy − yz) = 0, (21)

and similarly for the other terms, so that the curl indeed vanishes for
r 6= 0.

6. Prove the identities

∇ · (∇× F) = 0 (22)

∇× (∇× F) = ∇(∇ · F)−△F. (23)

Solution:

By the definition of the divergence we have

∇ · (∇× F) = ∂x(∇× F)1 + ∂y(∇× F)2 + ∂z(∇× F)3. (24)

Inserting the definition of the curl

∇·(∇×F) = ∂x(∂yF3−∂zF2)+∂y(∂zF1−∂xF3)+∂z(∂xF2−∂yF1) (25)

For twice continuously differentiable vector fields the order of the deriva-
tives does not matter and, collecting the terms acting on F1,2,3, one finds
e.g. for F3,

(∂x∂y − ∂y∂x)F3 = 0 (26)

and the same for the other components.
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To check the other identity we compute the first component on either
side, the other components work analogously. The first component on
the lhs is

(∇× (∇× F))
1
= ∂y(∇× F)3 − ∂z(∇× F)2 (27)

Now we insert the components of the second curl, so that

(∇× (∇× F))
1
= ∂y(∂xF2 − ∂yF1)− ∂z(∂zF1 − ∂xF3) (28)

This has to be compared to the first component on the rhs, given by

∂x(∂xF1+∂yF2+∂zF3)−(∂2

x+∂2

y+∂2

z )F1 = ∂x(∂yF2+∂zF3)−(∂2

y+∂2

z )F1,
(29)

which is indeed the same given that the order of derivatives does not
matter (assuming that we have a twice continuously differentiable vec-
tor field). The other components can be checked analogously, thus
establishing the vector identity.
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