
Note I.41

These are Conor Houghton’s notes from 2006 to whom many thanks! I have just edited
a few minor things and corrected some typos. The pictures are in separate files and have
also been drawn by Conor.

Line and surface integrals

For a vector field there are natural ways of integrating over one and two-dimensional
subspaces of R3 to get a number, rather than a vector. These are line and surface integrals.

Line integrals

Consider two points P1 and P2 joined by a smooth or piecewise smooth curve C (Picture
I.4.1). A small segment of C can be represented by a vector δl, meaning that for two
proximate points on the curve at x1 and x2 with δl = x2 − x1 then all the points on the
curve between x1 and x2 are close to the straight line x1 + tδl where 0 ≤ t ≤ 1. Anyway,
the idea of the line integral is that it is the limit of the sum

L =
∑

k=0···N−1

F(xk) · δlk (1)

where x0 = P1, xN = P2, the other xk are intermediate points on the curve and ∇lk =
xk+1 − xk where the limit is the infinitesimal limit where N becomes infinite and all the
lengths of the ∇l go to zero. With a bit of effort and a lot of fiddling, this can be made
into a rigorous definition, but the important idea is that the line integral

∫
C

F · dl (2)

is the integral along the curve of the projection of F onto the tangent. Note that this
definition orients C, reversing the orientation reverses the sign of the integral.

The obvious physical example is work against a force: the work done moving a particle
from P1 to P2 along the curve C against a position dependent force F(x, y, z) is the line
integral

∫
c
F · dl.

In practise the line integral is usually calculated using a parametric form of the formula.
Suppose the points on C are given by x(u) where u is a parameter, a real number, and it
runs from a to b so x(a) = P1 and x(b) = P2. In other words there is a map

[a, b] →֒ R3

u → x(u) (3)

Now, by Taylor,

x(u+ δu) ≈ x(u) +
dx

du
δu (4)
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so we can identify

δl ↔
dx

du
δu (5)

and can conclude that ∫
C

F · dl =

∫ b

a

duF(x(u)) ·
dx(u)

du
(6)

• Example Integrate the vector field

F =
1

2
yi−

1

2
xj (7)

over the semi-circular arc of unit radius in the z = 0 plane. (Picture I.4.2). So, to
get a parameterization of the curve take

x(u) = cosu
y(u) = sin u
z(u) = 0 (8)

with 0 ≤ u ≤ π. Now,
dx(u)

du
= − sin ui+ cos uj (9)

and substituting for x and y in the formula for F we get

F =
1

2
sin ui−

1

2
cos uj (10)

so that

F ·
dx(u)

du
= −

1

2
sin2 u−

1

2
cos2 u = −

1

2
(11)

so ∫
C

F · dl = −
1

2

∫ π

0

du = −
π

2
(12)

Conservative vector fields and path independence

• Definition: A vector field is called conservative if it is the gradient of a scalar
field, so F is conservative if F = ∇φ for some φ.

If curlF 6= 0 then F cannot be conservative, however, the converse need not hold.

• Definition: A vector field is called path independent if the line integral between
any two points is the same for any path.
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Any conservative field is path-independent: choose any smooth curve joining points P1 and
P2 parameterized by u ∈ [a, b], then

F ·
dx

du
=

∂φ

∂x

dx

du
+

∂φ

∂y

dy

du
+

∂φ

∂z

dz

du
=

dφ(x(u)

du
(13)

so by the Fundamental Theorem of Calculus

∫
C

F · dl = φ(x(b))− φ(x(a)) (14)

and this answer does not depend on the path.
Now, for a conservative field, let Ca and Cb be two curves with the same endpoints P1

and P2 (Picture I.4.3). Since a conservative field is path independent,

∫
Ca

F · dl =

∫
Cb

F · dl (15)

Now consider the closed curve C = Ca−Cb where the minus in Cb means we have reversed
the orientation, ∮

C

F · dl =

∫
Ca

F · dl−

∫
Cb

F · dl = 0 (16)

and for any closed curve C ∮
C

F · dl = 0 (17)

• Example: Back to the previous example of the semicircle. It is easy to extend the
calculation to the full closed circle to show

∮
C

F · dl = −
1

2

∫ 2π

0

du = −π (18)

so

F =
1

2
yi−

1

2
xj (19)

cannot be conservative. This is consistent with curlF = −k 6= 0.

In fact, for a continuous vector field F in an open and connected domainD, the following
are equivalent

1. F is conservative.

2.
∮
C
F · dl = 0 for all closed paths in D

3. F is path independent.
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We have already seen that (2) and (3) are equivalent and that (1) implies (3), to finish,
then, we need only prove (3) implies (1). Let P be any point in D and let

φ(x) =

∫
C(P,x)

F · dl (20)

where C(P,x) is any curve joining P and x. Since the line integral is path independent,
φ is uniquely defined. Now, we want to show that F = ∇φ. Again, the result is path
independent, so, to prove

F1 = ∂xφ (21)

we use a path that goes from P to P ′ = (x′, y, z) where P ′ is chosen so that the straight
line segment from P ′ to (x, y, z) is in D (Picture I.4.4). Now

φ(x) =

∫
C(P,P ′)

F · dl+

∫ x

x1

F · dl (22)

so
F1 = ∂xφ (23)

The other components follow by a similar trick.
If D is simply connected all loops are contractible (Picture I.4.5). In this case

curlF = 0 is sufficient for F to be conservative, that is, on simply connected domains,
irrotational implies conservative. This will be proved later using the Stokes theorem.
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