
1 Forier Series

1.1 Real Fourier Series

The Fourier Series is an expansion of a function much like the Taylor Series. In
the mid-19th century mathematicians were interested in solving several partial
differential equations originating from physics such as the heat equation:

∂u

∂t
= k∂

2u

∂x2
(1)

where u(x, t) is the temperature at a point x at time t and k is a constant
indicating the thermal conductivity of a substance.

These kind of equations could initially only be solved under certain simplifying
assumptions, for example that the spatial profile of the temperature was a sine
or cosine wave:

u(x, t) = a(t) cos(λx) (2)

Due to cos(λx) being an eigenfunction of the second derivative, the heat equa-
tion, under these assumptions, could be reduced to a first order ordinary differ-
ential equation for a(t):

da

dt
= −λ2a (3)

the solution of which is:

a(t) = e−λ
2t (4)

Fourier’s idea was to solve the heat equation with no assumptions about the
spatial profile of the temperature, under the assumption that any function can
be expanded as a sum of sine and cosine waves. This would allow one to use
the eigenfunction properties of cos(x) and sin(x) to solve the heat equation in
general.

Fourier initially considered the case of periodic functions. A periodic func-
tion is a function that repeats its values after some set interval. Specifically a
function is periodic if there exists some C such that:

f(x +C) = f(x) (5)

for all x.
In general there will be many such values. For instance, cos(x) repeats itself over
intervals of 2π,4π, ... and hence C = 2πn. However all these values are simply
multiples of C = 2π, the smallest interval over which cos(x) repeats itself. This
smallest interval will be known as the period in the course and denoted L. So,
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for cos(x) we have the period L = 2π.1

Periodic functions can be thought of as functions on a circle of circumfrence L.
Points on the unit circle for example are labelled by a coordinate θ ∈ [0,2π).
Naturally we have the condition f(θ) = f(θ + 2π), for any function f(θ) on
the circle, as θ and θ + 2π are simply two different labels for the same point.
Similarly a function on a circle of cirumference L will obey:

f(x) = f(x +L) (6)

Fourier’s proposal was that all periodic functions could be expanded as a com-
bination of sine and cosine waves, that one could find a series of the following
form:

f(x) =
∞

∑
n=0

an cos(λnx) +
∞

∑
n=0

bn sin(λnx) (7)

with f(x) expanded in terms of trigonometric functions just as the Taylor ex-
pansion expresses a function as a sum of monomials xn.

The first question is the approriate form of the cosine and sine waves, cos(λnx)
and sin(λnx). To be used in the expansion of a function of period L, they must
also repeat in value over that interval. As cos(x) and sin(x) have period 2π, we
can modify their arguement so that they have period L:

cos(2π

L
x) (8)

sin(2π

L
x) (9)

Functions with integer multiples of this arguement:

cos(2πn

L
x) (10)

sin(2πn

L
x) (11)

have period L
n

and hence also repeat over an interval of size L and can be
included in the expansion. Hence we propose that for a function f(x) of period
L:

f(x) =
∞

∑
n=0

cos(2πn

L
x) +

∞

∑
n=0

bn sin(2πn

L
x) (12)

We will simplfy this a bit. First of all looking at the case n = 0, we find that
the trigonometric functions are:

cos(0) = 1 (13)

sin(0) = 0 (14)

1Other texts will use “period” for any interval over which the function repeats itself and
fundamental/prime period for the smallest interval.
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hence we can remove the n = 0 case from the sine wave series (as it vanishes)
and seperate the n = 0 case of the cosine series (as it is simply a constant). This
gives:

f(x) = a0 +
∞

∑
n=1

an cos(2πn

L
x) +

∞

∑
n=1

bn sin(2πn

L
x) (15)

Although this is commonly used as a definition of the Fourier Series, it produces
unwanted extra factors of 2 in certain expressions that we will derive later. For
this reason the Fourier series is commonly defined as:

f(x) = a0

2
+

∞

∑
n=1

an cos(2πn

L
x) +

∞

∑
n=1

bn sin(2πn

L
x) (16)

This expansion will be known as the Real Fourier Series in this course.

In terms of interpretation, if the function f(x) describes a sound wave for exam-
ple, the each sine and cosine wave would be an individual frequency of sound.
Low values of n would correspond to low pitched sounds and high n to high
pitched sounds. The coefficients an, bn would then measure the amplitudes of
each pitch, or how much that pitch contributes to the overall sounds.
If f(x) describes a beam of light, the sine and cosine waves for different values
of n describe different frequencies of light (i.e. different colours). Low values
of n being radio waves, mid-range values being visible light and high n values
being ultraviolet. an, bn then measure the intensity of each frequency in the
beam of light.
Another interpretation is that the sine and cosine waves capture details of the
function on certain length scales. The waves indexed by n capturing details on
the scale L/n. So cutting off the Fourier at some fixed value N , as an approxi-
mation of the function, would produce a function which is similar to f(x) when
looked at on scales larger than L/N .
The main advantages of the Fourier Series over the Taylor series are:

1. It preserves the periodicity of a function. In the Taylor series the mono-
mials xn are not periodic.

2. cos(x) and sin(x) are eigenfunctions of the second derivative and so the
expansion simplifies many second-order partial differential equations.

3. The Fourier Series seperates information on different length scales. This
can be useful if one wishes to remove information on certain scales. For
example humans can not hear certain frequencies of sound, which are
removed using the Fourier Series (or more correctly the Fourier Transform,
to be introduced later) as it can seperate out these high frequency sounds.
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For the Taylor series about a point x = a, given by:

f(x) =
∞

∑
n=0

dn(x − a)n (17)

We have a method to compute the coefficients in the expansion, namely:

dn =
f (n)(a)
n!

(18)

We need similar methods of computing the coefficients a0, an, bn for the Fourier
Series to be useful.

In order to motivate the formulae for a0, an, bn we use an analogy. The Fourier
Series:

f(x) = a0

2
+

∞

∑
n=1

an cos(2πn

L
x) +

∞

∑
n=1

bn sin(2πn

L
x) (19)

expands a function much the same as how in linear algebra we expand a vector:

V =
N

∑
n=1

vnen (20)

Here we expand a general vector as a combination of basis vectors en with
coefficients vn. Similarly, one could see the Fourier series as a expansion of a
general periodic function as a combination of “basis” functions:

cos(2πn

L
x) (21)

sin(2πn

L
x) (22)

with coefficients a0, an, bn. Note that this allows one to view a periodic function
as an “infinite-dimensional” vector, this insight is one of the key components
of the branch of mathematics known as Functional Analysis. To compute the
coefficients in the linear algebra case one uses the dot-product:

vn = v ⋅ en (23)

In the case of functions we might guess that the coefficients are given by some
version of this formula. For functions the analogue of the dot-product will be
the integral over their period. The analogue of this formula then would be:

an =D∫
L/2

−L/2
f(x) cos(2πn

L
x)dx (24)

bn = E ∫
L/2

−L/2
f(x) sin(2πn

L
x)dx (25)
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with contants D,E as we don’t know if the coefficients are only proportional to
these integrals.

Let us know prove that this proposal for the coefficients is correct. We will
evaluate the integral:

∫
L/2

−L/2
f(x) cos(2πn

L
x)dx (26)

First of all, we replace f(x) with its Fourier Series:

∫
L/2

−L/2
(a0

2
+

∞

∑
m=1

am cos(2πm

L
x) +

∞

∑
m=1

bn sin(2πm

L
x)) cos(2πn

L
x)dx (27)

We use m for the sine and cosine functions from the Fourier series of f(x) and
n for the cosine function we are integrating against.
we make the unjustified assumption2 that the infinite sums can be pulled outside
the integral and we find:

∫
L/2

−L/2
f(x) cos(2πn

L
x)dx = a0

2
∫

L/2

−L/2
cos(2πn

L
x)dx (28)

+
∞

∑
m=1

am ∫
L/2

−L/2
cos(2πm

L
x) cos(2πn

L
x)dx (29)

+
∞

∑
m=1

bm ∫
L/2

−L/2
sin(2πm

L
x) cos(2πn

L
x)dx (30)

We work out each of the three integrals in turn. First of all:

∫
L/2

−L/2
cos(2πn

L
x)dx = [ L

2πn
sin(2πn

L
x)]

L/2

−L/2
(31)

= L

2πn
(sin(πn) − sin(−πn)) = 0 (32)

As sin(πn) = 0. This is an integral of a cosine function over a multiple of its
period, which we have just found to vanish. The same is also true of a sine
function. This will be useful below.

The second integral:

∫
L/2

−L/2
cos(2πm

L
x) cos(2πn

L
x)dx (33)

can be integrated using the trigonometric identity cos(a) cos(b) = 1
2
[cos(a − b) + cos(a + b)].

Hence this integral seperates into:

1

2
∫

L/2

−L/2
cos(2π(m − n)

L
x)dx + 1

2
∫

L/2

−L/2
cos(2π(m + n)

L
x)dx (34)

2This assumption does in fact turn out to be valid, but the proof of this requires the
Lesbesgue theory of integration.

5



The second of these two integrals always vanishes as m + n is just some integer
p, producing the integral:

1

2
∫

L/2

−L/2
cos(2π(p)

L
x)dx (35)

which is the integral of a cosine function over a multiple of its period, which
vanishes. The first of the integrals also produces an integral of a cosine function,
unless m = n in which case we have:

∫
L/2

−L/2

1

2
dx = L

2
(36)

So we see that the result from this second integral is L
2
δnm. It vanishes unless

n = m, in which case it is L
2

. δnm known as the Kronekcer Delta is defined by
the properties:

δnm = 1, n =m (37)

= 0, n ≠m. (38)

The final integral:

∫
L/2

−L/2
sin(2πm

L
x) cos(2πn

L
x)dx (39)

can be integrated using the identity sin(a) cos(b) = 1
2
[sin(a − b) + sin(a + b)] and

so this integral becomes:

1

2
∫

L/2

−L/2
sin(2π(m − n)

L
x)dx + 1

2
∫

L/2

−L/2
sin(2π(m + n)

L
x)dx (40)

Just like the previous case we have the integral of a trigonometric function over
a multiple of its period, which vanishes. In the previous integral the n = m
produced a constant function 1

2
rather than a trigonometric function and so

the integral was nonzero in that case. However in this integral the n = m case
produces sin(0) = 0, so even this is zero. Hence this third integral vanishes.

Over all then we have:

∫
L/2

−L/2
f(x) cos(2πn

L
x)dx =

∞

∑
m=1

am
L

2
δnm (41)

as the first and third integrals vanish and the second is L
2
δnm. In the sum on

the right hand side, all terms vanish except for the term with n = m, as the
Kronecker delta is zero for the other terms. Hence:

∫
L/2

−L/2
f(x) cos(2πn

L
x)dx = an

L

2
(42)
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or:

an =
2

L
∫

L/2

−L/2
f(x) cos(2πn

L
x)dx (43)

and so we have found the formula for an. The formula for bn is worked out in
exactly the same way. One simply replaces cos ( 2πn

L
x) with sin ( 2πn

L
x). After

that the integrals are the same except one needs the identity sin(a) cos(b) =
1
2
[cos(a − b) − cos(a + b)] for the third integral. This gives:

bn =
2

L
∫

L/2

−L/2
f(x) sin(2πn

L
x)dx (44)

The formula for bn.

Finally we deal with a0. This coefficient comes from the n = 0 case of the
cosine waves. Hence with might expect it to be related to integrating f(x)
against the n = 0 cosine wave, which is cos(0) = 1. That is:

a0 = F ∫
L/2

−L/2
f(x)dx (45)

again, we do not know the constant of proportionality. We evaluate the integral:

∫
L/2

−L/2
f(x)dx (46)

by replacing f(x) with its Fourier Series:

∫
L/2

−L/2
f(x)dx = a0

2
∫

L/2

−L/2
1dx (47)

+
∞

∑
m=1

am ∫
L/2

−L/2
cos(2πm

L
x)dx (48)

+
∞

∑
m=1

bm ∫
L/2

−L/2
sin(2πm

L
x)dx (49)

The second two integrals are integrals of trigonometric functions over their pe-
riods and hence they vanish, leaving us with:

∫
L/2

−L/2
f(x)dx = a0

2
∫

L/2

−L/2
1dx (50)

The integral on the right-hand side is easy to perform, leaving us with:

∫
L/2

−L/2
f(x)dx = a0

2
L (51)

or:

a0 =
2

L
∫

L/2

−L/2
f(x)dx (52)
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It can be seen now why the factor of 1
2

was introduced into the definition of a0,
since it makes its formula have the constant of proportionality as the formulae
for an, bn.

We now have all the information needed to compute the Fourier Series. The
Series itself is given by:

f(x) = a0

2
+

∞

∑
n=1

an cos(2πn

L
x) +

∞

∑
n=1

bn sin(2πn

L
x) (53)

with the coefficients given by:

a0 =
2

L
∫

L/2

−L/2
f(x)dx (54)

an =
2

L
∫

L/2

−L/2
f(x) cos(2πn

L
x)dx (55)

bn =
2

L
∫

L/2

−L/2
f(x) sin(2πn

L
x)dx (56)
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Now that we have found the formulae for the coefficients we can work out
some examples of the Fourier Series. Before we do so, we shall comment on a
property of functions which can cause either the an or bn coefficients to vanish.
We mention the definitions first. A function is even, if it obeys the following
condition:

f(x) = f(−x) (57)

and odd if it obeys:

f(x) = −f(−x) (58)

An even function is symmetric across x = 0 and an odd function is anti-
symmetric across x = 0. All even monomials are even, e.g. x2, x4 and all
odd monomials are odd, e.g. x,x3, x5. sin(λx) is odd, for any constant λ and
similarly cos(λx) is even.

For the Fourier Series a function being odd or even as an effect on its coef-
ficients. An odd function has a0 = an = 0 and an even function has bn = 0. The
proof is not too difficult and we will only show it in the case of an even function.
First of all, taking the formula for bn:

bn =
2

L
∫

L/2

−L/2
f(x) sin(2πn

L
x)dx (59)

with f(x) an even function. We can split this integral into an integral on the
positive axis and an integral on the negative axis:

bn =
2

L
∫

0

−L/2
f(x) sin(2πn

L
x)dx + 2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx (60)

We use the substitution x→ −x in the first integral to obtain:

bn = −
2

L
∫

0

L/2
f(−x) sin(−2πn

L
x)dx + 2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx (61)

The overall minus originates from the change in the measure: dx→ −dx.
The function being even means f(x) = f(−x), so

bn = −
2

L
∫

0

L/2
f(x) sin(−2πn

L
x)dx + 2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx (62)

sin(λx) is odd, sin(−λx) = − sin(λx), hence we have:

bn =
2

L
∫

0

L/2
f(x) sin(2πn

L
x)dx + 2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx (63)

We can then reverse the order of integration on the first integral to obtain:

bn = −
2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx + 2

L
∫

L/2

0
f(x) sin(2πn

L
x)dx (64)
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both integrals now being the same except with opposite signs and so:

bn = 0 (65)

So we see that an even function as bn = 0, for all n.

Let us then compute the Fourier Series of x and x2.

We take the function:

f(x) = x, −π < x ≤ π (66)

f(x) = f(x + 2π) (67)

From this we can read off the period as L = 2π and f(x) = x. Hence the formula
for the Fourier Series becomes:

x = a0

2
+

∞

∑
n=1

an cos (nx) +
∞

∑
n=1

bn sin (nx) (68)

Secondly x is an odd function, hence a0 = an = 0 and so:

x =
∞

∑
n=1

bn sin (nx) (69)

we only need to work out the bn coefficients.
The general formula is:

bn =
2

L
∫

L/2

−L/2
f(x) sin(2πn

L
x)dx (70)

with period L = 2π and f(x) = x this becomes:

bn =
1

π
∫

π

−π
x sin (nx)dx (71)

This can be evaluated using integration by parts, choosing u = x and dv =
sin (nx)dx we find:

bn =
1

π
∫

π

−π
x sin (nx)dx (72)

= 1

π
[−x cos(nx)

n
]
π

−π

+ 1

π
∫

π

−π

cos(nx)
n

dx (73)

Evaluating the second integral:

bn =
1

π
[−x cos(nx)

n
]
π

−π

+ 1

π
[ sin(nx)

n2
]
π

−π

(74)

Substituting the limits we obtain and remembering:
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1. cos(λx) = cos(−λx)

2. sin(nπ) = sin(−nπ) = 0

we find:

bn =
−2 cos(πn)

n
(75)

Often the expression for the Fourier series of a function can be simplified using
the property of the cosine function: cos(πn) = (−1)n. So:

bn =
−2(−1)n

n
(76)

We can then substitute the bn coefficients into the Fourier series above in Eq.69
to find:

x =
∞

∑
n=1

−2(−1)n

n
sin (nx) (77)

and so we have found the Fourier series of x. Technically speaking we have
found the Fourier series of a periodic version of f(x), so some texts will instead
use:

x⟳ =
∞

∑
n=1

−2(−1)n

n
sin (nx) (78)

With x⟳ denoting a periodic version of the function x.

We can see from the coefficients, which decrease as 1
n

, that it is the sine waves
with a low value of n which contribute most to x.

Now for x2, again we take its periodic version:

f(x) = x2, −π < x ≤ π (79)

f(x) = f(x + 2π) (80)

As x2 is even, bn = 0 for all n. The period is L = 2π and the function is f(x) = x2

and so the Fourier series is:

x2 = a0

2
+

∞

∑
n=1

an cos (nx) (81)

To work out the an coefficients we use the general formula:

an =
2

L
∫

L/2

−L/2
f(x) cos(2πn

L
x)dx (82)

in this case L = 2π and f(x) = x2:

an =
1

π
∫

π

−π
x2 cos(nx)dx (83)

11



We evaluate this using integration by parts with u = x2, dv = cos(nx)dx:

an =
1

π
∫

π

−π
x2 cos(nx)dx = 1

π
([x

2 sin(nx)
n

]
π

−π

− ∫
sin(nx)

n
2xdx) (84)

The second integral itself must be evaluated using integration by parts with

u = 2x and dv = sin(nx)
x

dx. This gives:

an =
1

π
([x

2 sin(nx)
n

]
π

−π

− ∫
sin(nx)

n
2xdx) (85)

= 1

π
([x

2 sin(nx)
n

]
π

−π

+ [2x
cos(nx)
n2

]
π

−π

− ∫
2 cos(nx)

n2
dx) (86)

evaluating the last integral we have:

an =
1

π
([x

2 sin(nx)
n

]
π

−π

+ [2x
cos(nx)
n2

]
π

−π

− [2 sin(nx)
n3

]
π

−π

) (87)

Substituting the limits and remembering:

1. sin(nπ) = sin(−nπ) = 0. This sets the first and third terms to zero.

2. cos(−nπ) = cos(nπ) = (−1)n. This simplifies the second term.

we find:

an =
4(−1)n

n2
(88)

This formula is not well defined when n = 0 and hence we can not use it to infer
the value of a0 which we must calculate seperately.
We use the formula:

a0 =
2

L
∫

π

−π
f(x)dx (89)

in this case:

a0 =
1

π
∫

π

−π
x2dx (90)

This can be evaluated directly and we have:

a0 =
2π2

3
(91)

Hence the Fourier series is:

x2 = π
2

3
+

∞

∑
n=1

4(−1)n

n2
cos (nx) (92)

Again we can see that the cosine waves with low n contribute the most to the
function, the contribution decreasing quite rapidly with n.
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Although we have computed two examples of the Fourier series, we have said
nothing at this point about the convergence of the series. For example in the
case of f(x) = x,x2, although we have found the coefficients it is possible that
the Fourier series, when summed:

1. Diverges for all x.

2. Diverges over certain intervals: x ∈ [a, b].

3. Diverges at isolated points.

unfortunately, we typically cannot use standard test like the ration or root test
to find if the series converges or not, as they will generally give inconclusive
answers.
In answer to this question we state (although we do not prove), Dirichlet’s
theorem. This states that if:

1. There are a finite number of extrema over the functions period.

2. There are a finite number of discontinuities over the period

3.

∫ ∣f(x)∣2dx <∞ (93)

Then:
The Fourier series converges to:

1

2
[ lim
x→a+

f(x) + lim
x→a−

f(x)] (94)

which at points x where the function is continuous is simply f(x).

Later we will see that integral:

∫ ∣f(x)∣2dx <∞ (95)

is related to the sum of the Fourier coefficients and essentially gives the “length”
(properly known as the norm) of the function when viewed as an infinite dimen-
sional vector. The third condition essentially states that this “length” must be
finite.
The first two conditions essentially rule out unusual functions like sin(1/x) which

oscillate infinitely often, or like e−⌈
1
x ⌉ which have an infinite number of discon-

tinuities.3

3
⌈x⌉ denotes the smallest integer larger than x, i.e. the integer produced when one rounds

x up.
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If we look at the truncated Fourier series:

fN(x) = a0

2
+

N

∑
n=1

an cos(2πn

L
x) +

N

∑
n=1

bn sin(2πn

L
x) (96)

we often see the phenomena that this approximate series deviates from f(x)
more severely at discontinuities than at continuous points. In fact Gibbs and
Wilbraham observed that the truncated Fourier series tends to disagree with
f(x) by a factor:

fN(x) = f(x) +G ⋅ a + gN(x) (97)

at discontinuties and

fN(x) = f(x) + gN(x) (98)

at continuous points. With G a constant, known as the Wilbraham-Gibbs con-
stant, a the size of the discontinuity and gN(x) a function which vanishes as
N →∞. Hence, near discontinuties there is a finite error that never disappears
even when we sum the entire series. This is known as Gibbs phenomena.
However as the series is summed this oscillation away from the correct value of
f(x) is concentrated more and more near the dicontinuity itself. In the limit
where we sum the entire Fourier series, it essentially only occurs at the dis-
continuity and cancels against a similar finite error on the other side of the
disconinuity.
It should be noted that Gibbs phenomena is related to the second condition
in Dirichelt’s theorem, as in that case there would be infinitely many Gibbs’
phenomena oscillations which would prevent the Fourier series from converging.
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1.2 Complex Fourier Series

We originally motivated the Fourier Series as a way of “transfering” the simple
behaviour of the sine and cosine functions under the second derivative to any
periodic function.
However this does not provide us with a way of dealing with partial differential
equations involving the first derivative. In that case we must try to expand
f(x) in terms of an eigenfunction of the first derivative.
The obvious choice would be ex, or in general enx. However, first of all, this
function is not periodic and secondly it increases as x → ∞ and so a series in-
volving enx would probably not converge for large x. Contrast this behaviour
with cos(x) and sin(x) which are bounded between 1 and −1.

For this reason we take eix, which is bounded, obeying ∣eix∣ < 1. Just as was the
case for cos(x) and sin(x), this function has a period of 2π so we adjust it to
obtain a function with period L:

ei
2π
L x (99)

and then allow any variant with period L/n:

ei
2πn
L x (100)

The series will also contain coefficients, however since there is only one type of
function in this case there will only be a single set cn. This Complex Fourier
Series then takes the form:

f(x) =
∞

∑
n=−∞

cne
i 2πnL x (101)

Notice that series runs from n = −∞, so we will first explain the origin of these
additional terms in the complex Fourier series.
The real Fourier Series is given by:

f(x) = a0

2
+

∞

∑
n=1

an cos(2πnx

L
) +

∞

∑
n=1

bn sin(2πnx

L
) (102)

The individual term for a fixed value of n is:

an cos(2πnx

L
) + bn sin(2πnx

L
) (103)

Using the following identity:

cos(λx) = e
iλx + e−iλx

2
(104)

sin(λx) = e
iλx − e−iλx

2i
(105)
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which expresses Sine and Cosine as sums of complex exponentials, the n-th term
in the Fourier Series can be rewritten as:

(an − ibn
2

) ei
2πnx
L + (an + ibn

2
) e−i

2πnx
L (106)

or simply:

(an − ibn
2

) ei
2π(n)x
L + (an + ibn

2
) ei

2π(−n)x
L (107)

So we see that for the n-th term in the real Fourier Series we get a n and −n
term in the complex Fourier Series.
The coefficients of the n and −n terms are also complex conjugates of eachother.

This means that our complex Fourier series is nothing more than a way of
rewriting the real Fourier Series and hence all the same theorems about conver-
gence of the series still apply. We also get the identity:

cn =
an − ibn

2
(108)

Next we need a formula for the complex coefficents, cn, just as we had for the
real coefficients an and bn.
Using the analogy with vectors, in this case complex vectors, we would guess
at:

cn = C ∫
L/2

−L/2
f(x)e−i(

2π
L

)nxdx (109)

Where C is some constant we will work out in the course of proving the formula’s
validity. We use the function:

e−i(
2π
L

)nx (110)

that is with −i rather than i, again in analogy with complex vectors, where the
dot product is computed using the transpose conjugate of one of the vectors.

We will now work out the integral guessed at in Eq.109.
So we have:

∫
L/2

−L/2
f(x)e−i(

2π
L

)nxdx (111)

as a first step we replace f(x) by its complex Fourier Series:

∫
L/2

−L/2
(

∞

∑
m=−∞

cme
i( 2π
L

)mx) e−i(
2π
L

)nxdx (112)
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bringing the sum and the coefficients outside the integral:

∞

∑
m=−∞

cm ∫
L/2

−L/2
ei(

2π
L

)mxe−i(
2π
L

)nxdx (113)

Multiplying the exponentials together:

∞

∑
m=−∞

cm ∫
L/2

−L/2
ei(

2π
L

)(m−n)xdx (114)

Looking at just the integral we have:

∫
L/2

−L/2
ei(

2π
L

)(m−n)xdx (115)

In the case where m ≠ n we have:

∫
L/2

−L/2
ei(

2π
L

)pxdx (116)

with p =m − n.
This gives:

∫
L/2

−L/2
ei(

2π
L

)pxdx = L

2πip
[ei(

2π
L

)px]
L/2

−L/2
(117)

= L

2πip
(eipπ − e−ipπ) = 0 (118)

When m = n we instead get the integral:

∫
L/2

−L/2
1dx = L (119)

These two results can be combined using the Kronecker delta:

∫
L/2

−L/2
ei(

2π
L

)(m−n)xdx = δmnL (120)

and so we have:
∞

∑
m=−∞

cm ∫
L/2

−L/2
ei(

2π
L

)mxe−i(
2π
L

)nxdx =
∞

∑
m=−∞

cmδmnL (121)

The Kronecker delta then sets m = n and we have:
∞

∑
m=−∞

cm ∫
L/2

−L/2
ei(

2π
L

)mxe−i(
2π
L

)nxdx = cnL (122)

Or in terms of the original form of the integral:

∫
L/2

−L/2
f(x)e−i(

2π
L

)nxdx = cnL (123)

That is:

cn =
1

L
∫

L/2

−L/2
f(x)e−i(

2π
L

)nxdx (124)

Using this we can now work out the complex Fourier series of a function.
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We begin by finding the complex Fourier series for a periodic version of x2.

f(x) = x2 − π < x < π; (125)

f(x) = f(x + 2π) (126)

In this case L = 2π and so the formula for the coefficients reduces to:

cn =
1

2π
∫

π

−π
x2e−inxdx (127)

This can be done using integration be parts taking u = x2 and dv = e−inxdx.
This gives us:

cn =
1

2π
([x

2e−inx

−in
]
π

−π

− ∫
−π

π

2xe−inx

−in
) (128)

= 1

2π
(∫

−π

π

2xe−inx

in
) (129)

as the boundary term cancels.

Performing integration be parts on this second integral, with u = 2x dv = e−inx
in

dx
we find:

cn =
1

2π
([2xe−inx

n2
]
π

−π

− ∫
−π

π

2e−inx

n2
) (130)

= 1

2π
([2xe−inx

n2
]
π

−π

− [e
−inx

−in3
]
π

−π

) (131)

= 1

2π
(4π(−1)n

n2
) = 2(−1)n

n2
(132)

It should be noted that this integral can also be evaluated using a trick known
as “differentiation under the integral” sign.
Letting n be a continuous variable we get:

1

2π
∫ x2e−inxdx = 1

2π
∫ (−d

2

dn2
) e−inxdx (133)

We can take the n derivative out of the integral, as the integral is taken with
respect to x:

1

2π
∫ x2e−inxdx = 1

2π
(−d

2

dn2
)∫ e−inxdx (134)

Now we evaluate the integral:

1

2π
(−d

2

dn2
)∫ e−inxdx = 1

2π
(−d

2

dn2
) e

−inx

−in
(135)
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Evaluating the derivative:

1

2π
(−d

2

dn2
) e

−inx

−in
= 1

2π
(−d
dn

)(xe
−inx

n
+ e

−inx

in2
) (136)

= 1

2π
( ix

2e−inx

n
+ 2xe−inx

n2
+ 2e−inx

in3
) (137)

It can be seen that this has given the integration-by-parts chain, so substituting
the limits π and −π will produce the same results as the previous case.

We will now return to the original motivation for the Fourier series, the heat
equation and demonstrate its solution.
The heat equation is given by:

∂u

∂t
= k∂

2u

∂x2
(138)

The function u(x, t) is the temperature as a function of position and time and
k is the thermal conductivity of the substance.
We know that any function of x can be expanded in terms of its Fourier series:

f(x) =
∞

∑
n=−∞

cne
−iλnx (139)

λn =
2πn

L
(140)

For the function u(x, t) this means that u at any fixed time can be expanded like
this. The time dependence is then to be found in the evolution of the coefficients
cn:

u(x, t) =
∞

∑
n=−∞

cn(t)e−iλnx (141)

(142)

If we substitute this expansion into both sides of the heat equation we find:

∂u

∂t
= ∂

∂t

∞

∑
n=−∞

cn(t)e−iλnx =
∞

∑
n=−∞

( d
dt
cn(t)) e−iλnx (143)

k
∂2u

∂x2
=

∞

∑
n=−∞

cn(t)k
∂2u

∂x2
e−iλnx =

∞

∑
n=−∞

(−kλ2
ncn(t)) e−iλnx (144)

Equating the two sides (the heat equation) we find:

∞

∑
n=−∞

( d
dt
cn(t)) e−iλnx =

∞

∑
n=−∞

(−kλ2
ncn(t)) e−iλnx (145)

We can see from this that the heat equation essentially reduces to an ODE for
the coefficients:

d

dt
cn(t) = −kλ2

ncn(t) (146)
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Which as the solution:

cn(t) = Ane−kλ
2
nt (147)

With An being the initial conditions cn(0) = An. Placing this back in the Fourier
series, we obtain as a solution to the heat equation:

u(x, t) =
∞

∑
n=−∞

Ane
−kλ2

nte−iλnx (148)

From this expression for the temperature function, one can see the physical

process of thermalisation. As t → ∞ the functions e−kλ
2
nt → 0, except for the

case of n = 0 where the function reduces to 1 and hence has no time dependence.
For that reason we find:

u(x, t)→ A0, t→∞ (149)

The temperature, for large times, becomes a constant distribution. This is
thermalisation, as the whole body obtains a single constant temperature.
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We begin with a theorem connecting the integral of a function with the sum
of its coefficients, known as Parseval’s theorem.
Parseval’s theorem states:

1

L
∫

L/2

−L/2
∣f(x)∣2dx =

∞

∑
n=−∞

∣cn∣2 (150)

This is essentially just an analogue of the dot-product of a vector with itself:

V ⋅ V =
N

∑
i=1

∣Vi∣2 (151)

Before giving a proof we obtain the equivalent expression for the real Fourier
series.
We have the relation:

cn =
an − ibn

2
(152)

c0 =
a0

2
(153)

and hence:

∣cn∣2 =
a2
n + b2n

4
(154)

∣c0∣2 =
a2

0

4
(155)

and so:

∞

∑
−∞

∣cn∣2 =
a2

0

4
+

∞

∑
n=−∞,n≠0

a2
n + b2n

4
(156)

However the values of an and bn appear in the expressions for cn and c−n, hence
we actually copies of the sum over positive n:

∞

∑
−∞

∣cn∣2 =
a2

0

4
+

∞

∑
n=1

a2
n + b2n

2
(157)

Giving the real Fourier series version of Parseval’s theorem:

1

L
∫

L/2

−L/2
∣f(x)∣2dx = a

2
0

4
+

∞

∑
n=1

a2
n + b2n

2
(158)

The Proof is a simple matter of integration. Firstly we take the integral:

1

L
∫

L/2

−L/2
∣f(x)∣2dx = 1

L
∫

L/2

−L/2
f∗(x)f(x)dx (159)
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and replace both functions by their Fourier expansions, the expansion for f∗(x)
simply being the conjugate of that for f(x):

f(x) =
∞

∑
n=−∞

cne
i 2πnL x (160)

f∗(x) =
∞

∑
n=−∞

c∗ne
−i 2πnL x (161)

so inserting this into the integral gives:

1

L
∫

L/2

−L/2
∣f(x)∣2dx =

∞

∑
m=−∞

∞

∑
n=−∞

c∗mcn
1

L
∫

L/2

−L/2
ei

2πn
L xe−i

2πm
L xdx (162)

m being used to denote the terms in the expansion of f∗(x). Also we have
taken both sums outside the integral. Whether this is valid or not is a subtle
mathematical issue that we ignore here.
Combining the exponentials we get:

1

L
∫

L/2

−L/2
∣f(x)∣2dx =

∞

∑
m=−∞

∞

∑
n=−∞

c∗mcn
1

L
∫

L/2

−L/2
ei

2π(n−m)
L xdx (163)

The integral is now one we have performed before, which has the value Lδnm:

1

L
∫

L/2

−L/2
∣f(x)∣2dx =

∞

∑
m=−∞

∞

∑
n=−∞

c∗mcnδnm (164)

This sets to zero all terms with n ≠m, reducing the sum to:

1

L
∫

L/2

−L/2
∣f(x)∣2dx =

∞

∑
m=−∞

c∗ncn =
∞

∑
−∞

∣cn∣2 (165)

completing the proof.

Parseval’s theorem can be used to calculate the values of various infinite sums,
such as those involved in the Riemann-Zeta function. The Riemann-Zeta func-
tion, ζ(s) is defined by:

ζ(s) =
∞

∑
n=1

1

ns
(166)

This sum converges for all complex s with R(s) > 1. For complex s with R(s) ≤ 1
a seperate formula is used, which is beyond the scope of this course.
We will use Parseval’s theorem to compute ζ(2) and ζ(4).

For ζ(2) we use Parseval’s theorem in conjunction with the Fourier expansion
of f(x) = x with period L = 2π. This was found to have real series coefficients
of:

a0 = 0, (167)

an = 0, (168)

bn =
2(−1)n

n
(169)
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Placing these in the real series version of Parseval’s theorem we find:

1

2π
∫

π

−π
x2dx =

∞

∑
n=1

2

n2
(170)

1

2π
[x

3

3
]
π

−π

=
∞

∑
n=1

2

n2
(171)

∞

∑
n=1

1

n2
= π

2

6
(172)

and so we find ζ(2) = π2

6
.

For ζ(4) we use the Fourier series of x2 with period L = 2π in conjunction with
the complex version of Parseval’s theorem. We have found that the coefficients
are:

cn =
2(−1)n

n2
(173)

However, note that this produces a divergent value for n = 0. This is due to the
fact that to obtain the expression for cn we used the integration:

∫ e−inxdx = e
−inx

−in
(174)

however in the case of n = 0, the exponential is replaced by a constant, so this
expression is no longer valid. We must compute c0 seperately.

c0 = ∫ π−πx2dx = π
2

3
(175)

Placing these value into the complex Parsevals’ theorem we find:

1

2π
∫

π

−π
x4dx = π

4

9
+

∞

∑
n=−∞,n≠0

4

n4
(176)

π4

5
= π

4

9
+

∞

∑
n=−∞,n≠0

4

n4
(177)

∞

∑
n=−∞,n≠0

4

n4
= 4π4

45
(178)

The sum is even in n, so we simply have two copies of the sum over positive n:

∞

∑
n=1

8

n4
= 4π4

45
(179)

∞

∑
n=1

1

n4
= π

4

90
(180)
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So, we have ζ(4) = π4

90
.

All values of the Riemann-Zeta function at even integers, ζ(2n), can be com-
puted using the Fourier series of xn.
There is no known closed form expression for the odd integer values, such as
ζ(3).
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2 Fourier Transform

The Fourier series is very useful for solving partial differential equations as
derivatives are converted into multiplicative factors. However, the Fourier se-
ries is restricted to periodic functions. We would like to obtain an analogue of
the series for non-periodic functions.

This can be done simply by altering the complex Fourier series:

f(x) =
∞

∑
n=−∞

cne
iλnx (181)

λn =
2πn

L
(182)

If f(x) is non-periodic we must lift the restriction of periodicity from the ex-
ponential functions. Currently the terms λn are restricted to multiples of the
integers to ensure periodicity. We can remove this by replacing λn by a general
real number k:

eiλnx → eikx (183)

Once we have done this, a few other alterations need to be made to the Fourier
series.
Firstly, the coefficients cn rather than being a function of the integers n, becomes
a function of the variable k, denoted f̃(k). (Rather than c(k)).
Secondly, the sum over the discrete variable n, is changed to an integral over
the continuous variable k. Overall, then the series changes as follows:

f(x) =
∞

∑
n=−∞

cne
iλnx → f(x) = ∫

∞

−∞
f̃(k)eikxdk (184)

This formula is known as the inverse Fourier Transform.

We must also alter the formula for the coefficients, we currently read:

cn =
1

L
∫

L/2

−L/2
f(x)e−iλnxdx (185)

Making the replacements outlined above, we get:

f̃(k) = C ∫
∞

−∞
f(x)e−ikxdk (186)

This formula being known as the Fourier Transform.
The value for the constant C is not fixed, as there is no natural non-periodic
version of the 1

L
from the complex Fourier series. The correct choice is C = 1

2π
.

Giving:

f(x) = ∫
∞

−∞
f̃(k)eikxdk (187)

f̃(k) = 1

2π
∫

∞

−∞
f(x)e−ikxdk (188)
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These are the formulae used in this course.
The reason for this choice of C is that it ensures the transform of f̃(k) is f(x),
rather than a constant multiple of f(x). For a given choice of C we obtain the
following sequence of transformations:

f(x)→ f̃(k)→ C

2π
f(x) (189)

Hence only for C = 2π does the second transform return f(x) making it the
inverse of the first.

In truth, the factor of 1
2π

, required to make the transforms inverses of each
other, can be split between the two integrals in various ways. One common
choice is the symmetric Fourier transform:

f(x) = 1√
2π
∫

∞

−∞
f̃(k)eikxdk (190)

f̃(k) = 1√
2π
∫

∞

−∞
f(x)e−ikxdk (191)

and the canonical Fourier transform, which places the factor 2π in the exponen-
tials:

f(x) = ∫
∞

−∞
f̃(k)ei2πkxdk (192)

f̃(k) = ∫
∞

−∞
f(x)e−i2πkxdk (193)

The canonical and symmetric Fourier transforms have the advantage of giving
the both f(x) and f̃(k) the same L2-norm:

∫
∞

−∞
∣f(x)∣2dx = ∫

∞

−∞
∣f̃(k)∣2dk (194)

Often in physics, the L2-norm has the interpretation of the total energy of the
system or represents the total probability (always = 1), which we would want
to remain the same whether describing the function using k or x.
The formula we use has the advantage of giving simpler solutions to differential
equations, without constantly having factors of 2π show up in solutions.

The advantages of the Fourier series carrier over to the Fourier transform, for ex-
ample the conversion of differentiation into multiplication. If we take a function
f(x) then it’s derivative has the transform:

d

dx
f(x) = d

dx
∫

∞

−∞
f̃(k)eikxdk (195)

f
′
(x) = ∫

∞

−∞
f̃(k) d

dx
eikxdk (196)

f
′
(x) = ∫

∞

−∞
(ikf̃(k)) eikxdk (197)
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Hence we see that f
′
(x) has transform ikf̃(k) and so derivatives d

dx
become

multiplication by ik. Similarly d
dk

inverse transforms to −ix.

As an example of a Fourier transform we take the block function:

f(x) = 1, ∣x∣ < 1 (198)

f(x) = 0, ∣x∣ ≥ 1 (199)

(200)

The Fourier transform is computed using:

f̃(k) = 1

2π
∫

∞

−∞
f(x)e−ikxdk (201)

in our case this becomes:

f̃(k) = 1

2π
∫

1

−1
e−ikxdk (202)

= 1

2π
[e

−ikx

−ik
]

1

−1

(203)

= 1

2π

eik − e−ik

ik
(204)

= 1

π

sin(k)
k

(205)

So the Fourier transform of the block wave is: f̃(k) = 1
π

sin(k)
k

.
It can be seen from the example above that the evaluation of the Fourier trans-
form is very similar to evaluating the coefficients of the complex Fourier series.

Before proceeding we will need to get some idea, although we will not pro-
vide rigorous proofs, of when the Fourier integral converges. First of all, let us
take a look at the Fourier transform:

f̃(k) = 1√
2π
∫

∞

−∞
f(x)e−ikxdk (206)

(207)

The modulous of the integrand is:

∣f(x)e−ikx∣ = ∣f(x)∣ (208)

since the modulous of eikx is 1. Taking the modulous of the function prevents
any cancellations in the integral and represents the “worst case scenerio” for its
convergence:

∣f(x)∣ = ∣∫
∞

−∞
f̃(k)eikxdk∣ ≤ ∫

∞

−∞
∣f(x)∣dx (209)
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Hence the Fourier transform will be well-defined provided that:

∫
∞

−∞
∣f(x)∣dx <∞ (210)

That is if f ∈ L1.

However the existence of the Fourier transform f̃(k), doesn’t mean that f̃(k)
itself is in L1 and in general in won’t be. Hence for several functions f(x) ∈ L1,
although one can transform to f̃(k) we can not transform back.

The functions for which the transformation in both directions is well defined
will be a more restricted class objects than L1, they are known as the Schwartz
functions.
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To define the Schwartz functions we take a rough look at the properties of
functions in L1. The defining property is:

∫
∞

−∞
∣f(x)∣dx <∞

This puts certain constraints on the decay of the function at large x. For
instance f(x) should decay faster than 1

x
. For example taking two functions

whose behaviour at large x is (indicated by ≈)g(x) ≈ 1
x

and h(x) ≈ 1
x2 we see:

∫
∞

−∞
∣g(x)∣dx ≈ lim

a→∞
∫

a 1

x
dx = lim

a→∞
ln(a)

∫
∞

−∞
∣h(x)∣dx ≈ lim

a→∞
∫

a 1

x2
dx = lim

a→∞

−1

a
(211)

One can see that the first integral will diverge and the second does not. So a
function needs to decay like f(x) 1

x1+ε , for some ε > 0.

In order to make both Fourier transforms well defined, we will increase the
requirements on the decay of the function. L1 only demands the function decay
faster than 1

x
, so let us demand that it decay faster than 1

xn
for all n, that is

faster than any inverse power.

However, this still isn’t enough to ensure the existence of the inverse transform.
We can phrase this definition as:

lim sup ∣xnf(x)∣ <∞, ∀n ≥ 0

However upon transforming to Fourier space xn becomes Dn = dn

dkn
and we have:

lim sup ∣Dnf̃(k)∣ <∞, ∀n ≥ 0

This tells use nothing about the decay rate of f̃(k), simply that its derivatives
are bounded.

So we will stregthen the condition to:

lim sup ∣xnDmf(x)∣ <∞, ∀n,m ≥ 0

which states that f(x) and all its derivatives decay faster than any inverse power
of x.
This transforms to:

lim sup ∣kmDnf̃(k)∣ <∞, ∀n,m ≥ 0

which the exact same condition, and hence f̃(k) also decays quickly enough for
the inverse transform to be well-defined.
Functions obeying:

lim sup ∣xnDmf(x)∣ <∞, ∀n,m ≥ 0
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are known as Schwartz functions.

However if the function is not a Schwartz function, although the integral of
the Fourier and inverse Fourier transforms are not well-defined, we can never-
theless define a Fourier transform. We will take the example of the function, of
k, δ(k) = 1

2π
. We will attempt to look at its transform δ(x), known as the Dirac

delta distribution (also known as the Dirac delta function).

Although we know the integral of the inverse transform will not converge to
a well-defined function, we will attempt to evaluate:

∫
∞

−∞
g(x)δ(x)dx (212)

With g(x) any function that has a well-defined Fourier transform. First of all
we remember that δ(x) is meant to be the inverse transform of 1

2π
:

δ(x) = ∫
1

2π
eikxdk

We replace δ by this integral in Eq.212:

∫ g(x)δ(x)dx = ∫
∞

−∞
(∫

∞

−∞

1

2π
g(x)eikxdx)dk

we evaluate the x integral, which is simply the definition of g̃(−k):

∫ g(x)δ(x)dx = ∫
∞

−∞
g̃(−k)dk = ∫

∞

−∞
g̃(k)dk

Finally, if we look at the formula for the inverse Fourier transform, we see that
this integral is g(0) and so:

∫
∞

−∞
g(x)δ(x)dx = g(0) (213)

This result however is quite unusual if we try to understand δ(x) as a function.
Let us assume δ(x) is a function. First of all, if we look at functions for which
g(0) = 0, then we find:

∫
∞

−∞
g(x)δ(x)dx = 0

In order for this integral to vanish for all functions with g(0) = 0, we would
need:

δ(x) = 0, x ≠ 0

= C, x = 0

That is, δ must vanish away from the origin. Now returning to any general
function g(x) we can compute:

∫
∞

−∞
g(x)δ(x)dx = lim

ε→0
(∫

−ε

−∞
g(x)δ(x)dx + ∫

∞

ε
g(x)δ(x)dx)
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However both of these integrals must vanish, since δ vanishes away from the
origin, and so:

∫
∞

−∞
g(x)δ(x)dx = 0 (214)

in contradiction with what we have computed.

The resolution of the contradiction of our first result, Eq.213, and the result
we just obtained in Eq.214 is that δ(x) is not a function. Rather it is an exam-
ple of a more general class of objects known as distributions. The proper theory
of distributions is beyond the scope of this course, but a brief explanation is that
a distribution is a (linear) functional, that is a (linear) function of functions.
That is:

T ∶ g(x)→ C

where T is a distribution, g(x) a function and C some constant. This is often
written as T (g(x)).
One can form a distribution from a function f(x) using the integral:

f(g(x)) = ∫
∞

−∞
f(x)g(x)dx (215)

which maps a given function g(x) to the constant given by the integral.
The Dirac delta distribution is not a function, as the map associated with it:

δ(g(x)) = g(0)

cannot be obtained using the integral of g(x) against some function f(x) as in
Eq.215.
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The Dirac delta distribution can also be understood as the derivative of the
Heaviside step function. This function is defined as:

Θ(x) = 1, x ≥ 0 (216)

= 0, x < 0 (217)

Evaluating the integral:

∫
∞

−∞

dΘ

dx
f(x)dx (218)

where f(x) is a function of rapid decay. Using integration by parts with u = f(x)
and dv = dΘ

dx
dx we find:

∫
∞

−∞

dΘ

dx
f(x)dx = [f(x)Θ(x)]∞−∞ − ∫

∞

∞
Θ(x) df

dx
dx = − [f(x)]∞0 = f(0) (219)

So we see that:

∫
∞

−∞

dΘ

dx
f(x)dx = 0 (220)

hence, dΘ
dx

= δ(x).

Similarly we can compute the derivative of the Dirac delta function, suing the
same trick:

∫
∞

−∞

dδ

dx
f(x)dx = [f(x)δ(x)]∞−∞ − ∫

∞

∞
δ(x) df

dx
dx = −f

′
(0) (221)

So the Dirac delta distribution’s derivative obeys:

∫
∞

−∞

dδ

dx
f(x)dx = −f

′
(0) (222)

We can simply use integration by parts n-times in order to compute the n-th
derivative. The result is quite simple:

∫
∞

−∞

dnδ

dxn
f(x)dx = (−1)nfn(0) (223)

We can also evaluate a translated version of the Dirac delta function using
substitution:

∫
∞

−∞
δ(x − a)f(x)dx (224)

using the substitution u = x − a we get:

∫
∞

−∞
δ(u)f(u + a)du = f(a) (225)
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and hence:

∫
∞

−∞
δ(x − a)f(x)dx = f(a) (226)

One can also evaluate:

∫
∞

−∞
δ(ax)f(x)dx (227)

using substitution. Specifically u = ax:

∫
∞

−∞
δ(u)f(u/a)du

∣a∣
= f(0)

∣a∣
(228)

The presence of ∣a∣ is due to the fact that negative values of a wil reverse the
order of integration, flipping the order to its original form introduces a negative
sign, cancelling the negative sign of a.

Finally we can also consider a Dirac delta distribution composed with a function
g(x):

∫
∞

−∞
δ(g(x))f(x)dx (229)

We will assume for now that g(x) is a monotonically increasing function. Sub-
stitution of u = g(x) gives:

∫
∞

−∞
δ(u)f(g−1(u)) du

∣g′(g−1(u))∣
(230)

Remembering that x = g−1(u) and that we have a modulous sign for the same
reasons as the previous case, and so we have:

∫
∞

−∞
δ(u)f(g−1(u)) du

∣g′(g−1(u))
∣ = f(g−1(0))

∣g′(g−1(0))∣
(231)

However g−1(0) is actually the specific value x∗ for which g(x∗) = 0 so this is
also written as:

∫
∞

−∞
δ(g(x))f(x)dx = f(x∗)

∣g′(x∗)∣
(232)
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We finally prove an important property of the Fourier transform, the ana-
logue of Parseval’s theorem, known as Plancheral’s theorem. This states that:

∫
∞

−∞
∣f(x)∣2dx = 2π∫

∞

−∞
∣f̃(k)∣2dx (233)

First of all we replace f(x) and its conjugate f̃(k) in the integral:

∫
∞

−∞
∣f(x)∣2dx = ∫

∞

−∞
f(x)f∗(x)dx (234)

with their Fourier transforms:

f(x) = ∫
∞

−∞
f̃(k)eikxdk (235)

f∗(x) = ∫
∞

−∞
f̃∗(k)e−ikxdk (236)

which gives:

∫
∞

−∞
f(x)f∗(x)dx = ∫

∞

−∞
∫

∞

−∞
f̃(k)eikxdk∫

∞

−∞
f̃∗(q)e−iqxdqdx (237)

This can be rearranged as:

∫
∞

−∞
f(x)f∗(x)dx = ∫

∞

−∞
∫

∞

−∞
f̃(k)f̃∗(q)∫

∞

−∞
ei(k−q)xdxdqdk (238)

The x-integral can be performed immediately as it simply defines the Dirac
delta, that is:

∫
∞

−∞
ei(k−q)xdx = 2πδ(k − q) (239)

and so Eq.238 reduces to:

∫
∞

−∞
f(x)f∗(x)dx = 2π∫

∞

−∞
∫

∞

−∞
f̃(k)f̃∗(q)δ(k − q)dqdk (240)

Performing the k-integral, the delta function just sets k = q and so:

∫
∞

−∞
f(x)f∗(x)dx = 2π∫

∞

−∞
f̃(k)f̃∗(k)dk (241)

= 2π∫
∞

−∞
∣f̃(k)∣2dk (242)

Which completes the proof. Note that had we used the symmetric definition
of the Fourier transform we would have obtained two factors of 1

√
2π

from both

the k-integral and the q-integral. This would have cancelled the 2π in front and
produced:

∫
∞

−∞
∣f(x)∣2dx = ∫

∞

−∞
∣f̃(k)∣2dx (243)
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which is often used in theoretical physics.

We end on the Fourier transform of the Gaussian:

f(x) = e−
x2

σ (244)

where σ gives the width of the Gaussian.
Although we could evaluate the Fourier transform directly, we will instead com-
pute using the transformation properties of derivatives.
The Gaussian, f(x) obeys the differential equation:

d

dx
f(x) = −x

σ
f(x) (245)

transforming over to Fourier space, we already know that f(x) becomes f̃(k),
d
dx

becomes ik, and x becomes i d
dk

, hence this equation transforms to:

kf̃(k) = − 1

σ

d

dk
f̃(k) (246)

or:

d

dk
f̃(k) = −kσf̃(k) (247)

which is simply the same equation as for the Gaussian in x-space, except with
σ inverted, the solution is then:

f̃(k) = e−k
2σ (248)

a Gaussian with width 1
σ

. We then find an inverse relationship between the
width of a Gaussian in k-space and x-space.
In general the width (average distance from average) of a function is calculated
via:

∆x = ∫
∞

−∞
x2∣f(x)∣2dx (249)

using coordinates where the average is at x = 0. We find that for the Fourier
transform:

∆k∆x ≥ 1

2
(250)

hence the width of a function has an inverse relationship in k-space and x-space.
In quantum mechanics p = h̵k and so we recover the uncertainty principle:

∆k∆x ≥ h̵
2

(251)
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3 Vector Calculus

3.1 Vector Fields and coordinates transformations.

We now move onto Vector Calculus, the study of vector-valued functions.

All the functions we will be dealing live either in two or three dimensions.
Two/Three dimenionsal Euclidean space will be denoted: E2 or E3.
It should be noted, although this will be covered in more detail later in the
course, that we often model Euclidean space using the coordintes (x, y, z). The
space of this coordinates is denoted R3, a vector space. However this is just a
coordinate system and should not be confused with the underlying space E3,
(x, y, z) is just a method of labelling points in E3.

We begin by defining a few concepts that are the foundation of the rest of
the material. The first is a scalar field.
Scalar Field: A function φ, from Euclidean space to the real numbers, that is:
φ ∶ En → R

When using a specific coordinate system, φ will appear as φ(x, y, z) a func-
tion of those three coordinates, for example:

φ(x, y, z) = xy + zφ(x, y, z) = x2 + y + sin(z) (252)

φ(x, y, z) = x2yz + z cos(y) (253)

A mathematician would simply know this as a real valued function on E3.

The second concept is that of a path.
A path A function from the real numbers to Euclidean space, that is:
Γ ∶ R→ En
This traces out a curve in Euclidean space, with each point, p(t) on the curve
being associated with a particular value of the path parameter t.
In coordinates a path will appear as coordinate function depending on time.
For example:

x(t) = (x(t), y(t), z(t)) = (t2, t, t3), t ∈ [0,1] (254)

This path begins at (0,0,0) and ends at (1,1,1).
We can also evaluate a scalar field on a path. For example:

φ(x, y, z) = xy + z (255)

x(t) = (t2, t, t3), t ∈ [0,1] (256)

Here we just have our first scalar field above and the path given above. The
values of the scalar field long the path are:

φ(x(t), y(t), z(t)) = x(t)y(t) + z(t) = 2t3 (257)
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Using this, we can also find the derivative of the function along the path:

d

dt
φ(x(t), y(t), z(t)) = 6t2 (258)

this being known as the path derivative. This should be distinguished from the
partial derivative. For example if we take t to be time. The temporal partial
derivative of the field above vanishes:

∂

∂t
φ(x, y, z) = ∂

∂t
(xy + z) = 0 (259)

This is because the field only varies spatially. However the path derivative does
not vanish, because the field still varies over time along the path.

The final notion is that of a vector field.
A Vector Field Is a function from Euclidean space to the real vector space of
the same dimension.
V ∶ En → Rn.
Such a function essentially attaches a vector to each point of space.

With these concepts in place we can begin to generalise differentiation. There
are four operations we can perform in this setting.

1. The Gradient:
The Gradient is typically denoted by ∇φ and is calculated via the formula:

∇φ = (∂φ
∂x
,
∂φ

∂y
,
∂φ

∂z
) (260)

The meaning of this expression can seen by taking the path derivative of
a scalar field, using the chain rule:

d

dt
φ = ∂φ

∂x

dx

dt
+ ∂φ
∂y

dy

dt
+ ∂φ
∂z

dz

dt
(261)

This is essentially a dot-product between the field and the path derivative
of the path:

d

dt
φ = (∇φ) ⋅ (dx

dt
) (262)

dx

dt
gives the direction in which the path is changing, also known as the

directional derivative.
This can be reexpressed as:

d

dt
φ = (∇φ) ⋅ (dx

dt
) = ∣∇φ∣ ∣dx

dt
∣ cos(θ) (263)
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We can see here that the path derivative is at its maximum when the
directional derivative is paralell to ∇φ. Hence ∇φ points in the direction
of greatest change of the field φ.

It should be noted that ∇ is a map from scalars to vectors.

2. The Laplacian
The operator is a map from scalar functions to scalar functions. It is
defined as:

△φ = ∂
2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
(264)

To find the meaning of this expression we turn to the discretised derivative.
The discrete derivative can be written as:

∂

∂x
φ = φ(x + h, y, z) − φ(x, y, z)

h
(265)

or equivalently:

∂

∂x
φ =

φ(x + h
2
, y, z) − φ(x − h

2
, y, z)

h
(266)

Applying this twice we get:

∂2

∂x2
φ = φ(x + h, y, z) + φ(x − h, y, z) − 2φ(x, y, z)

h2
(267)

or

∂2

∂x2
φ = 2

h2
(φ(x + h, y, z) + φ(x − h, y, z)

2
− φ(x, y, z)) (268)

The fraction inside the brackets is essnetially the average of the two values
closest to the (x, y, z) in the x-direction.
Summing the second derivatives for the other two directions we find:

△φ = 1

6h2

⎛
⎝
∑1
j=0∑

3
i=1 φ(x + (−1)jhei)

6
− φ(x, y, z)

⎞
⎠

(269)

We see that this is the difference between the average value of φ over the
points closest to (x, y, z) and the value at (x, y, z), that is the deviation
of φ(x, y, z) from the local average. If for example △φ > 0, the φ(x, y, z)
is less than the local average.

This operator appear in several equations in mathematical physics for
example Poisson’s equation:

△φ = 4πGρ (270)

38



with φ the gravitational potential and ρ the mass density and G Newton’s
constant. The interpretation being the gravitational potential is less than
the local average whenever some matter is present.

3. The Divergence The Divergence operator acts on a Vector field to pro-
duce a scalar. It is defined by:

∇ ⋅ V = ∂Vx
∂x

+
∂Vy

∂y
+ ∂Vz
∂z

(271)

To give an interpretation to this, we will need a result known as Gauss’
theorem, to be discussed later. For now, we simply say that it measures
how much a given point acts as source or a sink for a vector field. For
example, if ∇ ⋅ V > 0 at some point (x, y, z) then the arrows of the vector
field point away from that point, as if the vector field were emerging from
it.

Given this interpretation we can then consider the electric field E from
physics. Since charge creates electric fields we would expect an electric
field to “emerge” from any point where there is some density of charge.
Denoting charge density as ρ, we could guess

∇ ⋅E = ρ

ε0
(272)

with ε0 a constant to the adjust units (if you measure electric charge and
the electric field in the same units, it disappeares). This equation is in
fact, the first Maxwell equation.
Now, magnetic fields do not have charges associated with them (although
see later in the lectures). They always appear in a dipole like configuration,
with the field running from the North to South poles of a magnet for
example. There are always an equal number of lines flowing in (those
coming from the south pole) and out (those flowing to the north pole).
Hence, we would not expect a mangetic field to be either flowing into or
out of any point. This can be encoded in the statement:

∇ ⋅B = 0 (273)

this is the second Maxwell equation.

4. The Curl This final operation takes a vector field to another vector field.
It is defined as:

∇× V = (∂Vz
∂y

−
∂Vy

∂z
,
∂Vx
∂z

− ∂Vz
∂x

,
∂Vy

∂x
− ∂Vx
∂y

) (274)

again the full explanation of this operator will require a result known as
Stoke’s theorem. For now we say that the vector ∇×V at a point (x, y, z)
conveys how much V is rotating about the point (x, y, z), specifically:
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(a) It points perpendicular to the plane of rotation of the field V near the
point (x, y, z). Which of the two perpendicular vectors it is parellel
to is determined by the orientation of the flow.

(b) Its magnitude measures how strongly the field is rotating about the
point (x, y, z).

Now using lead fillings it is often seen that a Magnetic field rotates about
an electric current J . From this we could conclude:

∇×B = µ0J (275)

with µ0 some constant to adjust the units. This is (almost) Maxwell’s
third equation.

It can also be observed that when one creates an alternating Magnetic
current at a certain point, an electric field begins to be generated which
flows/rotates about that point (electric induction). This can be encoded
as:

∇×E = −∂B
∂t

(276)

These two quantities already have the same units. This is Maxwell’s fourth
equation.

The final component is that the opposite is true, a time varying elec-
tric field can create a rotating magentic field. Adding this fact to the
third equation we get:

∇×B = µ0 (J + ε0
∂E

∂t
) (277)

This is Maxwell’s third equation. All four equations completely govern
the dynamics of the electric and magnetic fields.

A final important point about Curl, is that it only really makes sense
as an operation in three dimensions. In two dimensions, there is no direc-
tion perpendicular to the plane of the vector field and in four or higher
dimensions there is no unique direction which is perpendicular. In three we
have the unique relation among the coordinates, letting i, j, k denote the
basis vectors and ⋅ denote the act of constructing a vector perpendicular
(the cross product):

i ⋅ j = k (278)

k ⋅ i = j (279)

j ⋅ k = i (280)

This is essentially the quaternion algebra. There are other deeper reasons
for the fact that Curl only exists in three dimensions, which we will explore
when we get to coordinate transformations.
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We will now look at coordinate transformations, starting with the two-
dimensional case of cartesian and polar coordinates.
In two dimensions, we have the Cartesian coordinates (x, y), which indexes
points on the plane using the vector space R2, via their horizontal and verti-
cal displacement from some chosen “origin” point. However it also possible to
describe the plane using an alternate coordinate system known as polar coor-
dinates. In this case we label points via their distance, r from some chosen
origin point, this being known as the radial distance. Of course there is a circle
of points of equal distance r from the origin, which are distinguished by their
location on the circle, indexed by the angle θ.
In polar coordinates a point is then labelled via (r, θ).
Assuming that they have a common choice of origin and that the unit circle
is indexed so that θ = 0 is the x-axis, then the relationship between the two
coordinates is:

x = r cos(θ) (281)

y = r sin(θ) (282)

r =
√
x2 + y2 (283)

θ = tan−1 (y
x
) (284)

With this relationship in place it isn’t difficult to transfer a scalar function from
one coordinate system to another via substitution. To take three examples:

φ1(x, y) = x2 + y2 (285)

φ1(r, θ) = r2 (286)

φ2(x, y) = tan−1 (y
x
)
√
x2 + y2

3
(287)

φ2(r, θ) = θr3 (288)

φ3(x, y) = sin(tan−1 (y
x
))

2

(289)

φ3(r, θ) = sin(θ)2 (290)

What requires much more attention is how one transforms Vector fields and the
gradient, divergence and Curl operators.

To transform vector fields correctly we will look more closely at a vector field
in Cartesian coordinates. This is given as:

V = (Vx(x, y), Vy(x, y)) (291)

this can be reexpressed as V being a combination of two basis vector fields:

V = (Vx(x, y), Vy(x, y)) = (Vx)(1,0) + (Vy)(0,1) (292)

= (Vx)ex + (Vy)ey (293)
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with ex and ey being the vector field with values (1,0) and (0,1) respectively at
all points. Each of the basis vectors is assigns a vector pointing in the direction
of a unit displacement of its associated coordinate. When we switch over to
polar coordinates we will instead have to use er and eθ, corresponding to radial
and angular displacements.
We can see that it is not enough to simply change the coefficients Vx and Vy
from functions of (x, y) to functions of (r, θ) we must also change the basis
vectors in terms of which V is expanded.

To work out the transformation property, we will return to the idea of ex being
a small displacment in the x-coordinate. Hence we might imagine a relation:

ex =
∂

∂x
(294)

as the derivative is also a variance in x.4

Taking the vector field (1,0) in polar coordinates, we find:

(1,0) = er (295)

= ∂

∂r
(296)

= ∂x
∂r

∂

∂x
+ ∂y
∂r

∂

∂y
(297)

= cos(θ) ∂
∂x

+ sin(θ) ∂
∂y

(298)

= cos(θ)ex + sin(θ)ey (299)

= (cos(θ), sin(θ)) (300)

So we can see that the vector field we has the form (1,0) in polar coordinates,
has the form (cos(θ), sin(θ)) in cartesian.
Similarly for the angular vector:

eθ =
∂

∂θ
(301)

= ∂x
∂θ

∂

∂x
+ ∂y
∂θ

∂

∂y
(302)

= −r sin(θ) ∂
∂x

+ r cos(θ) ∂
∂y

(303)

= −r sin(θ)ex + r cos(θ)ey (304)

= (−r sin(θ), r cos(θ)) (305)

Typically we want unit basis vectors, so instead we use:

eθ = (− sin(θ), cos(θ)) (306)

4In this course we see this as an analogy. However in differential geometry you will see
that ex =

∂
∂x

. This is the correct definition of the basis vectors.
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as our basis vector. We can then see that the relation between a vector in polar
an cartesian coordinates is:

(Vr, Vθ) = Vr(cos(θ), sin(θ)) + Vθ(− sin(θ), cos(θ)) (307)

= (Vr cos(θ) − sin(θ)Vθ, Vr sin(θ) + Vθ cos(θ)) (308)

or in matrix notation:

[ Vx
Vy

] = [
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

] [ Vr
Vθ

]

or in the opposite direction:

[ Vr
Vθ

] = [
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

] [ Vx
Vy

]

This is how we transform a vector field from one coordinate system to another.

As a side note, one can think of objects which transform in the opposite way
from vectors. That is:

[ Wr

Wθ
] = [

∂x
∂r

∂r
∂θ

∂y
∂r

∂y
∂θ

] [ Wx

Wy
]

It might be that one of these objects W would have the same components in
polar coordinates as a vector V , but the difference between them would show
up if you transformed to Cartesian coordinates. These objects are known as
one-forms. This is why one must be careful with coordinates, they are simply
a tool, two fundamentally different objects might appear identical in a given
coordinate system.

Although probably the remit of differential geometry, we can imagine more
general functions that vectors. Vector components are indexed by a single la-
bel Vi, we could imagine matrix functions Mij requiring two indicies, giving an
array of components. Or even more general functions Mijk requiring several
indicies. In each case one would have to specify whether the index transformed
like a vector or a one form. The notation is:
Mij is both tranform like one-forms.
M i
j if one transforms like a vector and one like a one-form.

M ij if both transform like vectors.

Such functions are known as (p
q
)-tensors, indicating p of the indicies transform

like vectors and q like one-forms.

We now move onto transforming the gradient and divergence operations.5

5We could transform curl as well, but it is simply very tedious to do so.
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Gradient:
The gradient was defined as

∇φ = (∂φ
∂x
,
∂φ

∂y
) (309)

using the chain rule, we find:

∇φ = (∂φ
∂x
,
∂φ

∂y
) (310)

= ( ∂r
∂x

∂φ

∂r
+ ∂θ
∂x

∂φ

∂θ
,
∂r

∂y

∂φ

∂r
+ ∂θ
∂y

∂φ

∂θ
) (311)

= (cos(θ)∂φ
∂r

− 1

r
sin(θ)∂φ

∂θ
, sin(θ)∂φ

∂r
+ 1

r
cos(θ)∂φ

∂θ
) (312)

= ∂φ
∂r

(cos(θ), sin(θ)) + 1

r

∂φ

∂θ
(− sin(θ), cos(θ)) (313)

Each of the vector fields above is simply a basis vector in polar coordinates, so
we have:

∇φ = ∂φ
∂r
er +

1

r

∂φ

∂θ
eθ (314)

= (∂φ
∂r
,
1

r

∂φ

∂θ
) (315)

Which is the expression for the graident in Polar coordinates.

Divergence:
The divergence is given by:

∇ ⋅ V = 1

r

∂(rVr)
∂r

+ 1

r

∂Vθ
∂θ

(316)

this can be obtain by using the chain rule in combination with the relations
between Vx, Vy and Vr, Vθ.
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In three dimensions there are three commonly used sets of coordinates. The
Cartesian coordinate system, the cylindrical coordinate system and the spheri-
cal coordinate system.

Cylindrical coordinates:
Cylindrical coordinates essentially take the Cartesian coordinates (x, y, z) and
transform the xy-plane to polar coordinates, leaving the z-axis as it is. This
gives us three coordinates (ρ,φ, z).
The first coordinate ρ is the radial distance in the xy-plane. We must distin-
guish ρ, which measures the distance from the z-axis, from r, radial distance,
which measures distance from the origin.
The second coordinate φ measures the anglular displacement of a point from
the x-axis.6 The z-coordinate is unchanged from Cartesian coordinates.

The range of each of these coordinates is:

ρ ∈ [0,∞)
φ ∈ [0,2π)
z ∈ R

we can transform to and from cylindrical coordinates using the relations:

x = ρ cos(φ)
y = ρ sin(φ)
z = z

and

ρ =
√
x2 + y2

φ = tan−1 (y
x
)

z = z (317)

Note that these are the same as the polar coordinate transformation rules. Since
we have already worked out the transformation of the Gradient and Divergence
operations in polar coordinates, we can simply transfer those results to work
out their form in Cylindrical coordinates. These are:

∇ψ = (∂ψ
∂ρ

,
1

ρ

∂ψ

∂φ
,
∂ψ

∂z
)

∇ ⋅ V = 1

ρ

∂(ρVρ)
∂ρ

+ 1

ρ

∂Vφ

∂φ
+ ∂Vz
∂z

6Since this is essentially the same angle as was used in two dimensional polar coordinates,
many pure mathematics textbooks continue to use θ to denote it.
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For completeness we will also give the Curl operation:

∇× V = (1

ρ

∂Vz
∂φ

−
∂Vφ

∂z
)eρ

+ (
∂Vρ

∂z
− ∂Vz
∂ρ

)eφ

+ 1

ρ
(
∂ (ρVφ)
∂ρ

−
∂Vρ

∂φ
)ez (318)

Spherical coordinates:
This coordinate system is based around radial distance, labelled r from some
fixed origin point. All points with a fixed value of R form a sphere, we then use
two angular coordinates denoted θ and φ to distinguish points on these spheres.
The first angle, φ, is the same angle as used in cylindrical coordinates, the angle
of displacement from the Cartesian x-axis. The second angle θ, measures the
displacement from the z-axis, with θ = 0 being the North pole of a sphere at
fixed radius R. In geographical terms θ is the latitude of the sphere.7 The
ranges for the coordinates are:

r ∈ [0,∞)
θ ∈ [0, π)
φ ∈ [0,2π)

The second angle θ only needs to run to π, as θ = π is the south pole of the
sphere and continuing θ beyond this point would cause points to be indexed
twice.

The relation between spherical coordinates and cartesian coordinates is given
by:

x = r sin(θ) cos(φ)
y = r sin(θ) sin(φ)
z = r cos(θ)

and

r =
√
x2 + y2 + z2

θ = cos−1 ⎛
⎝

z√
x2 + y2 + z2

⎞
⎠

φ = tan−1 (y
x
)

7In pure mathematics, where θ is used for the angle of displacment against the x-axis, φ
is used as the angle of displacement from the z-axis. Here we are using Physics notation.
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The relation between its coordinates and those of Cylindrical coordinates is:

r =
√
x2 + y2 + z2

θ = cos−1 ⎛
⎝

z√
x2 + y2 + z2

⎞
⎠

φ = tan−1 (y
x
)

and

r =
√
ρ2 + z2

θ = tan−1 (ρ
z
)

φ = φ

The angle φ remains unchanged as it is shared between the two coordinate sys-
tems.

Either of these relations can be used to derive the form of the various Vector
Calculus operations. The divergence and the gradient are given by:

∇ψ = (∂ψ
∂r
,
1

r

∂ψ

∂θ
,

1

r sin(θ)
∂ψ

∂φ
)

∇ ⋅ V = 1

r2

∂(r2Vr)
∂r

+ 1

r sin(θ)
(∂Vθ sin(θ))

∂θ
+ 1

r sin(θ)
∂Vφ

∂φ
(319)

For completeness the Curl operation is:

∇× V = 1

r sin(θ)
(
∂ (Vφ sin(θ))

∂θ
− ∂Vθ
∂φ

)er

+ 1

r
( 1

sin(θ)
∂Vr
∂φ

−
∂ (rVφ)
∂r

)eθ

+ 1

r
(∂ (rVθ)

∂r
− ∂Vr
∂θ

)eφ (320)
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3.2 Line, Surface and Volume Integrals

In three dimensions we can integrate objects various subsets of Euclidean space.
We can take integrals over lines, surfaces and volumes. We begin with how one
takes integrals over lines. One dimensional subsets of Euclidean space.

3.2.1 Line Integrals

As mentioned eariler a line/path is specified by parameterising the coordinates
in terms of an extra variable t. As this parameter is varied it traces out a one-
dimensional subset of three-dimensional Euclidean space, i.e. a line/path.
Examples of such path functions are:

1.

x(t) = (a cos(t), a sin(t),0) (321)

t ∈ [0,2π] (322)

Here we see the coordinates have the following dependence on t:

x = a cos(t)
y = a sin(t)
z = 0

This implies that x2+y2 = a2, hence this is a paramterisation of a circle of
radius a in the z = 0 plane. t then corresponds to the anglular coordinate
on the circle.

2.

x(t) = (a cos(t), a sin(t), t) (323)

t ∈ [0,6π] (324)

Here we have the same relation x2 + y2 = a2 in the xy-plane, however as t
is varied we also move upward on the z-axis. This parameterisation then
traces out a helix: circular in the xy-plane, but varying upward along the
z-axis.

3. Here we look at two paths.

x1(t) = (t, t, t)x2(t) = (t, t2, t3) (325)

in both cases t ∈ [0,1].
In this case both paths start (t = 0) at the origin (0,0,0) and terminate
at (1,1,1). However in the case of the first path the relation between the
first two coordinates is y = x, but for the second path y = x2. Hence, in the
xy-plane, the first path is a straight line, where as the second has some
curvature.
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We can integrate either Scalar fields or Vector fields along lines. The formulae
for doing so are:

∫
b

a
φ(x(t))

√
dx

dt
dt (326)

for a scalar field and:

∫
b

a
V (x(t)) ⋅ dx

dt
dt (327)

in both cases a, b are the limits on t and φ(x(t)), V (x(t)) denote the scalar and
vector fields rewritten as a function of t.

(Examples)
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3.2.2 Volume Integrals

Integrating over volumes in Cartesian coordinates is already familiar to you
from MA1132. One handles a volume integral by performing three interated
one-dimensional integrals:

∫
D
φ(x, y, z)dV = ∫

f

e
∫

d(z)

c(z)
∫

b(y,z)

a(y,z)
φ(x, y, z)dxdydz (328)

Where D is the volume being integrated over. Often the algebraic relations
specifying D will cause the limits of the coordinates to be functions of eachother.
For instance when integrating over the volume enclosed by a cylinder of height
1 and radius 1, z would have limits 0,1 and y would extend from −1 to 1,
on either side of a cross section of a cylinder. However x and y being related
via x2 + y2 = 1, the x-cordinate would have maximum and minimum values:
−
√

1 − y2 and
√

1 − y2 and integral of a scalar function would be computed via:

∫
CylindricalV olume

φ(x, y, z)dV = ∫
1

0
∫

1

−1
∫

√
1−y2

−
√

1−y2
φ(x, y, z)dxdydz (329)

However looking at Eq.328, it isn’t immediately obvious that this relation be-
tween volume integrals and iterated one-dimensional integrals should hold. The
volume integral, roughly speaking, is defined via:

∫
D
φ(x, y, z)dV = lim

N→∞
∑ i = 1Nφ(x∗i )∆Vi (330)

This basically the three-dimensional analogue of a Riemann sum. A region of
volume A is partitioned into N subvolumes Vi with volume ∆Vi. The scalar
field is evaluated at a fixed point inside each subvolume x∗i . The sum essentially
computes the average value of the scalar field over the region. The integral is
then defined as the limit of this average as the subvolumes go to zero size.
The interated one-dimensional integrals however correspond to sending each
dimension of these subvolumes to zero sequentially, rather than shrinking the
whole volume at once. A priori, there is no reason to expect that these two
different limiting procedures should produce the same result.
Fortunately Fubini’s theorem tells use that for any measurable function Eq.(328)
holds. A vague definition of a measurable function is that it is a function, φ,
whose inverse φ−1 maps open subsets of the real line to sets with well-defined
volumes. That is, for all opensets I, φ−1(I) has a volume. This is a concept
from measure theory, which we won’t explore in depth, only to say that the
existence of non-measureable functions wasn’t proven until 1905 and even then
their existence depends on what axioms one uses when defining set theory. Suf-
fice it to say, any function you encounter in mathematical physics will certainly
be measureable.

Rather we look at how the iterated integral changes when we move to different
coordinate systems. For simplicity we will use the same technique of looking at
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the two-dimensional case and simply quoting the results for three dimensions.
In two dimensions, in Cartesian coordinates we have:

∫
D
φ(x, y, z)dA = ∫

d

c
∫

b(y)

a(y)
φ(x, y)dxdy (331)

where we use dA as we are now integrating over areas.
We can use two different techniques to derive how the measure dxdy changes
when we move to polar coordinates.

Linear Algebra derivation:
We can imagine dxdy as a small (infinitesmial) area, essentially the span of the
(infinitesmial) vectors dx and dy. Then drdθ is the area spanned by the (in-
finitesmial) vectors dr and dθ. To find the relation between these areas we look
at the matrix that transforms one from Polar to Cartesian coordinates:

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]

In Linear Algebra, a matrix dilates and rotates vectors. For a set of orthonormal
vectors, the determinant of a matrix detA determines by what factor the matrix
distorts the volume of the area they span.
The above transformation matrix has determinant r and so the area of the
span of the vectors dr and dθ is altered by a factor of r upon transforming to
Cartesian coordinates. Hence:

dxdy = rdrdθ (332)

Differential forms derivation:
Thinking of dx and dy instead as infinitesmial line segments, we can see dxdy
as infinitesmial area segment. The dx and dy lines segments can be related to
the polar coordinate line segments via the chain rule:

dx = ∂x
∂r
dr + ∂x

∂θ
dθ (333)

dy = ∂y
∂r
dr + ∂y

∂θ
dθ (334)

We have already computed the derivatives:

dx = cos(θ)dr − r sin(θ)dθ (335)

dy = sin(θ)dr + r cos(θ)dθ (336)

Hence:

dxdy = (cos(θ)dr − r sin(θ)dθ) (sin(θ)dr + r cos(θ)dθ) (337)

= cos(θ) sin(θ)dr2 − r2 sin(θ) cos(θ)dθ2 + r cos(θ)2drdθ − r sin(θ)2dθdr
(338)
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However dr2 and dθ2 do not produce an area. A variation in r followed by
another variation in r is still a one dimensional subset and hence as areas dr2 = 0
and dθ2 = 0. So we have:

dxdy = r cos(θ)2drdθ − r sin(θ)2dθdr (339)

In integration we must remember that subsets are oriented, the integral from a
to b is the negative of that from b to a. The area traced out via a variation in
θ followed by one in r, that is drdθ is oriented in the opposite direction to the
area produce by dθdr that is dθdr = −drdθ. So we have:

dxdy = r cos(θ)2drdθ − r sin(θ)2dθdr (340)

= r cos(θ)2drdθ + r sin(θ)2drdθ (341)

= rdrdθ (342)

Note that this multiplication rule, dθdr = −drdθ, where multiplication is anti-
commutative, implies dr2 = 0 and dθ2 = 0, since dr2 = drdr we have:

drdr = −drdr (343)

which is only possible if drdr = dr2 = 0. This multiplication rule is known as a
Grassmann algebra and applying it to infinitesmial variations such as dx and
dy is known as the theory of Differential Forms. One can see that this multi-
plication rule simply encodes the simple fact that areas/volumes are oriented in
the theory of integration.

Now that we have the relation:

dxdy = rdrdθ (344)

or more accurately:

dxdy = detAdrdθ (345)

With A being:

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]

We can derive the results for Cylindrical and Spherical coordinates. We would
simply have to compute the determinants of the relevant transformation ma-
tricies. For Cylindrical coordinates we have already done this as the transfor-
mation matrix: ⎡⎢⎢⎢⎢⎢⎢⎣

∂x
∂r

∂x
∂φ

∂x
∂z

∂y
∂r

∂y
∂φ

∂y
∂z

∂z
∂r

∂z
∂φ

∂z
∂z

⎤⎥⎥⎥⎥⎥⎥⎦
becomes: ⎡⎢⎢⎢⎢⎢⎣

cos(φ) −r sin(θ) 0
sin(φ) r cos(φ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
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Since the z-coordinate is unchanged, reducing this to the polar coordinate case
essentially. Hence we have the relation:

dxdydz = ρdρdφdz (346)

For spherical coordinates we would simply evaluate a similar three-by-three
matrix of derivatives (the transformation matrix) and find:

dxdydz = r2 sin(θ)drdθdφ (347)

The determinant of the transformation matrix, telling one how the measure
changes between coordinates is known as the Jacobian.
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3.2.3 Surface Integrals

It is also possible to integrate a Vector field over surface. This surface integral
essentially measures the total flux of a vector field across the surface.

Just like Line integrals, in order to perform a surface integral one needs a
paramterisation of the surface. For a line integral this depended on a single
external parameter t, for a surface it will depend on two parameters s, t.

3.2.4 Surface parameterisations

A simple example of such a surface is the unit disk. We already had the example
of a circle of radius a as an example of a path:

x(t) = (a cos(t), a sin(t), t) (348)

t ∈ [0,2π] (349)

To form the unit disk, we simply let the radius a be a variable rather than a
constant:

x(t, s) = (s cos(t), s sin(t),0) (350)

t ∈ [0,2π] (351)

s ∈ [0,1] (352)

The parametrisation of surfaces can also be obtained from the algebraic equa-
tions definining them. For example a sphere of Radius R is the set of points
satisfying x2 + y2 + z2 = R2. We can form the parametric representation of the
sphere by letting x and y be linear functions of t and s:

x = s (353)

y = t (354)

(355)

Then since z2 = R2 − x2 − y2 we have two possible paramterisations of z:

z =
√
R2 − s2 − t2 (356)

z = −
√
R2 − s2 − t2 (357)

The first is used for the upper hemisphere and the second for the lower hemi-
sphere. Hence the parameterisations are:

x(t, s) = (s, t,
√
R2 − s2 − t2) (358)

s ∈ [−R,R] (359)

t ∈ [−
√
R2 − s2,

√
R2 − s2] (360)
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for the upper hemisphere and:

x(t, s) = (s, t,−
√
R2 − s2 − t2) (361)

s ∈ [−R,R] (362)

t ∈ [−
√
R2 − s2,

√
R2 − s2] (363)

for the lower hemisphere. Note the limits on t. It can only vary between these
points as otherwise the square root defining z would become imaginary and we
would no longer be describing points on the sphere8.

Similarly we can take the surface given by x2 + z2 = 9, which is a cylinder of
radius 3 lying along the y-axis. First of all the y coordinate is not constrained or
related to the other variables, hence we can set it equal to one of the parameters
y = s. x and z and then functions of the remaining parameter t. We can ignore
y and the equation x2 + z2 = 9 can be seen as the equation for a circle of radius
3 in the xz-plane. Hence, looking at the expression for a circular path above,
we have:

x = 3 cos(t) (364)

z = 3 sin(t) (365)

t ∈ [0,2π] (366)

Hence the paramterisation is:

x(t, s) = (3 cos(t), s,3 sin(t)) (367)

t ∈ [0,2π] (368)

A final example is the paraboloid z = 2x2 + 2y2 between z = 0 and z = 4. It is
quite easy to construct the paramterisation in this case:

x = s (369)

y = t (370)

z = 2s2 + 2t2 (371)

With s, t ∈ [0,1] to ensure the limits on z and so the parameterisation is:

x(s, t) = (s, t,2s2 + 2t2) (372)

s, t ∈ [0,1] (373)

3.2.5 Tangent vectors

Once we have the parameterisation of a surface we can form two new objects,
the tangent vectors to that surface. These are given by the s and t partial
derivatives of the parameterisation. For example:

8Instead we would be looking at a surface in Cn
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1. For the disk:

∂x

∂s
= (cos(t), sin(t),0) (374)

∂x

∂t
= (−s sin(t), s cos(t),0) (375)

2. For the cylinder:

∂x

∂s
= (0,1,0) (376)

∂x

∂t
= (−3 sin(t),0,3 cos(t)) (377)

3. For the paraboloid:

∂x

∂s
= (1,0,4s) (378)

∂x

∂t
= (0,1,4t) (379)

These tangent vectors are vector fields on the surface which point tangent to
the surface. The both point in the direction in which their coordinate increases.

Associated with these two tangent vectors there are two tangent variations ds
and dt however they are given be the formula:

ds = ∂x
∂s
ds (380)

dt = ∂x
∂t
dt (381)

these variations are associated with integrals along the surface.

3.2.6 Normal vectors

The last objects needed to define a Surface integral are the normal vector and
the normal variation. The normal vector is the vector field which is orthogonal
to the surface. We will denote it n. Since the two vectors

∂x

∂s
and

∂x

∂t
each point

along the surface, we can form a vector which points away from the surface by
taking their cross-product9. We can take the cross-product in either order. For
each of the examples above:

1. The disk:

n1 =
∂x

∂s
× ∂x
∂t

= (0,0, s) (382)

n2 =
∂x

∂t
× ∂x
∂s

= (0,0,−s) (383)

9As the cross-product A ×B produces a vector orthogonal to both A and B
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2. The cylinder:

n1 =
∂x

∂s
× ∂x
∂t

= (3 cos(t),0,3 sin(t)) (384)

n2 =
∂x

∂t
× ∂x
∂s

= (−3 cos(t),0,−3 sin(t)) (385)

3. The paraboloid:

n1 =
∂x

∂s
× ∂x
∂t

= (−4s,−4t,1) (386)

n2 =
∂x

∂t
× ∂x
∂s

= (4s,4t,−1) (387)

In the case of the cylinder for example n1 points outward from the surface and
n2 points into the interior of the surface. There will always be two possible
orthogonal directions to a given surface and one must determine which is the
appropriate one to use in a given calculation.

Finally we have the normal variation dS, this is used to calculate the flux of
vectors fields across a surface, as it integrates components orthogonal to the
surface. It is given by the formula:

dS = ndsdt = ∂x
∂s

× ∂x
∂t
dsdt = ds × dt (388)

There will be two possible ways of defining dS depending on which way you
take the cross-product.

3.2.7 Surface integral of vector fields

We can now compute the surface integral of a vector field. This is given by:

∫
S
V ⋅ dS = ∫ ∫ V (x(s, t)) ⋅ ndsdt (389)

We can see this integrates over the surface the part of the vector field orthogonal
to the surface. This can be seen as the amount of the vector field crossing the
surface, known as the flux of the vector field. Let’s look at a few examples.

1. The outward flux of the vector field V = (x2, xyz, y2) over the paraboloid
given above.
We have already computed the normal vector to this surface:

n = ∂x
∂t

× ∂x
∂s

= (4s,4t,−1) (390)

we choose this ordering for the cross-product as it points outward from
the surface. We also need to express the vector field V as a function of s
and t, i.e. find V (x(s, t)). The parameterisation of this surface was:

x(s, t) = (s, t,2s2 + 2t2) (391)
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That is:

x = sy = tz = 2s2 + 2t2 (392)

Hence the Vector field becomes:

V (x(s, t)) = (s2,2ts3 + 2st3, t2) (393)

The dot product is then:

V (x(s, t)) ⋅ n = 4s3 + 8t2s3 + 8st5 − t2 (394)

and so the surface integral is:

∫ ∫ V (x(s, t) ⋅ ndsdt = ∫
1

0
∫

1

0
(4s3 + 8t2s3 + 8st5 − t2)dsdt = 2 (395)

The limits on s and t being part of the original parameterisation.

2. The outward flux of the vector field V = (x2, ezy, xy) over a cylinder with
the same radius as the one given above, but extending from y = −3 to
y = 3.
We have already computed the normal vector:

n = ∂x
∂s

× ∂x
∂t

= (3 cos(t),0,3 sin(t)) (396)

The paramterisation was:

x(t, s) = (3 cos(t), s,3 sin(t)) (397)

t ∈ [0,2π] (398)

In this case however the cylinder has finite extent on the y-axis, so its
parameterisation is:

x(t, s) = (3 cos(t), s,3 sin(t)) (399)

t ∈ [0,2π] (400)

s ∈ [−3,3] (401)

In either case we have for the individual coordinates:

x = 3 cos(t) (402)

y = s (403)

z = 3 sin(t) (404)

t ∈ [0,2π] (405)

And so the vector field is:

V (x(s, t)) = (9 cos2(t), e3s sin(t),3s sin(t)) (406)
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The dot-product is then:

V (x(s, t)) ⋅ n = 27 cos3(t) + 9s sin2(t) (407)

and so the surface integral is:

∫ ∫ V (x(s, t) ⋅ ndsdt = ∫
2π

0
∫

3

−3
(27 cos3(t) + 9s sin2(t))dsdt = 648 cos3(π4)

(408)
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