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The Dirac Operator
Mn oriented, Riemannian manifold.

A Cli�ord module
(
S , hS ,∇S , c

)
is a Hermitian vector bundle

equipped with unitary connection ∇S and a compatible morphism

of algebra bundles c : Cl (T ∗X )→ End (S).
We can then form the Dirac operator

D = c ◦ ∇ : C∞ (S) → C∞ (S) .

Two main examples:

1. Mn spin manifold and S = STX ⊗ L is the spin bundle twisted

by a Hermitian line bundle L. A unitary connection A on L now

gives the corresponding Dirac operator

DA : C∞
(
STX ⊗ L

)
→ C∞

(
STX ⊗ L

)
.

2. X complex manifold with L → X Hermitian holomorphic line

bundle with holomorphic derivative ∂̄L : A0,∗ (L)→ A0,∗ (L). If X
additionally Kahler, then

D =
√
2
(
∂̄L + ∂̄∗L

)
is a Dirac operator.
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Spectral Invariants
The Dirac operator is self-adjoint and elliptic. Hence it has a

discrete spectrum of real eigenvalues

. . . λ−1 ≤ 0 ≤ λ0 ≤ λ1 ≤ . . .

One can form the spectral invariants kD = dim ker (D), the
determinant of D2 and the signature of D.

Signature of D

ηD ” = ”
∑
j

sign (λj)

” = ”
∑
j

(ˆ ∞
0

1√
πt
λje
−tλ2

j dt

)

ηD =

ˆ ∞
0

1√
πt

tr
(
De−tD

2
)
dt
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Spectral Invariants

Determinant of D2

det
(
D2
)

= e−ζ
′
D

(0)

ζD (s) =
1

Γ (s)

ˆ ∞
0

{
tr
(
e−tD

2
)
− kD

}
ts−1dt, Re (s)� 0.



Asymptotics of Spectral Invariants

Consider Y n oriented, Riemannian spin of odd dimension with

Hermitian line bundle L. Fix base unitary connection A0, and

imaginary one form a ∈ Ω1 (Y ; iR). This gives family of

connections Ar = A0 + ra and associated Dirac operators

Dr = DAr
: C∞

(
STY ⊗ L

)
→ C∞

(
STY ⊗ L

)
.

Consider the asscociated spectral invariants

kr = kDr

ηr = ηDr

dr = det
(
D2
r

)
.

What happens to these as r →∞?
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Analogous problem
X complex (not nec. Kahler), L → X Hermitian holomorphic line

bundle

Dp =
√
2
(
∂̄L⊗p + ∂̄∗L⊗p

)
: A0,∗ (L⊗p)→ A0,∗ (L⊗p) .

Similar spectral quantities kp, ηp, dp. What happens to these as

p →∞. Here p is analogous to r .

(Demailly '85, Bismut '87) kp = O
(
p

n
2

)
.

Application to the Grauert- Riemenschneider conjecture.

ηp = 0.
(Bismut-Vasserot '89) L positive.

τp = log

[
det
(
D2
p |A0,even

)
det
(
D2
p |A0,odd

) ] = O
(
p

n
2

)
.

Arithmetic applications by Faltings ('84), Vojta ('89).

Kahler-Einstein program: Asymptotics of the projector

Πp : C∞ (L⊗p)→ ker (Dp).
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New Results

Coming back to

Dr = DAr
: C∞

(
STY ⊗ L

)
→ C∞

(
STY ⊗ L

)
, Ar = A0 + ra.

(S.) kr = o
(
r
n
2

)
.

(Taubes '07) ηr = O (rp) , p = n
2

+ n−1
2(n+1) + ε, ∀ε > 0.

(S.) ηr = o
(
r
n
2

)
.

Application to proving the Weinstein conjecture in dimension 3.

(S.) dr = o
(
r
n
2

)
.
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The Weinstein Conjecture

Given
(
Y 3, a

)
contact manifold (i.e. a ∧ da 6= 0). Its Reeb vector

�eld R de�ned via iRda = 0, a (R) = 1 has a closed orbit.

Taubes ('07) proved the Weinstein conjecture using the following

perturbed version of the Seiberg Witten equations

c (∗FA) = r

(
ΦΦ∗ − 1

2
|Φ|2 − a

)
DAΦ = 0,

here A is a unitary connection on L and Φ ∈ C∞
(
STY ⊗ L

)
.

These are variational equations for the functional

CSD (A,Φ) =
1

2

ˆ
Y

(A− A0) ∧ (FA + FA0
)︸ ︷︷ ︸

cs(A)

+
1

2

ˆ
Y

〈DAΦ,Φ〉 dy

− r
2

ˆ
Y

a ∧ FA.
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The Weinstein Conjecture

In�nite dimensional Morse Theory for this functional gives

Monopole Floer group ĤM (Y , L). The grading of a generator

(Ar ,Φr ) is

gr (Ar ,Φr ) = η (Hess CSD (Ar ,Φr ))− cs (Ar ) .

The Dirac operator Dr = DAr
is a component of this Hessian.

The set Φ−1 (0) converges to a union of Reeb orbits as r →∞
assuming we have a bound on cs (Ar ).
Fixing the grading, this reduces to a bound on ηr .
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Bound on the Eta invariant

To bound the eta invariant we use the integral formula

ηr =

ˆ ∞
0

1√
πt

tr
(
Dre

−tDr
2
)
dt

=

ˆ 1

0

1√
πt

tr
(
Dre

−tDr
2
)
dt +

ˆ ∞
1

1√
πt

tr
(
Dre

−tDr
2
)
dt

=

ˆ 1

0

1√
πt

tr
(
Dre

−tDr
2
)
dt + tr E (Dr )

Where E (x) = sign (x)
[

2√
π

´∞
|x | e

−s2ds
]

= sign (x) erfc (|x |) . This
is discontinuous and has a non-local trace



Local Index theory expansions
Maximum principle or otherwise gives the bound

r−
n
2

∣∣∣e−tD2
r (x , y)

∣∣∣ ≤ Ce−r
ρ(x,y)2

4t et .

where ρ (x , y) = geodesic distance function.

This says that the heat kernel localizes (or concentrates along the

diagonal) as r →∞.

Local index theory (or semiclassical analysis) now gives expansions

tr
(
e−tDr

2
)
∼ r

n
2

(
c0 (t) + c1 (t) r−1 + . . .

)
tr
(
Dre

−tDr
2
)
∼ r

n−1
2

(
d0 (t) + d1 (t) r−1 + . . .

)
Integrating the second expansion shows o

(
r
n
2

)
bound on the �rst

summand of

ηr =

ˆ 1

0

1√
πt

tr
(
Dre

−tDr
2
)
dt + tr E (Dr ) .
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Local Index theory expansions

In general for an smooth odd trace

tr ϕodd (Dr ) ∼ r
n−1
2

(
C0 (ϕ) + C1 (ϕ) r−1 + . . .

)
.

Since E is odd, this would imply a bound on second summand

except that it is discontinuous at 0. Need to control dimension of

the kernel kr .

lim
r→∞

r−
n
2 kr ≤ lim

r→∞
r−

n
2 tr
(
e−tDr

2
)
≤ c0 (t)→ 0, as t →∞.
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Eta invariant of a circle bundle
Is the bound ηr = o

(
r
n
2

)
optimal?

No. The conjectured optimal bound is ηr = O
(
r
n−1
2

)
.

An explicit computation shows that one can prove no better than

this.

Start with L → X 2m positive line bundle over complex manifold.

S1 → Y 2m+1 = unit circle bundle of L
↓ π
X 2m, n = 2m + 1.

Chern connection on L gives splitting TY = TS1 ⊕ π∗TX . Choose

adiabatic family of metrics

gTYε = gTS
1 ⊕ ε−1gTX .

A spin structure on X corresponds to a square root bundle

K⊗2 = KX = ΛtopT 0,1X . Asscociated twisted Dirac operator
√
2
(
∂̄k + ∂̄∗k

)
=
√
2
(
∂̄K⊗L⊗k + ∂̄∗K⊗L⊗k

)
.
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Eta invariant of a circle bundle
The spin structures on TX ,TS1 combine to give one on TY . We

twist the spin bundle trivially STY ⊗ C but with the connections

d + ira, a dual to generator of S1 action. This gives our Dε
r .

By using Fourier modes along the S1 it is possible to write the

spectrum of Dε
r in terms of the spectrum of

∆p
k =

(
∂̄k ∂̄

∗
k + ∂̄∗k ∂̄k

)
|Λ0,p .

There are two types of eigenvalues.

Type 1.

λ = (−1)p
(
k + ε

(
p − m

2

)
− r
)
, 0 ≤ p ≤ m, k ∈ Z

multiplicity = hp,k = dim Hp
(
X ,K ⊗ L⊗k

)
.

Type 2.

λ =
(−1)p+1ε±

√
(2k + ε(2p −m)− 2r + 1)2 + 4µ2ε

2
, 0 ≤ p ≤ m, k ∈ Z

where 1
2
µ2 is a positive eigenvalue of ∆p

k .

Gives large kernel conjecture for the Dirac operator in this case.
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d + ira, a dual to generator of S1 action. This gives our Dε
r .

By using Fourier modes along the S1 it is possible to write the

spectrum of Dε
r in terms of the spectrum of

∆p
k =

(
∂̄k ∂̄

∗
k + ∂̄∗k ∂̄k

)
|Λ0,p .

There are two types of eigenvalues.

Type 1.

λ = (−1)p
(
k + ε

(
p − m

2

)
− r
)
, 0 ≤ p ≤ m, k ∈ Z

multiplicity = hp,k = dim Hp
(
X ,K ⊗ L⊗k

)
.

Type 2.

λ =
(−1)p+1ε±

√
(2k + ε(2p −m)− 2r + 1)2 + 4µ2ε

2
, 0 ≤ p ≤ m, k ∈ Z

where 1
2
µ2 is a positive eigenvalue of ∆p

k .

Gives large kernel conjecture for the Dirac operator in this case.
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Eta invariant of a circle bundle

This computation now gives an asymptotic formula for ηεr in terms

of characteristic classes on the base.

η̄r ,ε =
m∑
a=0


 ra+1

(a + 1)!
−

[r+ εm
2

]∑
k=1

ka

a!

ˆ
X

c1(L)a [ch(K)td(X )]m−a


+O(1).

The above formula shows η̄r ,ε is discontinous of O
(
r
n−1
2

)
. Hence

this would be the optimal estimate on the eta invariant.

However this isn't an exact formula as there is an O (1).
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Explicit computation of the eta invariant

To get an explicit computation of the eta invariant, we let ε→ 0.

η̄r ,ε = lim
ε→0

η̄r ,ε + sf {DAr ,δ}0≤δ≤ε +
1

(2πi)m+1

ˆ
Z

Â(RTZ )

Then limε→0 η̄
r ,ε exists by work of Bismut-Cheeger ('89), Dai ('91),

Zhang ('94). The spectral �ow function is found, for ε small, from

our description of the spectrum. The third term is a characteristic

class Z = Y × [0, ε].

The result is a computation in terms of

hp,k = dim Hp
(
X ,K ⊗ L⊗k

)
and characteristic classes of TX 1,0

and L. This generalizes a computation of Nicolaescu ('97) in

dimension 3.
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Explicit computation of the eta invariant

lim
ε→0

η̄r ,ε =



1
2

´
X
Â(X )

[
exp((1−2{r}) c

2
)

sinh( c
2
)

− 1
c/2

]
exp {rc} , if r /∈ Z,

1
2

{´
X
Â(X )

[
c
2
−tanh( c

2
)

c
2
tanh( c

2
)

]
exp {kc}+ h

m
2
,k if r = k ,

+
∑

p>m
2

(−1)p hp,k −
∑

p<m
2

(−1)p hp,k

}
, m even

1
2

{´
X
Â(X )

[
c
2
−tanh( c

2
)

c
2
tanh( c

2
)

]
exp {kc} if r = k ,

+
∑

p>m
2

(−1)p hp,k −
∑

p<m
2

(−1)p hp,k

}
, m odd.



Explicit computation of the eta invariant

sf {DAr ,δ}0≤δ≤ε =
∑

p>m
2
,even

dre−1∑
k=dr−ε(p−m

2
)e

hp,k

−
∑

p>m
2
,odd

brc∑
k=br−ε(p−m

2
)c+1

hp,k

−
∑

p<m
2
,even

dr−ε(p−m
2

)e−1∑
k=dre

hp,k

+
∑

p<m
2
,odd

br−ε(p−m
2

)c∑
k=brc+1

hp,k .



Explicit computation of the eta invariant

ˆ
Z

Â(RTZ ) = (2π)

ˆ ε

0

dδ

ˆ
X

Ω2 exp {Ω0} , where

Ω0 =2tr
[
p
(
RTX 1,0

+ 2iδω
)]

+ 2p (2iδω) ,

Ω2 =2tr
[
ip′
(
RTX 1,0

+ i2δω
)]

+ i2p′ (2iδω)

and p(z) = 1
2
log
(

z/2
sinh(z/2)

)
.



Thank you.


