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Two main examples:

1. M" spin manifold and S = S™X @ L is the spin bundle twisted
by a Hermitian line bundle L. A unitary connection A on L now
gives the corresponding Dirac operator

Dp:C®(S™X L) — C®(S™*®L).

2. X complex manifold with £ — X Hermitian holomorphic line
bundle with holomorphic derivative 9 : A%* (L) — A% (£). If X
additionally Kahler, then

D =2 (3 + )

is a Dirac operator.
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Spectral Invariants

Determinant of D2

det (D?) = e 0

Cp(s) = ng) /000 {tr <e_tD2> - kD} t571dt, Re(s) > 0.




Asymptotics of Spectral Invariants

Consider Y oriented, Riemannian spin of odd dimension with
Hermitian line bundle L. Fix base unitary connection Ag, and
imaginary one form a € Q! (Y;iR). This gives family of
connections A, = Ag + ra and associated Dirac operators

D, = Dy, : C® (STY®L) e (STY®L).
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Consider Y oriented, Riemannian spin of odd dimension with
Hermitian line bundle L. Fix base unitary connection Ag, and
imaginary one form a € Q! (Y;iR). This gives family of
connections A, = Ag + ra and associated Dirac operators

D, = Dy, : C® (STY ® L) ™ (STY ® L) .
Consider the asscociated spectral invariants

k- = ko,

Nr = "D,
d = det(D?).

What happens to these as r — co0?
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Analogous problem

X complex (not nec. Kahler), £ — X Hermitian holomorphic line
bundle

Dy = V2 (Opep + 0pep) + A% (LIP) — AV (LZP).
Similar spectral quantities kp, np, dp. What happens to these as
p — oo. Here p is analogous to r.

(Demailly "85, Bismut '87) k, = O (pg).
Application to the Grauert- Riemenschneider conjecture.

np == O.
(Bismut-Vasserot '89) L positive.

det (Dg‘AO,even)] _0 (

N3

Tp = log p ) :
Arithmetic applications by Faltings ('84), Vojta ('89).
Kahler-Einstein program: Asymptotics of the projector
My : C° (L®P) — ker (Dp).

det (Dg ’.on°dd)




New Results

Coming back to
Dr=Dp :C® (ST ®L) = C* (ST ®L), A =A+ra



New Results

Coming back to
Dr=Dp :C® (ST ®L) = C* (ST ®L), A =A+ra
(S) k =o (rg).

(Taubes '07) n, = O (rP), pz%—kz&;jl)—i-e, Ve > 0.

(S)n-=o0 <r§>.
Application to proving the Weinstein conjecture in dimension 3.

(S)dr =0 (rg)
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The Weinstein Conjecture

Infinite dimensional Morse Theory for this functional gives
Monopole Floer group HM (Y, L). The grading of a generator
(Ar,®,) is

gr(Ar, ®,) = n(Hess CSD (A, ®,)) — cs(A,).

The Dirac operator D, = Dp, is a component of this Hessian.



The Weinstein Conjecture

Infinite dimensional Morse Theory for this functional gives
Monopole Floer group HM (Y, L). The grading of a generator
(Ar,®,) is

gr(Ar, ®,) = n(Hess CSD (A, ®,)) — cs(A,).

The Dirac operator D, = Dp, is a component of this Hessian.
The set ®~1 (0) converges to a union of Reeb orbits as r — oo
assuming we have a bound on cs (A,).

Fixing the grading, this reduces to a bound on 7,.



Bound on the Eta invariant

To bound the eta invariant we use the integral formula

/OO b t (D _tDz) dt
= r e r
Nr . = r

[ (petyas [T (0o g
= —1r r T r
o vVt ' Ra: '

1
o 1 —tD,2
= | \/ﬁtr (D,e ) dt +tr E(Dy)

Where E (x) = sign (x) [ foo - ds} = sign (x) erfc (|x|) . This

Ix|

is discontinuous and has a non-local trace



Local Index theory expansions
Maximum principle or otherwise gives the bound

n | _ip2 _ ey
ro2 et (x,y)‘ < Ce e el
where p(x,y) = geodesic distance function.

This says that the heat kernel localizes (or concentrates along the
diagonal) as r — oc.
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Maximum principle or otherwise gives the bound

plx.y)?

e 17 (x,y)‘ < Ce e el

_hn
r 2

where p(x,y) = geodesic distance function.

This says that the heat kernel localizes (or concentrates along the
diagonal) as r — oc.
Local index theory (or semiclassical analysis) now gives expansions

tr (e‘tD'Z) ~ r2(o(t)+a(t)rt+..)

tr(D,e*tDrz) ~ T (do(t) + i (t)r )

Integrating the second expansion shows o (rg) bound on the first

summand of

1
1 _
T :/0 o=t (D,e fDrZ) dt +tr E(D,).



Local Index theory expansions

In general for an smooth odd trace

n—

. (Go(p)+ Ci(p)rt+..).
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Since E is odd, this would imply a bound on second summand
except that it is discontinuous at 0. Need to control dimension of
the kernel k,.



Local Index theory expansions

In general for an smooth odd trace

tr ¢°%(D,) ~ rT (Go(p)+ Ci(p)rt+..).

Since E is odd, this would imply a bound on second summand
except that it is discontinuous at 0. Need to control dimension of
the kernel k,.

. _n . _n — 2
lim r—2k, < lim r 2tr(e tD’)Sco(t)—>0, as t — oo.
r—o0 r—o00
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n—1

No. The conjectured optimal bound is n, = O (r 2 )

An explicit computation shows that one can prove no better than
this.
Start with £ — X2™ positive line bundle over complex manifold.

St y?mtl — it circle bundle of £

iy
X2m. n=2m+1.

Chern connection on L gives splitting TY = TS! @ 7* TX. Choose
adiabatic family of metrics

1 _
gETY :gTS P e 1gTX.

A spin structure on X corresponds to a square root bundle
K&2 = Ky = NP TOL X, Asscociated twisted Dirac operator

\6 (5[( + 5;) - \/5 <5K®£®k + 5;2®£®k> .
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The spin structures on TX, TS' combine to give one on TY. We
twist the spin bundle trivially S™Y ® C but with the connections
d + ira, a dual to generator of S! action. This gives our DE.

By using Fourier modes along the S it is possible to write the
spectrum of D¢ in terms of the spectrum of

Aﬁ = (5;(5; + 5;5/() |/\0,p.

There are two types of eigenvalues.

Type 1.
= (—1)° _ My <p<
A=(-1) (k—l—e(p 2) r), 0<p<mkelZ
multiplicity = APk = dim HP (X, K ® LZ).
Type 2.

(—1)P+15 + \/(2/( +e(2p—m) —2r +1)2 + 4p¢
2

where %u2 is a positive eigenvalue of AY.
Gives large kernel conjecture for the Dirac operator.in this case.

A= , 0<p<mke
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This computation now gives an asymptotic formula for 7% in terms
of characteristic classes on the base.

m patl [r+%] k2
7= Z_; (a+1)! ; al /XCl(ﬁ)‘e’[ch(’C)td(X)]m_a
+0(1)

The above formula shows 7;"¢

. . . n—1
is discontinous of O (rT) Hence
this would be the optimal estimate on the eta invariant.

However this isn't an exact formula as there is an O (1).
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Explicit computation of the eta invariant

To get an explicit computation of the eta invariant, we let ¢ — 0.

1 ~
=r, _ . =r, TZ
7 e _ J%n E—’_Sf{DAn‘s}Ogégs_F 7(27”-)m+1 /Z A(R )

Then lim._,o 7"° exists by work of Bismut-Cheeger ('89), Dai ('91),
Zhang ('94). The spectral flow function is found, for € small, from
our description of the spectrum. The third term is a characteristic
class Z =Y x [0,¢].

The result is a computation in terms of

hPk = dim HP (X, K® E®k) and characteristic classes of TX!?
and L. This generalizes a computation of Nicolaescu ('97) in
dimension 3.



Explicit computation of the eta invariant

I xp((1—2{r})< .
LA |0 - g ept), ez
1 ~ £ftanh(ﬁ) m . -
2{fo(X) |:2‘2:tm'1h(;):| exp {kc} + h2 if r =k,
|im0 = +Zp>% (—1)P bk — Zp<% (-1)° hp’k}, m even
e—
1 A(X %—tanh(%) k fr =k
10 G A [ exp k) ir=k
+ Zp>% (—1)P bk — Zp<% (-1) hp’k} m odd.




Explicit computation of the eta invariant

Sf{DAr,é}og(sgg = Z Z hPk

p>7even k= [,,E(p,
Lr]

DN S

p>%,0dd k= Lr—a(p—%)J +1

[r=e(p—3)1-1

INE]
N—r
JR—|

SR S

p<Todd  k=|r]+1



Explicit computation of the eta invariant

/ A(RT?) —(27r)/ d5/ Qo exp{Q}, where
z 0 X
Qo =2tr {p (RTXLO + 2i5w>} +2p(2idw),

Q, =2tr [/p' (RTX” n izaw)} +i2p (2i6w)

and p(z) = 3 log <%)



Thank you.



