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1Sinéad Ryan, see also http://www.maths.tcd.ie/˜ryan/3431.html
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Just 2 questions for this homework, but question 1 is quite long ... enjoy!

1. Two concentric spheres have radii a1 and a2 with a2 > a1 and each is divided into two
hemispheres by the same horizontal plane. The potential on the upper hemisphere of the
inner sphere is maintained at constant value +V and the lower hemisphere at zero potential.
The potential on the upper hemisphere of the outer sphere is at zero potential while the lower
hemisphere is at negative constant value −V .

The general expression for the potential between the two spheres, a1 ≤ r ≤ a2, in this case is
(using the usual spherical coordinates (r, θ, φ))

Φ(r, θ, φ) =
∞∑
`=0

[A`r
` +B`r

−`−1]P`(cos θ) . (1)

(a) What are the boundary conditions on the potential Φ?

(b) For ` = 0, 1, 2 use the orthogonality of the Legendre polynomials to derive linear equa-
tions for A` and B` and solve these explicitly to find the first few terms in the expansion
of Φ.

(c) Find the general expression for arbitrary `.

(d) Consider now the case where the hemispheres are connected but the inner shell is main-
tained at zero potential and the outer shell is held at some known fixed potential V (θ, φ).
Find the potential at every point between the shells as a series of spherical harmonics.

Hint: for the third question you might like to separately consider the case of even and odd
` when integrating the Legendre polynomials by using the Rodgrigues formula in these two
scenarios.

2. Consider the vector potential

~A(~x) =
g

4π

∫ 0

−∞
dz′

ẑ × (~x− z′ẑ)

|~x− z′ẑ|3
.

Interesting fact: This is the Dirac expression for the vector potential of a magnetic monopole
located at the origin (and its associated Dirac string along the negative z-axis).

(a) Caculate ~A explicitly and show that in spherical coordinates it has components

Ar = 0, Aθ = 0, Aφ =
g(1− cos θ)

4πr sin θ
=

g

4π

tan θ/2

r
.

(b) Calculate ~B and show it has the form of a point charge (ignoring the point at θ = π).
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