
1. Consider a conducting sphere, radius a, centred at the origin. A positive charge +q
is located at z = −R and a charge −q is located at z = R.

(a) Find a Green’s function for the problem and use it to determine the potential
outside the sphere.

The potential on the sphere is zero, which can be seen by calculating the work
done in moving a charge from infinity to the surface of the sphere along a line
in the xy plane.

Therefore

Φ(~x) =
1

4πε0

∫
V

ρ(~x′)G(~x, ~x′)d3x′ (1)

Remember that V is the volume of interest ie outside the sphere. Noting that
the charge distributions due to +q,−q respectively can be written as qδ(~x′+Rk̂)
and −qδ(~x′ −Rk̂ we have

Φ(~x) =
1

4πε0

∫
V

(
qδ(~x′ +Rk̂)− qδ(~x′ −Rk̂)

)
G(~x, ~x′)d3x′

=
q

4πε0

[
G(~x′,−Rk̂)−G(~x′, Rk̂)

]
(2)

Now recall that the Green’s function for a sphere of radius a was determined in
lectures so we use that result here (here I am using the result determined via
method of images). The (Dirichlet) Green’s function is

G(~x, ~x′) =
1√

r2 + r′2 − 2rr′ cos γ
− 1√

r2r′2

a2
+ a2 − 2rr′ cos γ

and applying that result to this problem:

G(~r,Rk̂) =
1

R
√

1− 2r
R

cos θ + r2

R2

− (a/r)

R
√

1− 2a2

rR
cos θ + a4

R2r2

.

and

G(~r,−Rk̂) =
1

R
√

1 + 2r
R

cos θ + r2

R2

− (a/r)

R
√

1 + 2a2

rR
cos θ + a4

R2r2

.

Putting these expression together in eqn 2 yields the result.
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(b) Show that the charge density on the sphere is σ = 3ε0E0 cos θ where E0 =
2q/(4πε0R

2).

You can simplify the expression above by considering R→∞ in which case

G(~r,Rk̂) =
1

R

(
1 +

r

R
cos θ

)
− a

rR

(
1 +

a2

rR
cos θ

)
and

G(~r,−Rk̂) =
1

R

(
1− r

R
cos θ

)
− a

rR

(
1− a2

rR
cos θ

)
and combining the terms as previously

Φ(~x) = − 2q

4πε0R2

(
r cos θ − a3 cos θ

r2

)

and the charge density on the sphere is σ =
∂Φ

∂r

∣∣∣∣
r=a

giving

σ = 3ε0E0 cos θ

with E0 = 2q/4πε0R
2.

2. Consider a spherical shell of radius a with a missing cap at the north pole - defined
by the cone with opening angle α and with a uniform charge distribution, σ. The
charge distribution in spherical coordinates is

ρ(r, θ, φ) = σδ(r − a)Θ(cosα− cos θ),

where Θ(x) is the Heaviside function [defined by Θ(x) = 0 for x < 0 and Θ(x) = 1
for x > 0].

Sketch the sphere. Find the potential inside and outside of the spherical surface.
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This problem has azimuthal symmetry and so we may use for the potential the general
formula

∞∑
`=0

[A`r
` +B`r

−`−1]P`(θ) . (3)

Due to the charge on the sphere we expect the potential to have a jump at r = a so
we solve in the two regions r < a and r > a and then match our answers. For the
region r < a we demand the solution be well defined at the origin and so B` = 0 for
all `. In the region r > a we impose that as r →∞ the potential goes to zero and so
A` = 0 for all `.

Φ(r, θ, φ) =


∑∞

`=0A`r
`P`(cos θ) , r < a∑∞

`=0B`r
−(`+1)P`(cos θ) , r > a .

(4)

We can now demand continuity at the sphere, i.e. r = a, such that

∞∑
`=0

A`a
`P`(cos θ) =

∞∑
`=0

B`a
−(`+1)P`(cos θ) (5)

and as the P` are orthogonal we can project onto each coefficient

A` = a−(2`+1)B` . (6)

From the Poisson equation

∇2Φ = − σ
ε0
δ(r − a)Θ(cosα− cos θ) (7)

we can use integration over a region containing the jump∫ a+ε

a−ε
r2dr∇2Φ = −

∫ a+ε

a−ε
r2dr

σ

ε0
δ(r − a)Θ(cosα− cos θ) (8)

where we have, by integrating the radial derivative term in ∇2 by parts, and dropping
terms which vanish in the limit ε→ 0

r2
∂Φ

∂r

∣∣∣∣a+ε
a−ε

= −a2 σ
ε0

Θ(cosα− cos θ) . (9)

Hence we find

∞∑
`=0

B`a
`+2(2`+ 1)P`(cos θ) = − σ

ε0
Θ(cosα− cos θ) (10)

and again using the orthogonality of the Legendre functions

B` =
a`+2σ

2ε0

∫ cosα

−1
P`(cos θ)d(cos θ) . (11)
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To evaluate the integral we can use

dP`+1

dx
− dP`−1

dx
− (2`+ 1)P` = 0 , ` > 0 (12)

which follows from Rodrigues formula and can be found in Jackson Chp 3. Hence we
find

B` =
a`+2σ

2(2`+ 1)ε0
[P`+1(cosα)− P`−1(cosα)] (13)

where we use P`(−1) = (−1)`. This formula is valid for ` > 0 for the case ` = 0 e
have P0(x) = 1 so that

B0 =
a2σ

2ε0
[cosα + 1] . (14)

Hence we find for r > a

Φ(r, θ, φ) =
a2σ(cosα + 1)

2rε0
+

σ

2ε0

∞∑
`=1

[P`+1(cosα)− P`−1(cosα)]

2`+ 1

a`+2

r`+1
P`(cos θ) . (15)

Let us note that if we let α→ 0 so that the shell becomes a sphere the leading term
is

Φ(r, θ, φ)→ Qtot

4πrε0
(16)

where Qtot = 4πa2σ while the subleading terms vanish which is wh at we would
expect. Inside the sphere we have

Φ(r, θ, φ) =
aσ(cosα + 1)

2ε0
+

σ

2ε0

∞∑
`=1

[P`+1(cosα)− P`−1(cosα)]

2`+ 1

r`

a`+1
P`(cos θ) . (17)

3. The associated Legendre equation (see lecture notes), is a second order differential
equation and as such has 2 linearly independent solutions: the associated Legendre
functions of the first and second kind.

Denoting these as Pm
l (x) and P̃m

l (x) note that for non-zero m one solution, say P̃m
l (x)

diverges as x → ±1 and for general m the Rodrigues’ formula gives the Pm
l (x) (for

m ≥ 0):

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l.

• Comment on the allowed values for m and l so that solutions to the associated
Legendre equation remain finite.
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• Write down the first few polynomials, specfically
P 0
0 (x), P 0

1 (x), P 1
1 (x), P 1

2 (x), P 2
2 (x), P 1

3 (x), P 2
3 (x) and use mathematica (or your

favourite plotting package) to plot these.

P 0
0 (x) = 1

P 0
1 (x) = x

P 1
1 (x) = −(1− x2)1/2

P 1
2 (x) = −3x(1− x2)1/2

P 2
2 (x) = 3(1− x2)

P 1
3 (x) =

3

2
(1− 5x2)1/2

P 2
3 (x) = 15x(1− x2)

You can see the Legendre polynomials plotted at e.g Wolfram’s Mathworld Page

• The Rodriques’ formula is also valid for negative m if |m| ≤ l. Show that

P−ml (x) = (−1)m (l−m)!
(l+m)!

Pm
l (x).

Consider (x2 − 1)l = (x+ 1)l(x− 1)l and then

dl+m

dxl+m
(x2 − 1)l =

dl+m

dxl+m
(x2 − 1)l

[
(x+ 1)l(x− 1)l

]
=

l+m∑
s=0

(l +m)!

(l +m− s)!
dl+m−s

dxl+m−s
(x+ 1)l

ds

dxs
(x− 1)l

Now, both s and l+m− s must be ≤ l, otherwise one of the derivatives is zero:
l + m − s ≤ l ⇒ s ≥ m. So, for m ≥ 0 sum runs from s = m to l. For m < 0
sum runs from s = 0 to l +m = l − |m|. and

dk(x± 1)l

dxk
=

l!

(l − k)!
(x± 1)l−k

So,

dl+m

dxl+m
(x2 − 1)l =

∑ (l +m)!

(l +m− s)!s!
l!

(s−m)!
(x+ 1)s−m

l!

(l − s)!
(x− 1)l−s

and so,

dl+m

dxl+m
(x2 − 1)l = (l!)2

l∑
s=m

(l +m)!(x+ 1)s−m(x− 1)l−s

(l +m− s)!s!(s−m)!(l − s)!
for +m

dl−m

dxl−m
(x2 − 1)l = (l!)2

l−m∑
s′=0

(l −m)!(x+ 1)s
′+m(x− 1)l−s

′

(l −m− s′)!s′!(s′ +m)!(l − s′)!
for −m
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Setting s = s′ +m

dl−m

dxl−m
(x2 − 1)l = (l!)2

l∑
s=m

(l −m)!(x+ 1)s(x− 1)l+m−s

(l − s)!(s−m)!s!(l +m− s)!

=
(l −m)!

(l +m)!
(x2 − 1)m

dl+m

dxl+m
(x2 − 1)l

The last step is to write

Pm
l =

−1)m

2!l!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l

and

P−ml =
−1)−m

2!l!
(1−x2)−m/2 d

l−m

dxl−m
(x2−1)l =

−1)−m

2!l!
(1−x2)−m/2 (l −m)!

(l +m)!
(x2−1)m

dl+m

dxl+m
(x2−1)l

and the result follows.
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