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1. (a) Given two scalar functions Ψ and Φ prove the one-dimensional Green theorem∫ 1

0

[
Φ
d2Ψ

dx2
−Ψ

d2Φ

dx2

]
dx =

[
Φ
dΨ

dx
−Ψ

dΦ

dx

]∣∣∣∣1
0

Consider the first term under the integral on the l.h.s. and use integration by
parts ∫ 1

0

Φ
d2Ψ

dx2
dx =

∫ 1

0

(
d

dx

[
Φ
dΨ

dx

]
− dΦ

dx

dΨ

dx

)
dx

=

[
Φ
dΨ

dx

]∣∣∣∣1
0

−
∫ 1

0

dΦ

dx

dΨ

dx
dx .

Now repeat this on the second term∫ 1

0

Φ
d2Ψ

dx2
dx =

[
Φ
dΨ

dx
−Ψ

dΦ

dx

]∣∣∣∣1
0

+

∫ 1

0

d2Φ

dx2
Ψdx (1)

which is the required result.

(b) Now recall the general formula for the potential following from Green’s theorem

Φ(~x) =
1

4πε0

∫
V

ρ(~x′)

R
d3x′ +

1

4π

∮
S

[ 1

R

∂Φ

∂n′ − Φ
∂

∂n′

(
1

R

)]
da′ (2)

where R = |~x− ~x′|.
Consider the case of a charge free volume, V , enclosed by a sphere of radius R0

centered on the point ~x0. Specialise the above formula to this case.

Use the divergence theorem to show that

Φ(~x0) =
1

4πR2
0

∫
S

Φ(~x′)da′ = 〈Φ〉S . (3)

This is the mean value theorem of electrostatics: For charge-free space the value
of the electrostatic potential at any point is equal to the average of the potential
over the surface of any sphere centered on that point.

For the case of a charge free volume, V , enclosed by a sphere of radius R0

centered on the point ~x0

1Sinéad Ryan, see also http://www.maths.tcd.ie/˜ryan/34401.html
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Φ( ~x0) =
1

4π

∮
S

[ 1

R0

∂Φ

∂n′ − Φ
∂

∂n′

(
1

R

)∣∣∣∣
R=R0

]
da′ . (4)

where R = |~x0 − ~x′| and R = R0 when ~x′ lies on the sphere surrounding ~x0 of
radius R0. The normal vector at the surface points out of the volume of interest,
in this case in the direction of increasing radius, thus

∂

∂n′
1

R

∣∣∣∣
R=R0

=
∂

∂R

1

R

∣∣∣∣
R=R0

= − 1

R2
0

. (5)

So we can write

Φ( ~x0) = − 1

4πR2
0

∮
S

Φ(~x)da′ +
1

4πR0

∮
~∇Φ · ~nda′ (6)

Using the divergence theorem one can show that∮
S

~∇Φ(~x′) · ~n da′ = −
∮
S

~E · ~n da′ =

∫
V

~∇ · ~E d3x′ = 1/ε0

∫
V

ρ(~x′) d3x′ = 0 (7)

and hence Φ( ~x0) = 〈Φ〉S.

2. Show by direct substitution that

Φ(~x) =
1

4πε0

∫
V

ρ(~x′)

|~x− ~x′|
d3x′.

is indeed a solution of the Poission equation ∇2Φ = −ρ/ε0 as discussed in lectures.
You should use spherical coordinates, where the result

∇2

(
1

r

)
=

1

r2
∂

∂r

(
r2
∂

∂r

(
1

r

))
,

is useful.

Solution appended at the end of this document.
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3. (a) Consider the one-dimensional inhomogeneous differential equation

d2Ψ

dx2
+ k2Ψ = −ρ(x)

for k ∈ R defined in the interval 0 ≤ x ≤ 1. Given the Green function, g(x, x′),
satisfying the equation

d2g

dx2
+ k2g = −δ(x− x′)

with boundary conditions g′(0, x′) = g′(1, x′) = 0 where g′(x, x′) = dg(x,x′)
dx

, show
that the general solution is

Ψ(x) =

∫ 1

0

g(x, x′)ρ(x′)dx′ ,

for homogeneous boundary conditions Ψ′(0) = Ψ′(1) = 0. You may use that the
Green function is symmetric in its arguments g(x, x′) = g(x′, x).

We can use the one-dimensional version of Greens theorem given above∫ 1

0

[
φ
d2ψ

dx2
− ψd

2φ

dx2

]
dx =

[
φ
dψ

dx
− ψdφ

dx

]∣∣∣∣1
0

with ψ(x) = Ψ(x) and φ(x) = g(x, x′). The left-hand side is zero using the
boundary conditions while using the differential equations satisfied by Ψ and g
we have the result ∫ 1

0

[
g(x, x′)ρ(x)−Ψ(x)δ(x− x′)

]
dx

as required.

Show that the Green function defined above is given by

g(x, x′) =

{
A cos kx , x < x′

B cos k(1− x) , x > x′

Determine A and B by demanding G be continuous at x = x′ and satisfies the
jump condition: limε→0 g

′(x′ + ε)− g′(x′ − ε) = −1.

Using the general solution for x 6= x′

g′′ = −k2g ⇒ g = A cos kx+B sin kx

we have from g′(x = 0 < x′) = 0 ⇒ B = 0 while for g′(x = 1 > x′) = 0 ⇒
G′(x > x′) = B cos k(x′ − 1). Continuity at x = x′ implies that

A cos kx′ = B cos k(x′ − 1)
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while the jump condition

lim
ε→0

g′(x′ + ε)− g′(x′ − ε) = −1

gives
−kB sin k(x′ − 1) + kA sin kx′ = −1

and hence

A = −cos k(x′ − 1)

k sin k
, B = −cos kx′

k sin k
.

(b)(c) Consider the case k = 0. Find the coefficients cn so that

g(x;x′) =
∞∑
n=1

cn sin(nπx) sin(nπx′) (8)

is a Green function on the interval 0 ≤ x ≤ 1 satisfying Dirichlet boundary
conditions at x′ = 0 and x′ = 1.

Taking the second derivative of g(x;x′) we find that

g′′(x;x′) = −
∞∑
n=1

cnn
2π2 sin(nπx) sin(nπx′) (9)

and combining with the sine-series representation of the delta-function

δ(x− x′) = 2
∞∑
n=1

sin(nπx) sin(nπx′) (10)

we find that the defining equation for the Green function is satisfied if cn = 2
π2n2 .

As g(x, x′) = 0 for x = 0 and x = 1 (or for x′ = 0 and x′ = 1) it satisfies Dirichlet
boundary conditions.
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