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1. Express the function f(x) = |cos(x)| as a (real) Fourier series.

This has period π, so

an =
2

π

∫ π/2

−π/2
dx| cos(x)| cos(nx) =

2

π

∫ π/2

−π/2
dx cos(x) cos(nx).

For n = 0,

a0 =
2

π

∫ π/2

−π/2
dx cos(x) =

4

π
.

and

an =
1

2

2

π

∫ π/2

−π/2
dx
(
ei(n+1)x + ei(−n+1)x

)
,

=
1

π

1

i

e(n+1)ix

n+ 1
+
ei(−n+1)x

−n+ 1

∣∣∣∣π/2
−π/2

,

=
2

π

(
1

n+ 1
sin
(

(n+ 1)
π

2

)
+

1

−n+ 1
sin
(

(1− n)
π

2

))
.

For n odd, sin
(
(n± 1)π

2

)
= 0. For n even, sin

(
(n+ 1)π

2

)
= cos(nπ/2) = (−1)n/2

and sin
(
(−n+ 1)π

2

)
= cos(nπ/2) = (−1)n/2. So,

an =
2

π

(
1

n+ 1
+

1

−n+ 1

)
(−1)n/2 =

4

1− n2
.

So, the fourier series is

| cos(x)| = 2

π
+

4

π

∞∑
n=1

(−1)n

1− 4n2
cos(2nx).

where n→ 2n for n even.
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2. Evaluate the integral ∫
D

dV
√

3x2 + 3z2,

where D is the solid bounded by y = 2x2 + 2z2 and the plane y = 8.

You should begin by sketching the solid of interest.

Use spherical polars in the xz plane. Write x = r cos θ and z = r sin θ so that
x2 + z2 = r2. Then 2x62 + 2z2 ≤ y ≤ 8 with 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 2 (from z = 0
in 8 = 2x62 + 2z2). Then∫

D

dV
√

3x2 + 3z2 =

∫ 2π

0

dθ

∫ 2

0

dr

∫ 8

2x62+2z2
dy
√

3x2 + 3z2,

=

∫ 2π

0

dθ

∫ 2

0

dr
√

3x2 + 3z2y
∣∣∣8
2x62+2z2

,

=

∫ 2π

0

dθ

∫ 2

0

dr
√

3x2 + 3z2(8− (2x2 + 2z2)).

Now x2 + z2 = r2 so we can rewrite the integral above as∫
D

dV
√

3x2 + 3z2 =

∫ 2π

0

dθ

∫ 2

0

dr
√

3r62(8− 2r2)r,

= 2π

∫
0

62dr
√

3(8r2 − 2r4),

=
√

32π

[
8

3
r3 − 2

5
r5
]2
0

,

= 2π
√

3

[
64

3
− 64

5

]
=

256
√

3π

15
.
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3. An eigenfunction of the Fourier transform (f̃(k)), is a function f for which

f̃(k) =
1

2π

∫ ∞
−∞

dxf(x)e−ikx = λf(k),

where λ is a scalar called the eigenvalue.

Show that the Gaussian function f(x) = e−
1
2
x2 is such an eigenfunction.

Note: The gaussian integral formula is given in the useful information page and
may be used without proof

Consider the function

Φ(x, t) = e2xt−t
2

=
∞∑
n=0

tn

n!
Ht(x),

the so-called generating function for the Hermite polynomials Ht. By computing
the fourier transform of e−

1
2
x2Φ(x, t) show that the functions fn(x) = e−

1
2
x2Ht(x)

are eigenfunctions of the Fourier transform.

Determine the eigenvalues λn.

Work out f̃(k) by

f̃(k) =
1

2π

∫ ∞
−∞

dxe−
1
2
x2e−ikx

=
1

2π

√
π
1
2

e−ik
2/4( 1

2
)

=
1

2π

√
2πe−k

2/2

=
1√
2π
e−

1
2
k2

=
1√
2π
f(k).

Now, Φ(x, t) = e2xt−t
2

=
∑∞

n=0
tn

n!
Ht(x). Taking the FT of e−

1
2
x2Φ(x, t),

F(e−
1
2
x2Φ(x, t)) =

1

2π

∫ ∞
−∞

dxe−
1
2
x2+2xt−t2−ikx

= e−
k2

2
−2kit+t2

=
∞∑
0

e−
k2

2 Hn(k)
(−it)n

n!
.

And the FT of e−
1
2
x2
∑∞

n=0
tn

n!
Ht(x) can be written as

∑∞
n=0F(e−x

2/2Hn(x)) t
n

n!
. Equat-

ing like powers of n on the left and right sides of the FT gives

F(e−x
2/2Hn(x)) = (−i)ne−k2/2Hn(k).

ie eigenfunctions as required and using the eigenfunction result above the eigenvec-
tors are (−i)n.
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4. Prove that a continuous vector field F in an open and connected domain, is conser-
vative if and only if it is path independent.

Given the vector field, F = yi− xj, determine the line integral
∫
C
F · dl from (1, 0)

to (0,−1) along

• the straight line segment joining these points,

• three-quarters of the unit circle, centred at the origin traversed counterclock-
wise.

What do the results imply about the field F?

Proof in the notes.

• the straight line segment:
Parameterise the curve as r = (1− t)i− ty, with 0 ≤ t ≤ 1. So, ∂r/∂t = −i−y
and also F = −ti + (t− 1)y . Then the line integral is∫

C

F · dl =

∫ 1

0

dt ((−t)i + (t− 1)y) · (−i− y)

=

∫ 1

0

dtt+ 1− t

= 1.

• This time parameterise the curve as r = cos(t)i + sin(t)y giving ∂r/∂t =
− sin(t)i + cos(t)y and F = sin(t)i− cos(t)y. The line integral is∫

C

F · dl =

∫ 3π/2

0

(sin(t)i− cos(t)y) · (− sin(t)i + cos(t)y)

=

∫ 3π/2

0

−1

= −3π

2
.

The line integrals along the 2 paths differ so F is path-dependent and not
conservative.
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1 Some useful formulae

1. A function with period l has a Fourier series expansion

f(x) =
a0
2

+
∞∑
n=1

an cos

(
2πnx

l

)
+
∞∑
n=1

bn sin

(
2πnx

l

)
,

where

a0 =
2

l

∫ l/2

−l/2
dxf(x),

an =
2

l

∫ l/2

−l/2
dxf(x) cos

(
2πnx

l

)
,

bn =
2

l

∫ l/2

−l/2
dxf(x) sin

(
2πnx

l

)
.

2. A function with period l has a Fourier series expansion

f(x) =
∞∑

n=−∞

cn exp

(
2iπnx

l

)
,

where

cn =
1

l

∫ l/2

−l/2
dxf(x) exp

(
−2iπnx

l

)
.

3. The Fourier integral representation (or Fourier transform) is

f(x) =

∫ ∞
−∞

dkf̃(k)eikx,

f̃(k) =
1

2π

∫ ∞
−∞

dxf(x)e−ikx.

4. The Gaussian integral is ∫ ∞
−∞

dxe−ax
2+bx =

√
π

a
eb

2/4a,

for a > 0 and b ∈ C.
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