UNIVERSITY OF DUBLIN

XMA1M01

TRINITY COLLEGE

Faculty of Engineering, Mathematics and Science

SCHOOL OF MATHEMATICS

JF Natural Sciences JF Human Health and Disease

Trinity Term 2010

Module 1M01

Wednesday, May 12

Sports Centre

09:30-12:30

Dr. S. Ryan, Dr. R.H. Levene

Credit will be given for the best THREE questions attempted IN EACH SECTION. Use a different answer book for each section.

Log tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination. Please indicate the make and model of your calculator on each answer book used.

SECTION A

1. Consider the matrix

$$A = \left(\begin{array}{cc} 2 & 3\\ 3 & 5 \end{array}\right).$$

- (a) [14 marks] Use Gauss-Jordan elimination to find the inverse of the matrix A.
- (b) [3 marks] Verify that your result is correct.
- (c) [3 marks] Verify that you obtain the same result by applying Cramer's rule.

Write the augmented matrix and use row operations to determine A^{-1}

So,

$$A^{-1} = \left(\begin{array}{cc} 5 & -3\\ -3 & 2 \end{array}\right).$$

To check this is correct, check $AA^{-1} = A^{-1}A = I$, ie

$$AA^{-1} = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2(5) + 3(-3) & 2(-3) + 3(2) \\ 3(5) + 5(-3) & 3(-3) + 5(2) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

and similarly for $A^{-1}A$.

By Cramer's rule, if

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \text{then} \quad A^{-1} = \frac{1}{detA} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Checking, det(A) = 2(5) - 3(3) = 1 so

$$A^{-1} = \frac{1}{1} \begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}.$$

as before.

2. Consider the following statement:

Theorem: Suppose the largest eigenvalue of a Leslie matrix is r. Then the relative growth rate of the population described approaches r as the number of years approaches infinity in the long-term growth rate is the largest eigenvalue of the system.

Now, given the Leslie matrix for a particular bird population in central Missouri is

$$G = \left(\begin{array}{cc} 0.728 & 1.302 \\ 0.52 & 0.62 \end{array} \right).$$

- (a) [6 marks] What is the defining equation of an eigenvalue λ of an $n \times n$ matrix A?
- (b) [14 marks] Find the long-term (percentage) growth rate from the Leslie matrix G given here.

The characteristic equation is $det(A - \lambda I) = 0$ and $Av = \lambda v$. For % growth rate, first find eigenvalues from $det(A - \lambda I) = 0$.

$$0 = det \begin{pmatrix} 0.728 - \lambda & 1.302 \\ 0.52 & 0.62 - \lambda \end{pmatrix}$$

= $(0.728 - \lambda)(0.62 - \lambda) - (0.52)(1.302)$
= $0.45136 - 1.348\lambda + \lambda^2 - 0.67704$
= $\lambda^2 - 1.348\lambda - 0.22568$

Finding roots gives

$$\lambda = \frac{-(-1.348) \pm \sqrt{(-1.348)^2 - 4(1)(-0.22568)}}{2(1)}$$
$$= \frac{1.348 \pm \sqrt{2.719824}}{2}$$
$$= (1.348 \pm 1.6492)/2$$

Page 4 of 7

So, the eigenvalues are $\lambda_1 = 1.4985$ and $\lambda_2 = -0.1506$. The largest eigenvalue is $\lambda_1 = 1.4985$ giving a % growth rate of 49.85% ie \approx 50%.

3. Consider the following experiment. A box contains five tickets labelled

Six tickets are drawn randomly from this box with replacement. That means that a ticket is drawn, observed and then replaced before the next ticket is drawn.

- (a) [5 marks] Define a binomial experiment.
- (b) [5 marks] Explain why the experiment described is binomial.
- (c) [5 marks] Find the probability that the sum of the six tickets drawn is 3.
- (d) [5 marks] What is the standard deviation for this experiment?

A binomial experiment is one for which

- there is a fixed number, n of trials.
- each trial can be characterised a success or failure.
- the probability for success in each trial is constant/
- the central problem is to count the number of successes that occur.

The experiment above is binomial since: there is a fixed number of trials ie six tickets are drawn; each trial is either a success (a 1 is drawn) or a failure (a 0 is drawn); the probability for success is constant, ie for each trial P(draw 1) = 2/5; the sum of tickets is 3 only if exactly 3 tickets labelled 1 are drawn.

To find the probability: let X be the number of 1s drawn. X has a binomial (6,2/5)

distribution ie n = 6, p = 0.4 and q = 1 - p = 0.6. So,

$$P(X = k) = \binom{n}{k} p^{k} q^{n-k}$$

$$P(X = 3) = \binom{6}{3} (0.4)^{3} (0.6)^{6-3}$$

$$= \frac{6!}{3!3!} (0.064) (0.216)$$

$$= (20)(0.064)(0.216)$$

$$= 0.27648$$

so, an $\approx 28\%$ probability that the sum of six tickets drawn is 3.

- 4. Consider a large class of students. Each student in the class is given an identical box containing three tickets, marked ◊, ♡ and □. Students are asked to draw two tickets from the box without replacing the first ticket back into the box. A prize is given to those who draw a ◊ first and a □ second.
 - (a) [3 marks] State the principle of equally likely outcomes.
 - (b) [5 marks] State the multiplication rule for the probability that two events, A and B, both occur. Explain what the probability P(B|A) means.
 - (c) [4 marks] Considering the experiment described above, what proportion of students draw the ◊ ticket first?
 - (d) [4 marks] Of the students that drew the ◊ first, what proportion draw the □ second?
 - (e) [4 marks] What proportion of the students in the class will win the prize?

Principle of equally likely outcomes: from notes

Multiplication rule: P(A and B) = P(A)P(B-A)

Page 6 of 7

P(B|A) is the conditional probability that B occurs given A has occured.

 $\mathsf{P}(\diamondsuit)=1/3:$ a third of the class draw a $\diamondsuit.$

P(these students draw a \Box) = 1/2: half the students that drew a \diamondsuit will draw a \Box .

 $\mathsf{P}(\diamondsuit$ first followed by $\Box)=(1/3)(1/2)=1/6:$ a sixth of the class win the prize.

SECTION B

- 5. (a) [6 marks] Find an equation for the straight line which is parallel to y = 3x - 4 and passes through the point (1, 2).
 - (b) [7 marks] Simplify the expression $\sqrt[4]{16x^3}e^{\ln(x)}$.
 - (c) [7 marks] What is the average rate of change of the function $f(x) = x^2 3x$ as x varies from -1 to 2?
- 6. (a) Find the derivatives of the following expressions:
 - (i). [4 marks] $\frac{\sin(x)}{1+x}$

 - (ii). [4 marks] $5 6e^{1+x^2} + x \ln(x)$
 - (iii). [4 marks] $(x^2 + \sin(2\pi x))^{0.3}$

(b) [8 marks] Evaluate the indefinite integral $\int e^x - 4x \sin(x^2) dx$.

7. Let
$$f(x) = 12x - x^3 + 10$$
.

- (a) [10 marks] Compute the coordinates of the absolute maximum and the absolute minimum of f(x) over the interval [0,3].
- (b) [10 marks] What is the average value of f(x) over the interval [0,3]?
- 8. The number of bacteria P(t) in a Petri dish grows according to

$$P(t) = (3 \times 10^5)e^{0.04t}$$

where t is the time, in hours, since the bacteria were introduced to the Petri dish.

- (a) [2 marks] How many bacteria were introduced to the Petri dish?
- (b) [4 marks] What is the generation time for this population?
- (c) [7 marks] Compute the instantaneous rate of change of P(t) 24 hours after the bacteria were introduced to the Petri dish.
- (d) [7 marks] When does the population reach 2×10^6 bacteria?