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SECTION A

1. Consider the matrix

A =

(
2 3
3 5

)
.

(a) [14 marks] Use Gauss-Jordan elimination to find the inverse of the matrix A.

(b) [6 marks] Verify that your result is correct

2. Consider the following statement:

Theorem: Suppose the largest eigenvalue of a Leslie matrix is r. Then the rela-
tive growth rate of the population described approaches r as the number of years
approaches infinity ie the long-term growth rate is the largest eigenvalue of the sys-
tem.

Now, given the Leslie matrix for an ovenbird population in central Missouri is

G =

(
0.728 1.302
0.52 0.62

)
(1)

(a) [6 marks] What is the defining equation of an eigenvalue λ of an n×n matrix
A.

(b) [14 marks] Find the long-term (percentage) growth rate from the Leslie matrix
G given here.

3. Consider the following experiment. A box contains five tickets labelled

1 , 0 , 0 , 0 , 1

Six tickets are drawn randomly from this box with replacement. That means that
a ticket is drawn, observed and then replaced before the next ticket is drawn.

(a) [5 marks] Define a binomial experiment.

(b) [5 marks] Explain why the experiment described is binomial.

(c) [5 marks] Find the probability that the sum of the six tickets drawn is 3.

(d) [5 marks] What is the standard deviation for this experiment?

4. Consider a large class of students. Each student in the class is given an identical
box containing three tickets, marked ♦, ♥ and �. Students are asked to draw two
tickets from the box without replacing the first ticket back into the box. A prize is
given to those who draw a ♦ first and a � second.

(a) [3 marks] State the principle of equally likely outcomes.



3 XMA1M01

(b) [5 marks] State the multiplication rule for the probability that two events, A
and B, both occur. Explain what the probability P (B|A) means.

(c) [4 marks] Considering the experiment described above, what proportion of
students draw the ♦ ticket first?

(d) [4 marks] Of the students that drew the ♦ first, what proportion draw the �
second?

(e) [4 marks] What proportion of the students in the class will win the prize?
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SECTION B

5. (a) [6 marks] Find an equation for the straight line which is parallel to y = 3x− 4
and passes through the point (1, 2).

(b) [7 marks] Simplify the expression
4
√

16x3eln(x).

(c) [7 marks] What is the average rate of change of the function f(x) = x2 − 3x
as x varies from −1 to 2?

6. (a) Find the derivatives of the following expressions:

(i). [4 marks]
sin(x)

1 + x

(ii). [4 marks] 5− 6e1+x2
+ x ln(x)

(iii). [4 marks] (x2 + sin(2πx))0.3

(b) [8 marks] Evaluate the indefinite integral

∫
ex − 4x sin(x2) dx.

7. Let f(x) = 12x− x3 + 10.

(a) [10 marks] Compute the coordinates of the absolute maximum and the abso-
lute minimum of f(x) over the interval [0, 3].

(b) [10 marks] What is the average value of f(x) over the interval [0, 3]?

8. The number of bacteria P (t) in a petri dish grows according to

P (t) = (3× 105)e0.04t

where t is the time, in hours, since the bacteria were introduced to the petri dish.

(a) [2 marks] How many bacteria were introduced to the petri dish?

(b) [4 marks] What is the generation time for this population?

(c) [7 marks] Compute the instantaneous rate of change of P (t) 24 hours after the
bacteria were introduced to the petri dish.

(d) [7 marks] When does the population reach 2× 106 bacteria?
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