

**MAU11404 Tutorial Sheet**  
**Submit via Blackboard by 5pm, Friday 19th February 2021** <sup>1</sup>

1. For the following differential equations: state the order, type (ODE or PDE) and whether the equation is linear or non-linear.

- $\alpha y' + \beta y = \gamma(x)$
- $8y''' + xy = \cos(x)$
- $\frac{d^2y}{dx^2} + e^x \frac{dy}{dx} = x \ln(x)$
- $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial t} = \frac{1}{2}(x^2 - t^2)$
- $\alpha \frac{\partial^3 u}{\partial^2 x \partial t} = \beta + \frac{\partial u}{\partial y}$
- $\frac{\partial^3 z}{\partial^2 x \partial t} + \frac{\partial z}{\partial t} - z^2 = 0$

Note that  $\alpha$  and  $\beta$  are constants in each of the equations above.

2. Show that  $y(x) = Cx^{-\frac{3}{2}}$  is a solution of the differential equation,

$$4x^2y'' + 12xy' + 3y = 0, \quad x > 0,$$

where  $C$  is an arbitrary constant.

Use the *initial conditions*:  $y(4) = \frac{1}{8}$  and  $y'(4) = -\frac{3}{64}$ , to show that in this case the unique solution to the differential equation above is  $y(x) = x^{-\frac{3}{2}}$ .

3. Use the integrating factor method obtain a general solution for

- $(x + 1)y' + y = (x + 1)^2$
- $y' + y \cot(x) = \cos(x)$
- $\frac{dy}{dx} + 2xy = 2xe^{-x^2}$
- $\cos(x) \frac{dy}{dx} + \sin(x)y = 2\cos^3(x)\sin(x) - 1$
- $y' = 6x(y + 1)$

4. Use the integrating factor method and the initial condition to find the solution, including the constant of integration, of

- $xy' + 2y = 10x^2, \quad y(1) = 3$
- $xy' - y = x^2, \quad y(1) = 3$
- $y' = y \tan(x) - \sec(x), \quad y(0) = 1$

---

<sup>1</sup>also posted at <http://www.maths.tcd.ie/~ryan/11404.html>