Note III.1'2 19 February 2007

Part 1II: ODEs

A differential equation is an equation involving derivatives. An ordinary differential
equation (ODE) is a differential equation involving a function, or functions, of only one
variable. If the ODE involves the nth (and lower) derivatives it is said to be an nth order
ODE. Let y be a function of one variable x, for neatness, we will try to always use = as
the dependent variable and prime for derivative. An equation of the form

hi(z, y(x),y'(x)) = 0 (1)

is a first order ODE.
ha(x, y(x),y'(x),y"(x)) =0 (2)

is second order. A function satisfying the ODE is called a solution of the ODE.

Linear ODEs (2 types)
There are two types of linear ODEs

1. Homogeneous: If y; and y, are solutions so is Ay; + By where A and B are
arbitrary constants.

2. Inhomogeneous: If y; and y, are solutions so is Ay; + By, where A+ B = 1.

where, obviously, the point is in a homogeneous equation, all the terms are y terms, whereas
the inhomogeneous equation has an extra forcing term.

e Homogeneous example: The equation

y' +plx)y +q(z)y =0 (3)

is homogeneous, where p(z) and ¢(x) are some, given, functions of x. Now substitut-
ing Ay, + By, gives

(Ay1+Bys)"+p(Ay1+ Bya) +q(Ay1 + Bys) = Ay +py1+ay1) + Bys +pys+qy2) =0
when ¥, and y, are solutions. W

e Inhomogeneous example: The equation
y' +p@)y +qlx)y = f(z) (5)
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is homogeneous, where p(z), q(z) and f(x) are some, given, functions of z. Now
substituting Ay, + By» gives

(Ayr+Bya)"+p(Ay1+By2) +q(Ayi+Bys2) = A(y{+pyi+ay)+B(ys +pyst+qyz) = (A+B) f

(6)

when y; and y, are solutions. Hence Ay, + By, is a solution is A+ B = 1.

The general first order linear ODE, for a single function, can be written

a(z)y'(x) + b(z)y(x) = f(x) (7)

where a, b and f(x) are arbitrary functions. The equation is homogeneous if f = 0. A
common standard form is write the equation as

Y (z) + p(x)y(z) = f(x) (8)

where p = b/a and f/a has been renamed back to f.
The general 2nd order linear ODE is

a(z)y"(x) + b(x)y' (x) + c(x)y(z) = f(z) (9)

where a, b, ¢ and f are arbitrary functions and the equation is homogeneous if f = 0.
Again, another standard form is

y' (@) +pla)y'(x) + q(=)y(x) = f(z) (10)

First order linear differential equations.

All solutions of

y'(z) + p(z)y(z) = f(z) (11)
can be written

y(@) = Cyu(z) + yp(x) (12)

where y;(z) is a solution of the corresponding homogeneous equation y'(z)+p(z)y(z) = 0
and y,(z) is one solution of the full equation. This can be demonstrated by explicit
construction.

y'(z) + p(@)y(z) = f(x) (13)
can be rewritten J
! Wy(a) = ' f () (14)

where

I(z) = /1‘ dzp(z). (15)



and, here, a is an arbitrary constant. Now, I’(z) = p(z) and I is called an integrating
factor. Integrate from a to x

ammw—ewwmw=/3ua@ﬂ@. (16)

with e/(® = 1. This gives

y(@) = Cyu(z) + yp (), (17)
with y1(z) = e 1@, y,(z) = e 7@ [T dze!®) f(2) and C' = y(a). In practise, this method
will always find a solution, but, often, it is quicker just to stare at the equation and then
guess a solution and check it works.

e Example Find all solutions of the ODE 1

(@) + —yla) =" (18)

Here p(z) = 1/ which has a non-integrable singularity at x = 0! Work with z > 0,
or & < 0. First, the integrating factor I(z) = [dxp(z) = logz + c¢. Set ¢ = 0, or
a=1. e!® =z so that the ODE can be written

d

%(xy) =zt (19)

Integrating gives xy = 12° + C or y = ta* + C/x, that is y1(z) = 1/z, y,(x) = 1a™.

Second order case

All solutions, or the general solution of

y" (@) + pla)y (x) + q(@)y(z) = f(x) (20)

are given by

y(x) = Cryn(z) + Coya(z) + yp() (21)
where y1, 1o are linearly independent solutions of the corresponding homogeneous equa-
tion

y' (@) + p(a)y'(x) + q(x)y(x) = 0 (22)
and y,(z) is a solution of the full equation. C; and Cy are arbitrary constants. This isn’t
proved here, but it is easy to understand why it would be the case: this is a second order
equation so it nears to arbitrary constant, in the initial value problem, one matches y(0)
and the other 3/(0). Now, if you have a solution, adding a solution of the corresponding
homogeneous problem gives you another solution and the homogeneous problem also has
a two-dimensional space of solutions, so it all mathes up. y,(z) is called a particular
integral. The general solution is sometimes written

y(x) = ye(x) + yp() (23)

where y.(x) = Cyy; () +Caysz(x) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.
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Constant Coeffcients

We now consider the special case where the coefficients a, b and ¢ are constants

ay”(x) + by'(x) + cy(z) = f(z). (24)
This type of equation has a nice interpretation as a damped/driven oscillator where
we will use ¢ instead of x as the variable, since it is time. y is the displacement from
equilibrium. Recall the equation for a simple harmonic oscillator

TV _ ) (25)

Now add in a damping force proportional to the velocity dy/dt and a driving force f(t),
which may be periodic or non-periodic,

d?y(t)
dt?
which is a linear ODE with constant coeflcents.

So, back to the general constant coefficient form with = as the variable, the first step
in solving ODEs of this type is to find two solutions of the homogeneous equation

= —wy(t) — yd%—(tt) +d(t) (26)

ay"(z) + by'(x) + cy(z) = 0. (27)
This equation has simple exponential solutions of the form y(z) = e** . Differentiating
y'(z) = A’ and y"(x) = N2 so that
ay”(z) + by +cy = (a\* +bA +¢)y (28)
which is zero provided
ar? + b\ +c = 0. (29)

This is called an auxiliary equation. Thus y;(z) = eM?® and ys(7) = *2* where \; and
A9 are roots of the quadratic auxiliary equation. The complementary function, if A\; # A,
is y(x) = C1eM® 4+ Cyet?®,

If Ay = Ay we only have one exponential solution. In this case a second solution of the
ODE is y(z) = xzeM” and y.(x) = C1eM* + Coze™®. In the oscillator model this special
case corresponds to critical damping. This trick is justified by the fact it works; there are
ways to derived it, for example, by converting the equation into two first order equations
using y; = y and y» = ' and then diagonalizing the corresponding matrix equation and
solving using an integrating factor. In practise, the easiest thing is to keep adding powers
of z until you have two solutions.

e Example: y"+4 3y’ +2y = 0 has auxiliary equation A2+ 3X+2 = 0 with roots \; = 1,
Ay = 2 so the general solution is

y(l’) = C’le:” + 026290 (30)

This corresponds to over damping.



e Example: 3" + 2y +y = 0 has auxiliary equation A% + 2\ 4+ 1 = 0 with two equal
roots A = 1 and so the general solution is

e Example: If the auxiliary equation A\* 4+ X +1 = 0 with complex roots A = % + %\/gz
the general complex solution is

y(zr) = Che 212V 4 CpemamigV3r (32)

where C and Cy are complex constants. The general real solution can be obtained
by imposing the constraint Cy = C' :

1 1
y(r) = e"3% [Cl (cos 5\/§x + i sin cos 5\/§x) + C.C.] (33)
Writing Cy = $(A — iB) where A and B are real constants gives
_1 1 .1
y(r) =e 27 (Acos 5\/§x+Bsm 5\/3%) (34)

this is the underdamped case, it still oscillates.



