Material for lectures: week of March 23rd

A Modified Euler method

We would like to improve on the naive Euler method, essentially improving on the error
scaling as a function of stepsize from O(h) to O(h?).
Considering as we did before, a simple test ODE:

, dx
¥’ =— = f(x,t)
we try a modification to the Euler method: evaluate f more often per step, matching more
terms in the Taylor expansion thereby building a higher-order scheme.

The idea is to make a “trial” step to the midpoint of each subinterval (step). Use this
midpoint to compute the full step across the interval i.e. to get from (z,,t,) to (pi1,tni1)
we use the midpoint at (z Tpydstngl 1).

Now, remember that we want to know ZTny1 and that we know z,, at ¢, so to solve the
ODE we also need to evaluate f ‘1 f(z,t)dt which we can do using a Taylor expansion.
Expand f(z,t) in a Taylor series about the midpoint of the subinterval [t,, tn.1] ie about
N

d
Ft) S F gt g) + (0~ by (1)

Ift=t, +1 i.e. the integral is evaluated around the midpoint then (¢ —t, +%) — 0 and

[l t) = [, 1,t,,1). (2)

Substitute this in the expression for x,,,,

Tp+1 = In_‘_hf(x t)—$n+hf(n—|-) n+)

h
— xn+hf(xn+%,tn+§).

The only unknown on the RHS is 1 and this we get from one Euler step:

n+j

h
xn+% = Tn + §f(xna tn)v (3)

taking care to note that here the step-size is h/2 to go from (z,,t,) to halfway across the
interval (x Tyl tnyd 1).
The algomthm is the following;:

Given xy = z(ty) the initial condition and considering j = 1,..., N with N = (ty —to)/h
and t; = to + jh. Then evaluate in sequence

kl - hf(xjutj)
ky h
ko = hf(xij?,tj—i—i)
iy = zj+ ko

This is called the Modified Euler or the Second order Runge-Kutta Method.

Exercise: Verify that the modified Euler solution in each step incurs an error z,,; =
Ty, + ko + O(h?®) and has a global error of O(h?).

The method is second order (in h) but requires two evaluations of f per step.

Looking again at our example problem z’ = z, x(0) = 1 and comparing the result of
the modified Euler algorithm with our naive Euler implementation yields the results shown
in Figure [I| Just as before we can also monitor the error in the Euler approximate solution

3 T T T T T 3

x(t)

Figure 1: The left hand plot uses the simple Euler method to solve the ODE, the right-
hand plot uses the modified Euler and you can see that it converges to the true solution
(in red) much more quickly.

after N steps i.e. xy compared to the true solution at the same time, x(¢) and the results
from a numerical implementation are shown in Figure [2|

Higher-order methods

You can expand on the idea presented here and derive even higher-order formulae. The
most popular is the fourth order Runge Kutta which for each step requires the following

10 % T T TTT T TTT \' ‘O— ’\’O\L\’\ ‘E)
-1 B //O” //-E]
10 £ Prog or =
E _0~ -7]
-2 I /’O/ /H]
10 o o’ E
=10° < .]
£t o’
b al ///]
T O —
= 10 % /,/ %
><| 5 C A]
107 o 3
.]
10° =7 E
- O Euler .
107 O modified Euler | =
'8 : | 1111 \i I I | \i | 1111 \:
1%.001 0.01 0.1 1
h
Figure 2: The error in the Euler and modified Euler methods as a function of the step size
h.
evaluations:
k1 hf(xn,t,)
ky h
k h n 5 tn o
2 [y + g tn T 2)
ko h
k hf(x, + —,t, + =
3 [y + g tn T 2)
k4 hf(x, + ks, t, + h)
and finally
1
Unt1 = Yn + = (k1 + 2ko + 2k3 + ka) . (4)

6

The global error (after n) steps is order 4, ie z,, = z(t) + O(h*) and requires 4 evaluations
of f per step. Figure |3| shows you how the error in the methods we have seen so far -
Euler, modified Euler (aka 2nd order Runge-Kutta) and 4th order Runge Kutta - compare.
The data are for the numerical solution of the same ODE seen in other plots ie dz/dt =

z(t),z(t =0) = 1.

AR IR B

Y
o

'
IS

[x_N - x(t)]
3

—
o.
o

-
o.
o

\

LA B B A1 111 B AR L

107

T T

/’O’/
_O
_-0"
O
7
pui
7
7
pu
//
pug
7
'
o
'
O Euler

O modified Euler
> 4th-order Runge Kutta

|

T Tl

O

,O"E)

\
[(W)
=)

|

-8
1,001

Figure 3: The (global) error in the numerical solution of ' = z(t),z(0) = 1, compared for
Euler, modified Euler and 4th order Runge-Kutta, as described in the text.

0.01

