
Further material for lectures: week of March 23rd

Higher-order ODEs

The numerical methods we are discussing can be generalised to solve higher-order initial
value problems i.e. ODEs involving second derivatives and higher.
Problems involving nth-order ODEs can always be reduced to n coupled first-order
ODEs.
A general, nth-order differential equation in a single variable, x(t) can be written as

dnx

dtn
= f

(
t, x,

dx

dt
, . . . ,

dn−1x

dtn−1

)
. (1)

Generalising our definition of an initial value problem, the values of x and all its deriva-

tives up to
dxn−1

dtn−1
are specified for some value of t = t0.

Rewriting an nth order ODE

The method is illustrated with an example. Consider the second-order inhomogeneous
ODE

d2y

dx2
+ q(x)

dy

dx
= r(x). (2)

Define a new variable z(x) as

z(x) =
dy

dx
, (3)

and substitute this in the original ODE, Eqn. 2, to get

dz

dx
+ q(x)z(x) = r(x). (4)

In this way, we have transformed the single second-order ODE given by Eqn. 2 to two
coupled first-order ODEs.

dy

dx
= z(x),

dz

dx
= r(x)− q(x)z(x).

Note that the coupled equations are written here in the same form as equations that can
be solved by numerical methods e.g. the Euler method. Also recall that the Euler (and
higher-order) numerical methods solve initial value problems which means that for each of
the coupled equations we need a separate initial condition. In this example, this means

1



we need two initial conditions - one for y and one for z (which of course corresponds to an
initial condition for the derivative of y) for example

y(0) = α,
dy(0)

dx
= z(0) = β. (5)

Given this information we can use the Euler or Runge-Kutta numerical methods to find an
approximate solution. In this case, with Euler, we have two numerical solutions to evolve
from their respective initial conditions, as

yi+1 = yi + hzi, (6)

zi+1 = zi + h (r(xi)− q(xi)zi) . (7)

Why are these coupled equations? To see this note that for each step the value of y,
determined from Eqn. 6 depends on the value of z at the previous step, so both equations
must be iterated together.

Harmonic oscillator with friction

Consider a spring, stretched a distance x0 and then released. The position thereafter is
described by a second-order differential equation (for damped harmonic motion)

d2x

dt2
+ 2β

dx

dt
+ ω2x(t) = 0, (8)

where β and ω are constants, and for this example we will use β = 0.1 and ω2 = 1.

Can we calculate the position x and some time t after release, using numerical techniques?

We reduce the second-order equation to two coupled first-order equations and use the Euler
method - choosing h = 0.1, as follows. Write

dx

dt
= p(t) (9)

and substitute in Eqn. 8, yielding

dp

dt
+ 2βp(t) + ω2x(t) = 0. (10)

Therefore the two coupled equations to solve are

dx

dt
= p(t) solving this gives x(t)

dp

dt
= −2βp(t)− ω2x(t) solving this gives p(t).

2



And the initial conditions are

velocity :
dx

dt
= p(0) = 0,

position : x(0) = 1.

We can now numerically solve these equations.
t = 0

x0 = 1 p0 = 0

t = 0.1

First equation
dx

dt
= p(t)

Euler : x1 = x0 + hf(x0, t0)
x1 = 1 + 0.1p0
x1 = 1

Second equation
dp

dt
= −2βp(t)− ω2x(t)

Euler : p1 = p0 + hg(p0, x0, t0)
p1 = 0 + 0.1[−0.2p0 − 1x0)
p1 = 0 + 0.1[0− 1]
p1 = −0.1

Only now we can solve for
t = 0.2

Euler : x2 = x1 + hf(x1, t1)
x2 = 1 + 0.1p1
x2 = 1 + 0.1(−0.1)
x1 = 0.99

Therefore each step requires solving 2 ODES.

Euler : p2 = p1 + hg(p1, x1, t1)
p2 = −0.1 + 0.1[−0.2p1 − 1x1)
p2 = 0 + 0.1[−0.2(−0.1)− 1(1)]
p2 = −0.198

t = 0.3

.

.

.
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Note that we solved this equation analytically using the auxilary equation method in earlier
lectures in this module. Figure 1 shows the solution to this second-order ODE using the
parameter values specified and implementing the Euler method on an interval t = 0 to
t = 50 with a step-size h = 0.001.
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Figure 1: Plot of position as a function of time, determined using the Euler method with
β = 0.1, ω2 = 1 and h = 0.001. Some simple code in C to implement this is included as a
downloadable file with these notes.

For the same parameters used here you can compare your numerical solution at x(t)
with the exact solution. The modified Euler (2nd order Runge-Kutta) or the 4th order
Runge-Kutta will yield more precise results. Implementing e.g. the 4th order RK will
require 4 evaluations of f(x, t) for each equation that you solve.

Aside

As noted in passing when we solved this same equation analytically, using the auxilary
equation method, the answer x at each time t will depend on the values of β and ω - in
the auxilary equation method the values of β and ω determine the form of the roots of the
auxilary equation: real, degenerate, complex etc. There are in fact four cases:

• β2 = ω2: critical damping,

• β2 > ω2: over damping,

• β2 < ω2: under damping,

• β = 0: no damping.

In the worked example here β = 0.1 ⇒ β2 = 0.01 and ω2 = 1 so this is an under damped
system.

4


