Section A
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as required.
For this equation to be meaningful we require a volume change, a signal
for a first order phase transition.
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yields,

F(T,M,B) = Fy(T)+ / d3x{a(T)M(m)-M(:v)+b(T) (4 (z) - H ()

+c(T) Z (ViM;(z) - ViM;(z) + ldots) — B. M(x)}
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Equilibrium implies g—ﬁ = 0 and Z-independence implies V() = 0. Then,
considering the z-direction only

2a(t) M, (x) + 4b(T)M3(z) = B,(x)
Need a solution with B, =0and M, #0 and T < T,.

M, = 0
—a(t)
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M, = +

. Consider 2 ideal gases, A and B with V4, Ny, T and Vg, Np,T respec-
tively. Compare gases before and after mixing with S = S4 + Sp and

Sa+B.
Write entropy, S(U(V,T),V,N). Then % |y = £ = LNEL = NE 5pnq

Sl

S(T,V)=NRInV + Sy(T)
Before mixing

S=8S4+Sg=N4RInV4,+ NgRInVp +S()(T)

and So(T) is an irrelevant constant that can be set to zero.
After mixing

Sa+B = (Na+ N)RlnV4+ Vg
= (NA—|—NB)R111V

Then subtracting the entropies we have the change in entropy after mixing

SA—|—B - (SA-l-SB) :]\714]%1111-i-]\[B]%lnL >0
Va VB

but if gas A and gas B are the same then removing the partition should
result in zero change in entropy.

= PARADOX



5. For a Bose-Einstein (BE) system
o0 1
N = AA de\/gn(e) n(e) = m
If 1 > 0 then n(0) < 0 which is not physically meaningful. Therefore BE

= < 0and = z =eft < 1. Then

0<nle) = —2

efe — 2
=z > 0

and putting this together 0 < z < 1 as required.

6. The expectation value of f is written f = £ 3y f(N)pn.
Decompose the system into R large subsystems (R is also large). Then
write f, is the expectation value of f in a, witha =1,2... R.

R R
if:Z.fa:Zfa"’R*fa*
a=1 a=1
where f,« is a typical value of f,. Fluctuations of the system are Af =
f — f. Then

R

R
(A—f)2 = (Z Afa)2 = z:(A—fa)2 + z AfdAfo
a=1

a=1 a#b

and the last term is zero by statistical independence. So,

(Af)? = R(Afa)®
Then, the RMS fluctuation

7 oc—R—>O
If f = E then E =U and
(E-U)> 1 0
X ——= —
U VR

As N — oo = the canonical and microcanonical ensembles are equiva-
lent.
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Then
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For the reaction 2Hy 4+ Oy <> 2H50, need u
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For chemical equilibrium, dG = > u;dN; = 0. Consider the reaction
represented by > 1v;A; and with )_ v;u; = 0. Treating the constituents in
the perfect gas model

1 Nj)\?
i = E In v
with PV = N;kT and P = }_; Pj = NKT os that
)\3
pj =kTIc;P+ f;(k,T) ; withc; =N;/N and f; = lenk_T
Therefore

Hc]’ﬁ — P~ 2. Vieg—Hifi/kT
Substitute 11 = 2,15 = 1,3 = —2 and N; = 2,N, = 1,N3 = 2 and

simplify to get
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. Recall from the notes,

H = —JZan0n+u—h20n

n,u n

and in D dimensions there are ¢ = 2D nearest neighbours. In mean field
theory
Onon = —M? + M(o, + 00) + 00,00,

and the last term is neglected. The doing the sum, >, ,

1
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Then,

1
= —kTIn2coshfB(¢qJM + h) + quMZ

and 0A/OM = 0 = M = tanh $(¢JM + h). This equation can be solved
(eg. graphically) for h = 0 and M # 0 and you find a stable solution for
BgJM = M = BqJ = 1, which gives

T. =qJ/k

In mean field theory, F' can be expanded in powers of M. Then, g—ﬁ |B=0 =
0 at equilibrium which can be solved for M and hence x ... see notes for
details.

Note that the susceptibility diverges at the critical point ie at 7' = 7.

. Given U(T,V) =V [5° dwu(w,T), find u(w,T). In the notes this corre-

sponds to
Vi widw

= = TE
w23 i _ 1

dE, =

(see lecture notes for this derivation).

To find S/V recall p =0 = F = Q and Q = —%IHZQ. We know that
Z = (1 — eP¢) for 1 state so

F =kTIn(1 —e #¢) for 1 quantum state

and the number of quantum states of photons with frequency in range
w — wdw = Y92  Then
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Writing z = Z—i} and integrating by parts
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where the constant term (independent of T') is ignored. Then

_0F _ 160
0T 3c
and S/V = 1§—§T3. Note above that in the integration by parts:

dv = z%dz and u =In(1 — e~ %)

. Calculate P(N/V) as T — 0 and cy as T'— 0. Have that
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and ¢y — 0 like T" — 0.



