

The van der Waals gas

Assuming that from the notes you can write the partition function as

$$Z = \frac{1}{N!} \lambda^{-3N} \left\{ V^N + \frac{N(N-1)}{2} V^{N-2} \int d^3x_1 d^3x_2 f_{12} \right\}$$

where $f_{12} = f(|x_1 - x_2|)$ depends only on the separation between \mathbf{x}_1 and \mathbf{x}_2 . This suggests a change of variable to center of mass coordinates.

Write $x = (\mathbf{x}_1 - \mathbf{x}_2)/2$ and $r = \mathbf{x}_1 - \mathbf{x}_2$. Then,

$$\int d^3x_1 d^3x_2 f_{12} \longrightarrow V \int d^3r \left(e^{-\beta V(r)} - 1 \right)$$

where $e^{-\beta V(r)} - 1 = f(r)$.

Writing,

$$\begin{aligned} Z &= \frac{1}{N!} \lambda^{-3N} \left\{ V^N + \frac{N^2 V^{N-1}}{2} \int d^3r f(|r|) \right\} \\ &= \frac{1}{N!} \lambda^{-3N} V^N \left\{ 1 + \frac{N^2}{2V} \kappa(\beta, a, L) \right\} \end{aligned}$$

where $\kappa(\beta, a, L) = 4\pi \int r^2 dr f(|r|) = 4\pi \int r^2 dr (e^{-\beta V(|r|)} - 1)$. This integral can be evaluated to give $\kappa(\beta, a, L) = -A + B\beta$ with $A = 4\pi a^3/3$, $B = \frac{4\pi}{3}((a+L)^3 - a^3)V_0$. Then writing,

$$\begin{aligned} F &= \frac{-1}{\beta} \ln Z \\ &= \frac{-1}{\beta} \ln \left\{ Z^0 \left(1 + \frac{N^2}{2V} \kappa(\beta) \right) \right\} \end{aligned}$$

where $Z^0 = \lambda^{-3N} V^N / N!$ is the partition sum for the perfect gas. Assuming that V_0 and a are small so that $N^2 \kappa / 2V \leq 1$. Then,

$$F \sim \frac{-1}{\beta} \ln Z^0 - \frac{1}{\beta} \cdot \frac{N^2 \kappa}{2V} = -\frac{1}{\beta} \ln Z^0 - \frac{1}{\beta} \frac{N^2}{2V} (-A + B\beta).$$

The equation of state for a gas with interactions of this type is

$$P = - \left(\frac{\delta F}{\delta V} \right)_T = \frac{NkT}{V} - \frac{N^2}{2\beta V^2} (-A + B\beta)$$

which, substituting the expression for A and B , gives,

$$P = \frac{NkT}{V} + \left(\frac{N^2 A}{2V^2} \right) \cdot kT - \frac{N^2 B}{2V^2}$$

or

$$\left(P + \frac{N^2 B}{2V^2} \right) \left(V - \frac{NA}{2} \right) = NkT.$$

This is the van der Waals equation of state. It describes a realistic gas at low density with a shallow attractive potential ($\frac{N^2 \kappa}{2V} \leq 1$).