
1 Review of Quantum Mechanics (QM)

QM is constructed in terms of operators acting as transformations on the
linear vector space of wavefunctions.
(i) Important operators are the linear momentum p, the position vector x
and the Hamiltonian H, where

H =
1

2m
p2 + V (x). (1)

V (x) is the potential energy function and H is the “energy” operator. In
the Schrödinger representation we have:

• x represented by multiplication by x;

• p represented by −ih̄∇,

which imply the commutation relations:

[xi, pj ] = ih̄δij , [xi, xj ] = [pi, pj] = 0. (2)

Then from eqn 1, H is represented by

H ==
h̄2

2m
∇2 + V (x). (3)

H and p are differential operators in the Schrödinger representation and so
act on sufficiently differentiable functions of x. These functions are called
wavefunctions and embody all of the physics of the system under study.
These wavefunctions are functions of postition, x and time t. If we know
the wavefunction, ψ(x, t) for all x and t we can predict the outcome of all
experimental measurements on the system.
(ii) The dynamics of the system which allow us to calculate ψ(x, t) are
given by Schrödinger’s equation for th time evolution of ψ(x, t). This is the
“equation of motion” of QM. Schrödinger’s equation is

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t). (4)

(iii) Energy eigenfunctions ψ(x, t) satisfy

Hψn(x, t) = Enψn(x, t), (5)
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where n labels and distinguishs the different eigenfunctions. Together with
eqn 4, this equation implies that

ψn(x, t) = φn(x)e−iEnt/h̄, (6)

with
Hφn(x) = Enφn(x). (7)

This last equation is Schrödinger’s time-independent equation for the en-
ergy eigenvalues, En. The wavefunctions φn(x, t) are particularly important
and are called stationary wavefunctions (or states). Eqn 7 is a differential
equation which can be solved once the boundary conditions are given. Gern-
erally, the boundary conditions are such that only particular values of En

are allowed. The sequence, E0, E1, . . . give the allowed observable values
of the energy of the system.

The ψn(x, t) form a complete basis of the linear space of wavefunctions.
Hence, the most general solution to Schrödinger’s time-dependent equation,
eqn 4 can be written using this basis as

ψ(x, t) =
∑

n

anψn(x, t), (8)

which, using eqn 6 becomes

ψ(x, t) =
∑

n

anφn(x)e−iEnt/h̄. (9)

This way of writing the general solution to eqn 4 is a standard maths meth-
ods technique of solving all such equations subject to given boundary equa-
tions and is not peculiar to QM.
(iv) The inner product of two wavefunctions ψ and χ is denoted by (χ, φ)
and is given by

(χ, φ) =

∫

d3xχ∗(x, t)ψ(x, t). (10)

In particular for two energy eignefunctions ψm and ψn

(ψm, ψn) = δmn ⇒ (φm, φn) = δmn. (11)

ie. the energy eigenfunctions are orthonormal.
The matrix element of an operator A is denoted by (χ,Aψ) and is

given by

(χ,Aψ) =

∫

d3xχ∗(x, t)(Aψ(x, t)). (12)
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The hermitian conjugate A† of A is defined by

(A†χ, ψ) = (χ,Aψ). (13)

(v) The solution to eqn 4 is then constructed as follows:

• (a) Solve Schrondinger’s time-independent equation 7 using the physi-
cal boundary conditions to find the {En} and the corresponding φn(x).

• (b) Construct the ψn(x, t) using eqn 6 and express the general solution,
ψ(x, t) using the ψn as a basis as given in eqn 8.

• (c) Since Schrödinger’s time-independent equation is first-order in time
it is an initial value problem and we only need to know the solution
at t = 0 to solve for all t. Suppose we are given ψ(x, 0) = f(x) then
from eqn 6 we see that

ψ(x, 0) = f(x) =
∑

n

anφn(x). (14)

Hence, using orthonormality (eqn 11) we determine the coefficients
{an} by

(φn, f) = an. (15)

The general solution is given by substituting the {an} which are usually
complex, back into eqn 8.

(vi) Other operators have associated eigenvalues and eigenfunctions too. In
general, we have

Agn(x) = λngn(x). (16)

If A† = A then A is said to be hermitian and the eigenvalues, λn are real.
All observables have real eigenvalues and are this represented by hermitian
operators. Like the φn the gn are orthonormal and form a complete basis
for the space of wavefunctions:

ψ(x, t) =
∑

n

cn(t)gn(x), (17)

with cn(t) = (gn, ψ).
Note: in the special case A = H we found

ψ(x, t) = sumnane
−iEnt/h̄φn(x), (18)
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which identifies in this case

cn(t) = ane
−iEnt/h̄ and gn(x) = φn(x). (19)

In general, however, the time-dependence of the {cn(t)} is not so simple:
the energy operator is very special.
(vii) The interpretation of this expansion is explained by the question: “A
system is described by the wavefunction ψ(x, t). What is the probability
PA

n (t) of measuring the value of the observable represented by the hermitian
operator A to have value λn?”

The answer is:
PA

n (t) = |cn(t)|2 = |(gn, ψ)|2. (20)

In the special case, A = H we see from eqn 19 that

PH
n (t) = |ane

−iEnt/h̄A|2 = |an|
2 (21)

which establishes that PH
n is independent of time. Clearly we must have

∑

n

|cn(t)|2 = 1 (22)

which is ensured by imposing
∫

d3x|ψ(x, t)|2 = 1. (23)

1.1 Example of a two-state system

To illustrate the review above consider a two-state system. Such a system
has only two energy eigenfunctions ψ1 and ψ2 with energies E1 and E2 re-
spectively: Hφn = Enφn, n = 1, 2. The general solution for the wavefunction
is thus

ψ(x, t) = a1e
−iE1t/h̄φ1(x) + a2e

−iE2t/h̄φ2(x),

|a1|
2 + |a2|

2 = 1. (24)

Let an observable A operate on the eigenfunctions φ1, φ2 as

Aφ1 = φ2, aφ2 = φ1. (25)

What are the eigenfunctions of A? Let a generic eigenfunction be g(x) with

Ag(x) = λg(x). (26)

4



Using that φ1, phi2 form a complete basis we must have

g = b1φ1 + b2φ2

|b1|
2 + |b2|

2 = 1, (27)

where b1, b2 are determined as follows.
Multiply both sides of eqn 27 with φ∗

1 and integrate over all space. Repeat
with φ∗2. Using orthonormality of the φn we find

(φ1, g) = b1, (φ2, g) = b2. (28)

This is just taking the inner product of eqn 27 with φ1 and φ2. Now operate
with A on both sides of eqn 27 and use eqns 25 and 26 to give

Ag = λg

⇒ b1Aφ1 + b2Aφ2 = λb1φ2 + λb2φ1/ (29)

Taking the inner product of this equation with the φ1 and φ2 we find, using
eqn 28,

λb1 = b2
λb2 = b1

⇒

(

0 1
1 0

)(

b1
b2

)

= λ

(

b1
b2

)

(30)

Clearly the problem is now a 2 × 2 matrix eigenvalue problem. There are
two eigenvectors corresponding to two eigenvalues. These are

√

1

2

(

1
1

)

√

1

2

(

1
−1

)

(31)

λ = λ1 = 1 λ = λ2 = −1 (32)

Then we have

g1 =

√

1

2
φ1 +

√

1

2
φ2 (33)

g2 =

√

1

2
φ1 −

√

1

2
φ2, (34)

with corresponding eigenvalues λ1 = 1 and λ2 = −1.
Now suppose that the system has been prepared at t = 0 to be in the

eigenstate with eignefunction g1(x) of A. This is the initial condition for
the evolution of the system. This means we set φ(x, 0) = g1(x). This
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initial condition can be ensured, for instance, by taking an ensemble of many
similar systems and measuring the observable A for each at t = 0. Then
consider only those systems in the ensemble for which the measurement
yielded the value λ1. Thus

ψ(x, 0) = g1(x) = a1φ1(x) + a2φ2(x), (35)

and from eqn 34 we can identify

a1 =

√

1

2
and a2 =

√

1

2
. (36)

The wavefunction ψ(x, t) is given by (eqn 6)

ψ(x, t) =

√

1

2

(

e−iE1t/h̄φ1(x) + e−iE2t/h̄φ2(x)
)

. (37)

Using eqn 34 we can rewrite this equation as

ψ(x, t) = c1(t)g1(x) + c2(t)g2(x), (38)

where

c1(t) =
1

2

(

e−iE1t/h̄ + e−iE2t/h̄
)

; c2(t) =
1

2

(

e−iE1t/h̄ − e−iE2t/h̄
)

. (39)

Now, to answer the question: “Given that at t = 0 the system is in the
eigenstate with eigenfunction g1 of operator A, what is the probability, P A

1 (t)
that the observable corresponding to A will be measured to be λ1 at time
t?”. From the discussion so far we know that

PA
1 (t) = |c1(t)|

2 = cos2
(

(E1 −E2)t

2h̄

)

. (40)

This means that from our ensemble of prepared systems a proportion P A
1 (t)

will yield the value λ1 on measurement of the observable corresponding to
the operator A.

2 Many-particle wavefunctions

Consider a system of two particles which is described by the wavefunction
φ(x1, α1,x2, α2, t) where αi stands for the other degrees of freedom eg. for an
electron it is the spin which takes values in [− 1

2 ,
1
2 ]. The state is normalised:

∑

α1α2

∫

|ψ(x1, α1,x2, α2, t)|
2d3x1d

3x2 = 1, (41)
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and the function

P (x1, α1,x2, α2, t) = |ψ(x1, α1,x2, α2, t)|
2 (42)

gives the probability density at time t for finding particle 1 at x1 with spin
α1 and particle 2 at x2 with spin α2. The single particle probability density
for particle 1 is given by

P (x1, α1, t) =
∑

α2

∫

|ψ(x1, α1,x2, α2, t)|
2d3x2, (43)

and likewise for particle 2.
The Hamiltonian will in general take the form

H = −
h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 + V (x1,x2), (44)

where the subscripts “1” and “2” label the two particles. (Note that in
principle H can depend on the αi eg. for electrons it would depend on spin
if magnetic fields acted on the system. However, this is an unnecessary
complication for this discussion.)

In the special case that V (x1,x2) = V1(x1) + V2(x2) the Hamiltonian is
separable which means that

H = H1 +H2 (45)

We can write

H1φ
(1)
n (x1, α1) = E(1)

n φ(1)
n (x1, α1) and H2φ

(2)
n (x2, α2) = E(2)

n φ(2)
n (x2, α2),

(46)
and therefore

Hφ(1)
n (x1, α1) = (E(1)

n +E(2)
n )φ(1)

n (x1, α1)φ
(2)
n (x2, α2). (47)

Thus in the separable case the two-particle eigenfunctions take the form

ψn1n2
(x1, α1,x2, α2, t) = ψ(1)

n1
(x1, α1, t)ψ

(2)
n2

(x2, α2, t), (48)

with energy E
(1)
n1

+E
(2)
n2

. These eigenfunctions form a complete basis for the
space of all two-particle wavefunctions and thus

ψ(x1, α1,x2, α2, t) =
∑

n1n2

cn1n2
ψn1n2

(x1, α1,x2, α2, t). (49)

This analysis can be easily be extended to systems of N particles.
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2.1 Identical particles

Suppose the system consists of N identicle particles. Then labelling them
1, 2, . . . wrongly distinguishes them. For example, there is no way of dis-
tinguishing ψ(x1, α1,x2, α2, t) and ψ(x2, α2,x1, α1, t), experimentally. They
must be the samestate with the same energy. They may differ by a phase
since this does not affect probabilities or energies. Somehow, we must con-
struct the states to take into account the indistinguishability of the particles.
This is done in one of the two following ways which have far reaching con-
sequences for most physical systems:

(i) Fermi-Dirac statistics states that the wavefunction must be anti-

symmetric under interchange of any two particles. In the example above
this means that 1 ↔ 2 with a phase factor of -1. Particles which obey Fermi-
Dirac statistics are called fermions and include all spin-1/2 particles and
in particular the electron.

(ii) Bose-Einstein statistics states that the wavefunction for identical
particles is symmetric under interchange of any pair of particles. Parti-
cles which obey Bose-Einstein statistics are called bosons and include the
photon.

Thus we have:

Fermi-Dirac: ψ(x1, α1,x2, α2, t) = −ψ(x2, α2,x1, α1, t)
Bose-Einstein: ψ(x1, α1,x2, α2, t) = +ψ(x2, α2,x1, α1, t)

In the separable case for two particles

H = −
h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 + V (x1) + V (x2), (50)

the wavefunction becomes

Ψ =

√

1

2
(ψ1(x1, α1, t)ψ2(x2, α2, t) ± ψ1(x2, α2, t)ψ2(x1, α1, t)) (51)

with + for Bose-Einstein and − for Fermi-Dirac.

2.2 The exclusion principle

Consider two electrons and neglect the interaction between them. The
Hamiltonian is then separable. Put one in single particle state ψ1(x1, s, t)
and the other in ψ2(x2, s, t). The total energy is E = E1 + E2 and the
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correct wavefunction is

Ψ(x1, s1,x2, s2, t) =

√

1

2
(ψ1(x1, s1, t)ψ2(x2, s2, t)−ψ1(x2, s2, t)ψ2(x1, s1, t)).

(52)
If ψ1 = ψ2 then Ψ = 0. This is the exclusion principle which states that
no two electrons may occupy identical single particle states. For a system of
N electrons with separable Hamiltonian the energy eigenfunctions take the
form

Ψ(x1, s1, . . . ,xN , sN , t) = Φ(x1, s1, . . . ,xN , sN , t)e
−iEt/h̄, (53)

where Φ can be written

Φ =

√

1

N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1, s1) φ1(x2, s2) . . . φ1(xN , sN )
φ2(x1, s1) φ2(x2, s2) . . . φ2(xN , sN )

...
...

φN (x1, s1) φN (x2, s2) . . . φN (xN , sN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(54)

with E =
∑N

i=1Ei. Fermi-Dirac statistics are automatically satisfied. This is
the Slater determinant and eigenfunctions of this kind form the complete
basis set of functions for all atomic physics calculations.

In the case that the Hamiltonian doe not depend on the spin of the
electron the energy eigenstate which differ by just spin orientation have the
same energy and same spatial wavefunction. In this circumstance we can
ignore the presence of spin in many calculations except to remember that
any given state may be occupied by at most two electrons: one spin “up”
(+1/2) and one spin “down” (-1/2). Eg. in the lithium atom which has 3
electrons, the (non-degenerate) ground state is occupied by 2 electrons with
opposing spins and the Exclusion principle then requires the third electron
occupy the first excited state.

The Exclusion Principle is the key to atomic structure and the periodic
table - if it were not true all atomic electrons would be in the lowest (ground)
state and the chemical richness of elements would not occur.

3 Quantum Statistical Physics

To deal with large systems of many particles statistical methods are essential.
We can write down the classical equations of motion or the Schrödinger
equation for the system but with, typically, 1023 particles in a system we
have no hope of solving for the full microscopic motion or wavefunction of
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the system. In the following discussion we assume a system in equilibrium

so that its properties can be described by a few macroscopic variable eg.
pressure, temperature, volume etc.

(1) The whole system can occupy any one of a sequence of macrosscopic
energy eigenstates each of which is uniquely specified by a complete (and
very large) set of quantum numbers. For a given energy eigenvalue there
will be a large number of states with that energy. That is, the degeneracy

of the energy level is large.
(2) The important principle underlying statistical physics is that

The system will occupy all macroscopic eigenstates of a given energy with
equal probability.

And important example with wide applicability is a system with N non-
interacting particles.

(i) A gien particle can occupy any one of a sequence of single-particle
energy eigenstates of energy Ei, i = 1, 2, . . . ,∞. In general, there is more
than one state with a given energy and the number, gi of states with energ
Ei is the degeneracy of the energy level.

(ii) A given macroscopic energy eigenstate of the whole system will be
described by a wavefunction which is the product of the individual single-
particle wavefunctions in a form which generalises eqns 48 and 51. The
whole system will have very many such eigenstates with the same macro-
scopic energy and so a given energy level has a large degeneracy.

(iii) Consider all macroscopic eigenstates of a given energy, E and total
particle numberN . Let the number of particles with energy Ei beNi: the Ni

are the occupation numbers of the single particle levels. All macroscopic
observables will be functions only of the Ni and so we shall average over all
other quantum numbers which distinguish the states.

(iv) There will be many macroscopic energy eigenstates associated with
the same set of occupation numbers, {Ni} and equilibrium is characterised
by the set {N̄i} which is the most probable. Using (2) above this will be
that set of occupation numbers which is associated with the largest number
of macroscopic states of the system.

(v) Because N is large the most probably set is overwhelmingly dom-

inant and there are unique values for the macroscopic quantities which then
characterise the equilibrium.
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