
The microcanonical ensemble

Entropy is given by s = k ln∆Γ.
We have that ∆Γ = V N

∫

d3Np and E(p) = 1
2m

∑N
i=1 |pi|2.

Calculating ∆

Geometrically, ∆Γ = V N
D where ΩD is the volume of the D-dimensional

sphere in momentum space, with radius R =
√

2mE0 and thickness ∆.
Write the volume of a spherical shell in 3N dimensions as V (R) =

C(D)RD. Then the volume of a shell of thickness ∆ is

V∆ = V (R) − V (R − ∆)

= C(D)RD
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For a gas, D ≈ 3 × 1023 so V∆ ≈ C(D)RD and ∆Γ ≈ V DC(D)RD

We need C(D). Get this by considering the integral
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In polar coordinates this is
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where rD−1C(D) is the surface area of the D-dimensional sphere. Then
comparing results for I(D) we have

C(D) =
2πD/2
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and
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2πD/2

Γ
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)RDV N .

Using the result Γ
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)

=
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! and Stirling’s approximation, N ! =√
2πNNNe−N the result follows. (Note that when taking logs of N ! the

ln(
√

2πN) term is often ignored as its contribution is small compared to the
other terms in the log.
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