UNIVERSITY OF DUDLIN

XMA1111

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JF Mathematics JF Theoretical Physics JF Two Subject Mod Hilary Term 2007

Course 111

Monday, March 12

EXAM HALL

09.30 - 11.30

Dr. S. Ryan

ATTEMPT FOUR QUESTIONS

Log tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

- 1. Given the set of vectors $W = \{v_1, \ldots, v_n\}$ which span the vector space, V. Prove that
 - (i) W is a subspace of V.
 - (ii) W is the smallest subspace of V containing all vectors, $\{v_1, \ldots, v_n\}$.

Consider the vectors $v_1 = (1, 1, 0), v_2 = (5, 1, -3), v_3 = (2, 7, 4)$ in \Re (where \Re is the set of all real numbers). Determine if these vectors are linearly independent and if they span the vector space, \Re^3 .

2. Consider the system of linear equations

$$\begin{array}{rcl} -2x + y + z &=& -5, \\ x + z &=& 5, \\ x - 3y - 2z &=& 8. \end{array}$$

Write this system as a matrix equation and use Gauss-Jordan elimination to solve for x, y and z.

Define the row space of an $m \times n$ matrix A with entries $a_{ij} \in \Re$. Consider a matrix B which can be obtained from A by elementary row operations. Prove that the row space of B is identical to that of A.

Consider the coefficient matrix of the system of linear equations given above and call it A. Determine a basis for the row space of A.

What is the rank of A?

3. Consider an $n \times n$ matrix A which can be reduced to row-echelon form without interchanging rows. Prove that A can be written as A = LU where L is a lower triangular, $n \times n$ matrix and U is an upper triangular, $n \times n$ matrix.

Use LU decomposition to determine the inverse of the matrix

$$A = \left(\begin{array}{rrrr} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{array}\right).$$

Sketch briefly how LU decomposition can be used to solve a system of linear equations. 4. Suppose that A is an $n \times n$ matrix. Prove that A is invertible if and only if $\det(A) \neq 0$, where $\det(A)$ is the determinant of the matrix A.

Note: you may assume the result det(AB) = det(A)det(B), for A and B both $n \times n$ matrices, if this is needed in your proof.

Consider the matrix

$$A = \left(\begin{array}{cc} 6 & 16\\ -1 & -4 \end{array}\right).$$

Show that it has eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 4$ with corresponding eigenvectors $v_1 = (-2, 1)$ and $v_2 = (-8, 1)$, respectively.

Prove that an $n \times n$ matrix A with n linearly independent eigenvectors v_1, \ldots, v_n and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ can be written as

$$A = S\Lambda S^{-1},$$

where S is the $n \times n$ matrix whose columns are the eigenvectors, v_1, \ldots, v_n and Λ is the $n \times n$ diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$.

Use this result and the eigenvalues and eigenvectors already determined for A above to determine A^6 .

© UNIVERSITY OF DUBLIN 2007