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1. Given the set of vectors W = {v1, . . . , vn} which span the vector space, V . Prove
that

(i) W is a subspace of V .

(ii) W is the smallest subspace of V containing all vectors, {v1, . . . , vn}.

(i)

W a subspace of V ie W is a subspace if αw1 + βw2 ∈ W . So must show W is
closed on addition and multiplication.

Let r, w ∈ W then

r = c1v1 + c2v2 + . . . + cnvn

w = k1v1 + k2v2 + . . . + knvn

⇒ r + w = (c1 + k1)v1 + . . . + (cn + kn)vn ie ∈ E

Similarly

kr = (kc1)v1 + (kc2)v2 + . . . + (kcn)vn

so kr a linear combination of vi and so ∈ W .

Therefore W a subspace.

(ii)

Consider W ′ a vector space with v1 . . . vn and consider u ∈ W . If u ∈ W ′ then W ′

contains a copy of W .

u ∈ W ⇒ u = c1v1 + c2v2 + . . . + cnvn

each of the civi ∈ W ′ bu (i) and so u is the sum of vectors in W ′ and so u ∈ W ′.
Then W ′ contains every vector from W so contains W .

Consider the vectors v1 = (1, 1, 0), v2 = (5, 1,−3), v3 = (2, 7, 4) in < (where < is the
set of all real numbers). Determine if these vectors are linearly independent and if
they span the vector space, <3.

An easy way to show this is to consider the expressions c1(1, 1, 0) + c2(5, 1,−3) +
c3(2, 7, 4) = 0 and c1(1, 1, 0) + c2(5, 1,−3) + c3(2, 7, 4) = (u1, u2, u3. Solving for the
ci in the former and if the ci = 0 implies linear independence. If there are ci such
that a vector ui can be expressed as in the latter equation proves they span.

Writing the expressions as matrix equations.




0
0
0



 =





1 5 2
1 1 7
0 −3 4









c1

c2

c3



 (1)



3 XMA1111

It is easy to easy show that c1 = c2 = c3 = 0 is a unique solution.

Similarly




u1

u2

u3



 =





1 5 2
1 1 7
0 −3 4









c1

c2

c3



 (2)

The determinant of the 3x3 matrix is nonzero therefore it is invertible and so there
are ci such that c1(1, 1, 0) + c2(5, 1,−3) + c3(2, 7, 4) = (u1, u2, u3).

2. Consider the system of linear equations

−2x + y + z = −5,

x + z = 5,

x − 3y − 2z = 8.

Write this system as a matrix equation and use Gauss-Jordan elimination to solve
for x, y and z.

I’ll just write the row operations and the solutions. R3−R2, R2−
1

2
R1, R2−R1, R1+

R2, 2R2, R3+3R2, R2−
1

2
R3, R1−

1

6
R3,

1

6
R3. Giving the solution x = 2, y = −4, z = 3.

Define the row space of an m × n matrix A with entries aij ∈ <.

The row space, R(A), is the subspace of Rn spanned by the rows of A.

Consider a matrix B which can be obtained from A by elementary row operations.
Prove that the row space of B is identical to that of A.

The rows of B are linear combinations of rows of A so any linear combination of rows
of B is a linear combination of rows of A. ⇒ R(B) ⊂ R(A). Also the rows of A are
linear combinations of rows of B (since the e.r.o’s are invertible). ⇒ R(A) ⊂ R(B).

⇒ R(A) = R(B).

Consider the coefficient matrix of the system of linear equations given above and
call it A. Determine a basis for the row space of A. One solution is the write A in
REF

A =





1 −1/2 −1/2
0 1 3
0 0 1





Then (argued in notes) v1 = (1,−1/2,−1/2), v2 = (0, 1, 3), v3 = (0, 0, 1) is a basis
of R(A).

What is the rank of A?

3.
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3. Consider an n × n matrix A which can be reduced to row-echelon form without
interchanging rows. Prove that A can be written as A = LU where L is a lower
triangular, n × n matrix and U is an upper triangular, n × n matrix.

Consider A reduced to upper triangular form by ero’s. Each ero can be represented
as an elementary matrix, Ei. Then

E1E2 . . . EkA = U

⇒ A = E−1

k E−1

k−1
. . . E−1

1
U

and each Ei is lower triangular, so are the E−1

i and the product of lower triangular
matrices, E−1

k E−1

k−1
is also lower triangular. Writing this product as L then

A = LU

as required.

Use LU decomposition to determine the inverse of the matrix

A =





2 3 1
4 1 4
3 4 6



 .

To calculate the inverse via LU decomposition

AA−1 = I

LUA−1 = I

A−1 = U−1L−1

Then,

A =





2 3 1
4 1 4
3 4 6



 =





x1 0 0
x4 x2 0
x5 x6 x3









1 y1 y2

0 1 y3

0 0 1





Solving, eg using Crout’s algorithm gives: x1 = 2, x2 = −5, x3 = 43/10, x4 = 4, x5 =
−5, x6 = −1/2, y1 = 3/2, y2 = 1/2, y3 = −2/5. Now we know the components of U
and L we can use ero’s to determine their inverses. Here I just list the ero’s and
resulting the inverse matrices.

For U−1: R1 − 3/2R2, R1 − 11/10R3, R2 + 2/5R3 gives

U−1 =





1 −3/2 −11/10
0 1 2/5
0 0 1





For L−1: 1/2R1, R2 − 4R1, R3 − 3R1,−1/5R2, R3 + 1/2R2, 10/43R3 gives

L−1 =





1/2 0 0
2/5 −1/5 0

−13/43 −1/43 10/43




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Then,

A−1 = U−1L−1 = 1/43





10 14 −11
12 −9 4
−13 −1 10





Sketch briefly how LU decompostion can be used to solve a system of linear equa-
tions.

Want to solve Ax = b which can be written LUx = b. Write Ux = y then solve
Ly = b for y. Knowing y solve Ux = y for x as required.
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4. Suppose that A is an n × n matrix. Prove that A is invertible if and only if
det(A) 6= 0, where det(A) is the determinant of the matrix A.

Note: you may assume the result det(AB) = det(A)det(B), for A and B both
n × n matrices, if this is needed in your proof.

Suppose A is invertible then

AA−1 = I

det(AA−1) = 1

det(A)det(A−1) = 1

det(A−1) = 1/det(A)

and so det(A) 6= 0.

Now suppose det(A) 6= 0 then

ARREF = Ek . . . E1A

ie A can be reduced to RREF by elementary matrices (ero’s). From this equation
we can write det(ARREF ) = det(Ek) . . . det(E1)det(A), using the fact that the Ei

are invertible means det(Ei) exists so det(ARREF ) 6= 0 and therefore ARREF has no
zero rows (a property of the determinant). This means that ARREF = I and so A
is row equivalent to the identity matrix. This implies A is invertible.

Consider the matrix

A =

(

6 16
−1 −4

)

.

Show that it has eigenvalues λ1 = −2 and λ2 = 4 with corresponding eigenvectors
v1 = (−2, 1) and v2 = (−8, 1), respectively.

Have det(A − λI) = (6 − λ)(−4 − λ) + 16 = (λ − 4)(λ + 2) = 0. So, λ1 = −2
and λ2 = 4. To find the eigenvectors, solve (A − λI)x = 0 for the eigenvector x
associated to each eigenvalue. You get the results above.

Prove that an n × n matrix A with n linearly independent eigenvectors v1, . . . , vn

and corresponding eigenvalues λ1, . . . , λn can be written as

A = SΛS−1,

where S is the n × n matrix whose columns are the eigenvectors, v1, . . . , vn and Λ
is the n × n diagonal matrix with entries λ1, . . . , λn.

Need to show that AS = SΛ

AS = A[v1, v2, . . . , vn]

= [Av1, Av2, . . . , Avn]

= [λv1, λv2, . . . , λvn]

= [v1, v2, . . . , vn]







λ1 0 . . . 0
0 λ2 0 . . .
... . . . λn






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= SΛ

⇒ A = SΛS−1

as required.

Use this result and the eigenvalues and eigenvectors already determined for A above
to determine A6.

A6 = SΛ6S−1

=

(

−2 8
1 1

) (

−26 0
0 46

) (

1/6 8/6
−1/6 −2/6

)

=

(

5440 10752
−672 −1280

)

Note I worked out S−1 easily using Cramer’s rule.
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