UNIVERSITY OF DUDLIN

XMA1111

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

JF Mathematics JF Theoretical Physics JF Two Subject Mod Hilary Term 2007

Course 111

Monday, March 12

EXAM HALL

09.30 - 11.30

Dr. S. Ryan

ATTEMPT FOUR QUESTIONS

Log tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

- 1. Given the set of vectors $W = \{v_1, \ldots, v_n\}$ which span the vector space, V. Prove that
 - (i) W is a subspace of V.
 - (ii) W is the smallest subspace of V containing all vectors, $\{v_1, \ldots, v_n\}$.

W a subspace of V is W is a subspace if $\alpha w_1 + \beta w_2 \in W$. So must show W is closed on addition and multiplication.

Let $r, w \in W$ then

$$r = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$$

$$w = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

$$\Rightarrow r + w = (c_1 + k_1) v_1 + \dots + (c_n + k_n) v_n \text{ is } \in E$$

Similarly

$$kr = (kc_1)v_1 + (kc_2)v_2 + \ldots + (kc_n)v_n$$

so kr a linear combination of v_i and so $\in W$.

Therefore W a subspace.

(ii)

Consider W' a vector space with $v_1 \ldots v_n$ and consider $u \in W$. If $u \in W'$ then W' contains a copy of W.

$$u \in W \Rightarrow u = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$$

each of the $c_i v_i \in W'$ bu (i) and so u is the sum of vectors in W' and so $u \in W'$. Then W' contains every vector from W so contains W.

Consider the vectors $v_1 = (1, 1, 0), v_2 = (5, 1, -3), v_3 = (2, 7, 4)$ in \Re (where \Re is the set of all real numbers). Determine if these vectors are linearly independent and if they span the vector space, \Re^3 .

An easy way to show this is to consider the expressions $c_1(1,1,0) + c_2(5,1,-3) + c_3(2,7,4) = 0$ and $c_1(1,1,0) + c_2(5,1,-3) + c_3(2,7,4) = (u_1, u_2, u_3)$. Solving for the c_i in the former and if the $c_i = 0$ implies linear independence. If there are c_i such that a vector u_i can be expressed as in the latter equation proves they span.

Writing the expressions as matrix equations.

$$\begin{pmatrix} 0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 2\\1 & 1 & 7\\0 & -3 & 4 \end{pmatrix} \begin{pmatrix} c_1\\c_2\\c_3 \end{pmatrix}$$
(1)

It is easy to easy show that $c_1 = c_2 = c_3 = 0$ is a unique solution. Similarly

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 2 \\ 1 & 1 & 7 \\ 0 & -3 & 4 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$
(2)

The determinant of the 3x3 matrix is nonzero therefore it is invertible and so there are c_i such that $c_1(1, 1, 0) + c_2(5, 1, -3) + c_3(2, 7, 4) = (u_1, u_2, u_3)$.

2. Consider the system of linear equations

$$\begin{array}{rcl} -2x + y + z &=& -5, \\ x + z &=& 5, \\ x - 3y - 2z &=& 8. \end{array}$$

Write this system as a matrix equation and use Gauss-Jordan elimination to solve for x, y and z.

I'll just write the row operations and the solutions. $R_3 - R_2, R_2 - \frac{1}{2}R_1, R_2 - R_1, R_1 + R_2, 2R_2, R_3 + 3R_2, R_2 - \frac{1}{2}R_3, R_1 - \frac{1}{6}R_3, \frac{1}{6}R_3$. Giving the solution x = 2, y = -4, z = 3. Define the row space of an $m \times n$ matrix A with entries $a_{ij} \in \Re$.

The row space, R(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Consider a matrix B which can be obtained from A by elementary row operations. Prove that the row space of B is identical to that of A.

The rows of B are linear combinations of rows of A so any linear combination of rows of B is a linear combination of rows of A. $\Rightarrow R(B) \subset R(A)$. Also the rows of A are linear combinations of rows of B (since the e.r.o's are invertible). $\Rightarrow R(A) \subset R(B)$.

 $\Rightarrow R(A) = R(B).$

Consider the coefficient matrix of the system of linear equations given above and call it A. Determine a basis for the row space of A. One solution is the write A in REF

$$A = \left(\begin{array}{rrr} 1 & -1/2 & -1/2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right)$$

Then (argued in notes) $v_1 = (1, -1/2, -1/2), v_2 = (0, 1, 3), v_3 = (0, 0, 1)$ is a basis of R(A).

What is the rank of A?

3.

3. Consider an $n \times n$ matrix A which can be reduced to row-echelon form without interchanging rows. Prove that A can be written as A = LU where L is a lower triangular, $n \times n$ matrix and U is an upper triangular, $n \times n$ matrix.

Consider A reduced to upper triangular form by ero's. Each ero can be represented as an elementary matrix, E_i . Then

$$E_1 E_2 \dots E_k A = U$$

$$\Rightarrow A = E_k^{-1} E_{k-1}^{-1} \dots E_1^{-1} U$$

and each E_i is lower triangular, so are the E_i^{-1} and the product of lower triangular matrices, $E_k^{-1}E_{k-1}^{-1}$ is also lower triangular. Writing this product as L then

$$A = LU$$

as required.

Use LU decomposition to determine the inverse of the matrix

$$A = \left(\begin{array}{rrr} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{array} \right).$$

To calculate the inverse via LU decomposition

$$AA^{-1} = I$$
$$LUA^{-1} = I$$
$$A^{-1} = U^{-1}L^{-1}$$

Then,

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 4 \\ 3 & 4 & 6 \end{pmatrix} = \begin{pmatrix} x_1 & 0 & 0 \\ x_4 & x_2 & 0 \\ x_5 & x_6 & x_3 \end{pmatrix} \begin{pmatrix} 1 & y_1 & y_2 \\ 0 & 1 & y_3 \\ 0 & 0 & 1 \end{pmatrix}$$

Solving, eg using Crout's algorithm gives: $x_1 = 2, x_2 = -5, x_3 = 43/10, x_4 = 4, x_5 = -5, x_6 = -1/2, y_1 = 3/2, y_2 = 1/2, y_3 = -2/5$. Now we know the components of U and L we can use ero's to determine their inverses. Here I just list the ero's and resulting the inverse matrices.

For U^{-1} : $R_1 - 3/2R_2, R_1 - 11/10R_3, R_2 + 2/5R_3$ gives

$$U^{-1} = \left(\begin{array}{rrr} 1 & -3/2 & -11/10 \\ 0 & 1 & 2/5 \\ 0 & 0 & 1 \end{array}\right)$$

For L^{-1} : $1/2R_1, R_2 - 4R_1, R_3 - 3R_1, -1/5R_2, R_3 + 1/2R_2, 10/43R_3$ gives

$$L^{-1} = \begin{pmatrix} 1/2 & 0 & 0\\ 2/5 & -1/5 & 0\\ -13/43 & -1/43 & 10/43 \end{pmatrix}$$

Then,

$$A^{-1} = U^{-1}L^{-1} = 1/43 \begin{pmatrix} 10 & 14 & -11 \\ 12 & -9 & 4 \\ -13 & -1 & 10 \end{pmatrix}$$

Sketch briefly how LU decomposition can be used to solve a system of linear equations.

Want to solve Ax = b which can be written LUx = b. Write Ux = y then solve Ly = b for y. Knowing y solve Ux = y for x as required.

4. Suppose that A is an $n \times n$ matrix. Prove that A is invertible if and only if $\det(A) \neq 0$, where $\det(A)$ is the determinant of the matrix A.

Note: you may assume the result det(AB) = det(A)det(B), for A and B both $n \times n$ matrices, if this is needed in your proof.

Suppose A is invertible then

$$AA^{-1} = I$$
$$det(AA^{-1}) = 1$$
$$det(A)det(A^{-1}) = 1$$
$$det(A^{-1}) = 1/det(A)$$

and so $det(A) \neq 0$.

Now suppose $det(A) \neq 0$ then

$$A_{RREF} = E_k \dots E_1 A$$

ie A can be reduced to RREF by elementary matrices (ero's). From this equation we can write $det(A_{RREF}) = det(E_k) \dots det(E_1)det(A)$, using the fact that the E_i are invertible means $det(E_i)$ exists so $det(A_{RREF}) \neq 0$ and therefore A_{RREF} has no zero rows (a property of the determinant). This means that $A_{RREF} = I$ and so Ais row equivalent to the identity matrix. This implies A is invertible.

Consider the matrix

$$A = \left(\begin{array}{cc} 6 & 16\\ -1 & -4 \end{array}\right).$$

Show that it has eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 4$ with corresponding eigenvectors $v_1 = (-2, 1)$ and $v_2 = (-8, 1)$, respectively.

Have $det(A - \lambda I) = (6 - \lambda)(-4 - \lambda) + 16 = (\lambda - 4)(\lambda + 2) = 0$. So, $\lambda_1 = -2$ and $\lambda_2 = 4$. To find the eigenvectors, solve $(A - \lambda I)x = 0$ for the eigenvector x associated to each eigenvalue. You get the results above.

Prove that an $n \times n$ matrix A with n linearly independent eigenvectors v_1, \ldots, v_n and corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ can be written as

$$A = S\Lambda S^{-1},$$

where S is the $n \times n$ matrix whose columns are the eigenvectors, v_1, \ldots, v_n and Λ is the $n \times n$ diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$.

Need to show that $AS = S\Lambda$

$$AS = A[v_1, v_2, \dots, v_n]$$

= $[Av_1, Av_2, \dots, Av_n]$
= $[\lambda v_1, \lambda v_2, \dots, \lambda v_n]$
= $[v_1, v_2, \dots, v_n] \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots \\ \vdots & \dots & & \lambda_n \end{pmatrix}$

XMA1111

$$\begin{array}{rcl} &=& S\Lambda \\ \Rightarrow A &=& S\Lambda S^{-1} \end{array}$$

as required.

Use this result and the eigenvalues and eigenvectors already determined for A above to determine A^6 .

$$\begin{array}{rcl}
A^{6} &=& S\Lambda^{6}S^{-1} \\
&=& \begin{pmatrix} -2 & 8 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2^{6} & 0 \\ 0 & 4^{6} \end{pmatrix} \begin{pmatrix} 1/6 & 8/6 \\ -1/6 & -2/6 \end{pmatrix} \\
&=& \begin{pmatrix} 5440 & 10752 \\ -672 & -1280 \end{pmatrix}
\end{array}$$

Note I worked out S^{-1} easily using Cramer's rule.