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1. Consider three sets, A, B and C. Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Consider a map, σ from a set A to a set B and a map τ from set B to set C. Prove
that the composition of maps, σ ◦ τ is one-to-one if each of σ and τ is one-to-one.

Consider a map φ : R → R, from the set of real numbers to itself, defined by
φ(x) = ex. State, giving a reason for your answer, if this map is a bijection?

2. Consider a nonempty set of elements forming a group, G. Prove that every element
a ∈ G has a unique inverse in G.

Consider the symmetry group of an equilateral triangle in the plane. List the 6
rigid transformations that leave the triangle unchanged and show, by constructing
a Cayley table, that these 6 motions form a group.

Prove that a nonempty subset, H of a group G is a subgroup if and only if (i)
a, b ∈ H ⇒ ab ∈ H and (ii) a ∈ H ⇒ a−1 ∈ H.

From the list of symmetries of the triangle, consider only the rotations which leave
it invariant and show that this subset of symmetries forms a subgroup of the full
symmetry group, whose Cayley table you determined above.

3. A subgroup, N of a group G is normal if for every g ∈ G and n ∈ N , gng−1 ∈ N .

Prove that N is a normal subgroup of G if and only if every left coset of N in G is
a right coset of N in G.

Consider the cyclic group, G = {e, g, g2, g3} under addition modulo 4 (where g4 = e,
the group identity). Determine the proper subgroups of G and the left and right
cosets of H = {e, g2} in G.

Show that G|H forms a group.
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4. Prove that if a map φ is a homomorphism between two groups, G and Ḡ then (i)
φ(e) = (ē) and (ii) φ(x−1) = φ(x)−1, ∀x ∈ G , where e and ē are the identity ele-
ments in the groups G and Ḡ respectively.

Given the set of integers, Z, which forms a group under addition and the elements
{+1,−1} which form a group under multiplication, and a map φ(a) : Z → {+1,−1}
defined by φ(a) = −1a. Show that φ is a homomorphism and determine the kernel
of the map.

Using this information explain why φ is not an isomorphism.
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