UNIVERSITY OF DUDLIN

XMA1111

TRINITY COLLEGE

FACULTY OF SCIENCE

SCHOOL OF MATHEMATICS

Michaelmas Term 2006

JF Mathematics JF Theoretical Physics JF Two Subject Mod

Course 111

Wednesday, December 13

Regent House

09.30 - 11.30

Dr. S. Ryan

ATTEMPT FOUR QUESTIONS

Log tables are available from the invigilators, if required.

Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used. 1. Consider three sets, A, B and C. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Consider a map, σ from a set A to a set B and a map τ from set B to set C. Prove that the composition of maps, $\sigma \circ \tau$ is one-to-one if each of σ and τ is one-to-one.

Consider a map $\phi : R \to R$, from the set of real numbers to itself, defined by $\phi(x) = e^x$. State, giving a reason for your answer, if this map is a bijection?

2. Consider a nonempty set of elements forming a group, G. Prove that every element $a \in G$ has a unique inverse in G.

Consider the symmetry group of an equilateral triangle in the plane. List the 6 rigid transformations that leave the triangle unchanged and show, by constructing a Cayley table, that these 6 motions form a group.

Prove that a nonempty subset, H of a group G is a subgroup if and only if (i) $a, b \in H \Rightarrow ab \in H$ and (ii) $a \in H \Rightarrow a^{-1} \in H$.

From the list of symmetries of the triangle, consider only the rotations which leave it invariant and show that this subset of symmetries forms a subgroup of the full symmetry group, whose Cayley table you determined above.

3. A subgroup, N of a group G is normal if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.

Prove that N is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.

Consider the cyclic group, $G = \{e, g, g^2, g^3\}$ under addition modulo 4 (where $g^4 = e$, the group identity). Determine the proper subgroups of G and the left and right cosets of $H = \{e, g^2\}$ in G.

Show that G|H forms a group.

4. Prove that if a map ϕ is a homomorphism between two groups, G and \overline{G} then (i) $\phi(e) = (\overline{e})$ and (ii) $\phi(x^{-1}) = \phi(x)^{-1}, \forall x \in G$, where e and \overline{e} are the identity elements in the groups G and \overline{G} respectively.

Given the set of integers, Z, which forms a group under addition and the elements $\{+1, -1\}$ which form a group under multiplication, and a map $\phi(a) : Z \to \{+1, -1\}$ defined by $\phi(a) = -1^a$. Show that ϕ is a homomorphism and determine the kernel of the map.

Using this information explain why ϕ is not an isomorphism.