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Will be essentially Differential Geometry for General Relativity. DG, in par-
ticular, tensor calculus is the mathematical framework of GR.
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1 Manifolds

1.1 Topological Space

Let p∈ Rn. A nbh1 of p is any set V ⊂ Rn such that V contains an open solid
sphere of centre p.
Properties of nbh’s:

1. p belongs to any nbh of p

2. If V is a nbh of p and V ⊂ U , then U is a nbh of p.
1neighbourhood
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3. If U,V are nbh’s of p, then U ∩ V is a nbh of p.

4. If U is a nbh of p there is a nbh V of p s.t. V ⊂ U , and V is a nbh of each
of its points.

Definition 1. A topological space is a set of points M along with an assignment to
each p∈M of collections od subsets called nbh’s, satisfying properties 1-4.

1.2 Charts

Let M be a topological space, p/inM be some point in this space, U be an open
nbh of p. A chart on U is a one-to-one(injective) map:

φ : U → φ(U) ⊂ Rn

The φ(p) ∈ Rn constitutes a local co-ordinate system defined in an open nhb
U, we usually write φ(p) = {xµ} = {x1(p), x2(p), . . . , xn(p)}
NB: The choice of chart is arbitrary
→Einstein Equivalence Principle.

1.3 Meshing Condition: Coordinate Transformations

Suppose we have two charts φ1, φ2 on U⊂M. Since these charts ae in jective
they are invertible e.g.

φ−1
1 : φ1(U) ⊂ Rn → U

We may define
φ2 ◦ φ−1

1 : Rn → R
n : φ1(U)→ φ2(U)

We require these maps to be smooth (C∞) where they are defined. For p∈U,
the map φ2 ◦ φ−1

1 (p) defines a co-ord transformation from the co-ords

φ1(p) = {x1(p), x2(p), . . . , xn(p)}

to the co-ords
φ2(p) = {X1(p), X2(p), . . . , Xn(p)}

1.3.1 Example

Let M∈ R2, let φ1 be a map p to Cartesian coords (x,y) and φ2 map p to a differ-
ent set of cartesian coords (X,Y) obtained from the first by a rotation through
the angle α.

φ2 ◦ φ−1
1 : (x, y)→ (X = x cosα+ y sinα, Y = −x sinα+ y cosα)

We can define a derivative matrix

D(φ2 ◦ φ−1
1 ) =

(
∂X
∂x

∂Y
∂y

∂Y
∂x

∂X
∂y

)
=
(

cosα sinα
− sinα cosα

)
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Where Jacobian J ≡ det(D)=1

Reminder J /neq 0 implies invertible transformation. J non-singular2 im-
plies φ1, φ2 are Cinfty related Introduce another chart φ3, which maps p to
polar co-ords (r, θ).

φ3 ◦ φ−1
1 : (x, y)→ (r =

√
x2 + y2, θ = tan

y

x
)

J=det(D)= 1
r φ1, φ1 are C∞ related except at r = 0. To cover all of /mathdsR2,

we would need at least two sets of polar co-ords with different origins.

1.3.2 Example: Stereographic Projection

x2 + y2 + z2 = 1

describes a 2-sphere embedded in R3.

φ1(x, y, z) ≡ (w1, w2) =
(

2x
1− z

,
2y

1− z

)
maps U : S2 − {0, 0, 1} → φ1(U)(Rn) 3

1.4 Definition of a manifold

Informally a monifold is a set of points M that locally looks like a subset ofRn.
The simplest example of a curved manifold is S2. A set of C∞-relatd charts s.t.
every pointp∈M lies in the domain of at least one chart is a C∞-atlas for M.
The union of all such atlases is the C∞ maximal atlas.

Definition 2. We define a C∞ n-dimensional manifold by a set M along with a max-
imal atlas.

2 Tangent Vectors and Tangent Spaces

In our familiar treatmane tof vectors in Rn they represent ”directed magni-
tudes”. This idea is no longer useful in DG, rather to each point p∈M, we have
a set of all possible vectors at p known as the tangent space, Tp(M).
Prefer to describe geometry of M from intrinsic properties alone, we won’t rely
on embedding in a hgher dimensional space.

2has no singularities
3defined for every point on 2-sphere except north pole. do the same with z = 1 plane except

from suoth pole to get entire map. (on first assignment)
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2.1 Smooth Function

Let M be a manifold, f be a real function

f : M → R

How do we define the ”smoothness” of f?
We introduce a chart φ. We define F s.t.

F : Rn → R, F = f ◦ φ−1

We say that f is smooth iff F is smooth in the usual sense.

Theorem 1. The smoothness of f is chart independent.

Proof 1. Let φ1, φ2 be two meshing charts.

Fi = f ◦ φ−1
1 i = 1, 2

F1 = f ◦ φ−1
1

= f ◦ φ−1
2 ◦ φ2 ◦ φ−1

1

F1 = F2 ◦ φ2 ◦ φ−1
1

φ1, φ2 are meshing charts and thus smooth. Smoothness properties of F1 are thus the
same as F2. �

Definition of smooth functions may be generalised toa function mapping a
manifold M to another manifold N.

f : M → N

Let φ1 be a chart in M (dim n1)
Let φ2 be a chath in N (din n2)
Define F = φ2 ◦ f ◦ φ−1

1 , f smooth iff F smooth. Easy to prove that this is chart
independent.
NB 4

∂f

∂xµ
=

∂F

∂xµ
=
∂(φ2 ◦ f ◦ φ−1

1 )
∂xµ

2.2 Smooth Curves

Let I = (a, b) be an interval of R. We define a curve in M as a map

γ : R→M, γ(s)→ p

The curve γ is smooth if its image

φ ◦ γ : T → R
n, φ ◦ γ(s) = {x1(s), x2(s), . . . , xn(s)}

is smooth
4the first part of the following is not really defined on manifolds but is kinda ok to write becasue

they look locally like Rn
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2.3 Tangent Space as a Space of directional Derivatives

We wish to construct the tangent space at p∈M (i.e. Tp(M)) using inly the in-
trinsic properties to M.
We combine the concept of smooth functions f, and smooth curves, γ and de-
fine

F : I → R, s→ F(s) = f ◦ γ(s) ≡ f(γ(s))

i.e.F evaluates f along the curve γ
The rate at whichmathcalF changes, dFds gives the rate of change of f following
the curve. The tangent vector to the curve γ at p where (w.l.o.g.5, take s = 0 at
p) is the real map from the set of real functions to R, defined by

γ̇pf :→ γ̇pf ≡ γ̇p(f) =
[
d

ds
f ◦ γ

]
s=0

≡
(
dF
ds

)
s=0

Claim Let φ be a chart s.t. φ : φ(p)→ xµ(p)
Then

Ḟ(0) ≡
[
d

ds
(f ◦ γ)

]
s=0

=
n∑
µ=1

(
∂F
∂xµ

)
φ(p)

[
d

ds
xµ(γ(s))

]
where F = f ◦ φ−1

Proof
F(s) = f ◦ γ = f ◦ φ−1 ◦ φ ◦ γ

= F ◦ φγ(s)

The function γ ◦ φ maps s to the coords of γ(s)
Identify F = F{x1(γ(s)), x2(γ(s)), . . . , xn(γ(s))}

γ̇pf =
[
dF
ds

]
s=0

=
[
dF (x1(γ(s)), . . . , xn(γ(s))

ds

]
s=0

Chain Rule:(
∂F

∂x1

)
φ(p)

[
dx1(γ(s))

ds

]
s=0

+ . . .+
(
∂F

∂xn

)
φ(p)

[
dxn(γ(s))

ds

]
s=0

=
n∑
µ=1

(
∂F

∂xµ

)
φ(p)

[
dxµ(γ(s))

ds

]
s=0

=
(
∂F

∂xµ

)
φ(p)

[
dxµ(γ(s))

ds

]
s=0

Einstein’s summation convention
5without loss of generality
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2.3.1 Example

Let M = R
2 take y = 2x2 − 3 to be a parabola in R2. We parametrise this by

x = s, y = 2s2 − 3 (φ ◦ γ)

φ ◦ γ(s) = (x(s), y(s)) = (s, 2s2 − 3)

F = F (s, 2s2 − 3)

dF
ds

=
dF

dx
· 1 +

dF

dy
· 4s

= ~T · ~∇F

where ~T = [1, 4s]
the RHS (~T · ~∇F ) is the rate of change of F in the direction of ~T (might be
familiar from fluid dynamics)
The map γ̇p : f →

[
dF
ds

]
s=0

we called a tangent vector at p. We must further
show that these maps live in a vector space of dimension n = dim(M)

Theorem 2. The set of tangent vectors at p, Tp(M), form a vector space 6

6(closed under vector addition, and scalar multiplication)
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