MA3429 Differnetial Geometry 1

Ruairi Short

September 27th, 2011

Will be essentially Differential Geometry for General Relativity. DG, in particular, tensor calculus is the mathematical framework of GR.

Contents

	Pref	ace	1
1	Mar	Manifolds 1	
	1.1	Topological Space	1
	1.2	Charts	2
	1.3	Meshing Condition: Coordinate Transformations	2
		1.3.1 Example	2
		1.3.2 Example: Stereographic Projection	3
	1.4	Definition of a manifold	3
2	Tangent Vectors and Tangent Spaces		3
	2.1	Smooth Function	4
	2.2	Smooth Curves	4
	2.3	Tangent Space as a Space of directional Derivatives	5
		2.3.1 Example	6

1 Manifolds

1.1 Topological Space

Let $p \in \mathbb{R}^n$. A nbh¹ of p is any set $V \subset \mathbb{R}^n$ such that V contains an open solid sphere of centre p.

Properties of nbh's:

- 1. p belongs to any nbh of p
- 2. If V is a nbh of p and $V \subset U$, then U is a nbh of p.

¹neighbourhood

- 3. If U,V are nbh's of p, then $U \cap V$ is a nbh of p.
- 4. If U is a nbh of p there is a nbh V of p s.t. $V \subset U$, and V is a nbh of each of its points.

Definition 1. A topological space is a set of points M along with an assignment to each $p \in M$ of collections od subsets called nbh's, satisfying properties 1-4.

1.2 Charts

Let M be a topological space, p/inM be some point in this space, U be an open nbh of p. A chart on U is a one-to-one(injective) map:

$$\phi: U \to \phi(U) \subset \mathbb{R}^n$$

The $\phi(p) \in \mathbb{R}^n$ constitutes a local co-ordinate system defined in an open nhb U, we usually write $\phi(p) = \{x^{\mu}\} = \{x^1(p), x^2(p), \dots, x^n(p)\}$ NB: The choice of chart is arbitrary \rightarrow Einstein Equivalence Principle.

1.3 Meshing Condition: Coordinate Transformations

Suppose we have two charts ϕ_1, ϕ_2 on U \subset M. Since these charts as in jective they are invertible e.g.

$$\phi_1^{-1}:\phi_1(U)\subset\mathbb{R}^n\to U$$

We may define

$$\phi_2 \circ \phi_1^{-1} : \mathbb{R}^n \to \mathbb{R}^n : \phi_1(U) \to \phi_2(U)$$

We require these maps to be smooth (C^{∞}) where they are defined. For $p \in U$, the map $\phi_2 \circ \phi_1^{-1}(p)$ defines a co-ord transformation from the co-ords

$$\phi_1(p) = \{x^1(p), x^2(p), \dots, x^n(p)\}$$

to the co-ords

$$\phi_2(p) = \{X^1(p), X^2(p), \dots, X^n(p)\}$$

1.3.1 Example

Let $M \in \mathbb{R}^2$, let ϕ_1 be a map p to Cartesian coords (x,y) and ϕ_2 map p to a different set of cartesian coords (X,Y) obtained from the first by a rotation through the angle α .

$$\phi_2 \circ \phi_1^{-1} : (x, y) \to (X = x \cos \alpha + y \sin \alpha, Y = -x \sin \alpha + y \cos \alpha)$$

We can define a derivative matrix

$$D(\phi_2 \circ \phi_1^{-1}) = \begin{pmatrix} \frac{\partial X}{\partial x} & \frac{\partial Y}{\partial y} \\ \frac{\partial Y}{\partial x} & \frac{\partial X}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

Where Jacobian $J \equiv det(D)=1$

<u>Reminder</u> J /neq 0 implies invertible transformation. J non-singular² implies ϕ_1, ϕ_2 are C^{infty} related Introduce another chart ϕ_3 , which maps p to polar co-ords (r, θ) .

$$\phi_3 \circ \phi_1^{-1} : (x,y) \to (r = \sqrt{x^2 + y^2}, \theta = \tan \frac{y}{x})$$

J=det(D)= $\frac{1}{r} \phi_1, \phi_1$ are C^{∞} related except at r = 0. To cover all of $/mathdsR^2$, we would need at least two sets of polar co-ords with different origins.

1.3.2 Example: Stereographic Projection

$$x^2 + y^2 + z^2 = 1$$

describes a 2-sphere embedded in \mathbb{R}^3 .

$$\phi_1(x, y, z) \equiv (w^1, w^2) = \left(\frac{2x}{1-z}, \frac{2y}{1-z}\right)$$

maps $U: S^2 - \{0, 0, 1\} \to \phi_1(U)(\mathbb{R}^n)^3$

1.4 Definition of a manifold

Informally a monifold is a set of points M that locally looks like a subset of \mathbb{R}^n . The simplest example of a curved manifold is S^2 . A set of C^∞ -relatd charts s.t. every pointp \in M lies in the domain of at least one chart is a C^∞ -atlas for M. The union of all such atlases is the C^∞ maximal atlas.

Definition 2. We define a C^{∞} *n*-dimensional manifold by a set M along with a maximal atlas.

2 Tangent Vectors and Tangent Spaces

In our familiar treatmane tof vectors in \mathbb{R}^n they represent "directed magnitudes". This idea is no longer useful in DG, rather to each point $p \in M$, we have a set of all possible vectors at p known as the tangent space, $T_p(M)$. Prefer to describe geometry of M from intrinsic properties alone, we won't rely

Prefer to describe geometry of M from intrinsic properties alone, we won't rely on embedding in a hgher dimensional space.

²has no singularities

³defined for every point on 2-sphere except north pole. do the same with z = 1 plane except from suoth pole to get entire map. (on first assignment)

2.1 Smooth Function

Let M be a manifold, f be a real function

$$f: M \to \mathbb{R}$$

How do we define the "smoothness" of f? We introduce a chart ϕ . We define F s.t.

$$F: \mathbb{R}^n \to \mathbb{R}, \ F = f \circ \phi^{-1}$$

We say that f is smooth iff F is smooth in the usual sense.

Theorem 1. *The smoothness of f is chart independent.*

Proof 1. Let ϕ_1, ϕ_2 be two meshing charts.

$$F_{i} = f \circ \phi_{1}^{-1} \ i = 1, 2$$
$$F_{1} = f \circ \phi_{1}^{-1}$$
$$= f \circ \phi_{2}^{-1} \circ \phi_{2} \circ \phi_{1}^{-1}$$
$$F_{1} = F_{2} \circ \phi_{2} \circ \phi_{1}^{-1}$$

 ϕ_1, ϕ_2 are meshing charts and thus smooth. Smoothness properties of F_1 are thus the same as F_2 .

Definition of smooth functions may be generalised toa function mapping a manifold M to another manifold N.

 $f: M \to N$

Let ϕ_1 be a chart in M (dim n_1)

Let ϕ_2 be a chath in N (din n_2) Define $F = \phi_2 \circ f \circ \phi_1^{-1}$, f smooth iff F smooth. Easy to prove that this is chart independent.

<u>NB</u>⁴

$$\frac{\partial f}{\partial x^{\mu}} = \frac{\partial F}{\partial x^{\mu}} = \frac{\partial (\phi_2 \circ f \circ \phi_1^{-1})}{\partial x^{\mu}}$$

2.2 Smooth Curves

Let I = (a, b) be an interval of \mathbb{R} . We define a curve in M as a map

$$\gamma : \mathbb{R} \to M, \ \gamma(s) \to p$$

The curve γ is smooth if its image

$$\phi \circ \gamma : T \to \mathbb{R}^n, \ \phi \circ \gamma(s) = \{x^1(s), x^2(s), \dots, x^n(s)\}$$

is smooth

⁴the first part of the following is not really defined on manifolds but is kinda ok to write becasue they look locally like \mathbb{R}^n

2.3 Tangent Space as a Space of directional Derivatives

We wish to construct the tangent space at $p \in M$ (i.e. $T_p(M)$) using inly the intrinsic properties to M.

We combine the concept of smooth functions f, and smooth curves, γ and define

$$\mathcal{F}: I \to \mathbb{R}, \; s \to \mathbb{F}(s) = f \circ \gamma(s) \equiv f(\gamma(s))$$

i.e. ${\cal F}$ evaluates f along the curve γ

The rate at which *mathcalF* changes, $\frac{d\mathcal{F}}{ds}$ gives the rate of change of f following the curve. The tangent vector to the curve γ at p where (w.l.o.g.⁵, take s = 0 at p) is the real map from the set of real functions to \mathbb{R} , defined by

$$\dot{\gamma}_p f :\to \dot{\gamma}_p f \equiv \dot{\gamma}_p(f) = \left[\frac{d}{ds}f \circ \gamma\right]_{s=0}$$
$$\equiv \left(\frac{d\mathcal{F}}{ds}\right)_{s=0}$$

<u>Claim</u> Let ϕ be a chart s.t. $\phi : \phi(p) \to x^{\mu}(p)$ Then

$$\dot{\mathcal{F}}(0) \equiv \left[\frac{d}{ds}(f \circ \gamma)\right]_{s=0}$$
$$= \sum_{\mu=1}^{n} \left(\frac{\partial \mathcal{F}}{\partial x^{\mu}}\right)_{\phi(p)} \left[\frac{d}{ds} x^{\mu}(\gamma(s))\right]$$

where $F = f \circ \phi^{-1}$ <u>Proof</u>

$$\mathcal{F}(s) = f \circ \gamma = f \circ \phi^{-1} \circ \phi \circ \gamma$$
$$= F \circ \phi \gamma(s)$$

The function $\gamma \circ \phi$ maps s to the coords of $\gamma(s)$ Identify $\mathcal{F} = F\{x^1(\gamma(s)), x^2(\gamma(s)), \dots, x^n(\gamma(s))\}$

$$\dot{\gamma}_p f = \left[\frac{d\mathcal{F}}{ds}\right]_{s=0} = \left[\frac{dF(x^1(\gamma(s)), \dots, x^n(\gamma(s)))}{ds}\right]_{s=0}$$

Chain Rule:

$$\left(\frac{\partial F}{\partial x^1}\right)_{\phi(p)} \left[\frac{dx^1(\gamma(s))}{ds}\right]_{s=0} + \dots + \left(\frac{\partial F}{\partial x^n}\right)_{\phi(p)} \left[\frac{dx^n(\gamma(s))}{ds}\right]_{s=0}$$
$$= \sum_{\mu=1}^n \left(\frac{\partial F}{\partial x^\mu}\right)_{\phi(p)} \left[\frac{dx^\mu(\gamma(s))}{ds}\right]_{s=0}$$
$$= \left(\frac{\partial F}{\partial x^\mu}\right)_{\phi(p)} \left[\frac{dx^\mu(\gamma(s))}{ds}\right]_{s=0}$$

Einstein's summation convention

⁵without loss of generality

2.3.1 Example

Let $M = \mathbb{R}^2$ take $y = 2x^2 - 3$ to be a parabola in \mathbb{R}^2 . We parametrise this by $x = s, \ y = 2s^2 - 3 \ (\phi \circ \gamma)$

$$\phi \circ \gamma(s) = (x(s), y(s)) = (s, 2s^2 - 3)$$
$$\mathcal{F} = F(s, 2s^2 - 3)$$
$$\frac{d\mathcal{F}}{ds} = \frac{dF}{dx} \cdot 1 + \frac{dF}{dy} \cdot 4s$$
$$= \vec{T} \cdot \vec{\nabla}F$$

where $\vec{T} = [1, 4s]$ the RHS $(\vec{T} \cdot \vec{\nabla}F)$ is the rate of change of F in the direction of \vec{T} (might be familiar from fluid dynamics) The map $\dot{\gamma}_p : f \to \left[\frac{d\mathcal{F}}{ds}\right]_{s=0}$ we called a tangent vector at p. We must further show that these maps live in a vector space of dimension n = dim(M)

Theorem 2. The set of tangent vectors at p, $T_p(M)$, form a vector space ⁶

⁶(closed under vector addition, and scalar multiplication)