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Will be essentially Differential Geometry for General Relativity. DG, in par-
ticular, tensor calculus is the mathematical framework of GR.
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1 Manifolds

1.1 Topological Space

Let pe R™. A nbh! of p is any set V' C R" such that V contains an open solid
sphere of centre p.
Properties of nbh's:

1. p belongs to any nbh of p
2. If Visanbhof pand V' C U, then U is a nbh of p.

1neighbourhood



3. If U,V are nbh’s of p, then U NV is a nbh of p.

4. If Uis anbh of p thereisanbh Vof ps.t. V C U, and V is a nbh of each
of its points.

Definition 1. A topological space is a set of points M along with an assignment to
each peM of collections od subsets called nbh’s, satisfying properties 1-4.

1.2 Charts

Let M be a topological space, p/inM be some point in this space, U be an open
nbh of p. A chart on U is a one-to-one(injective) map:

¢:U— ¢(U) C R

The ¢(p) € R™ constitutes a local co-ordinate system defined in an open nhb

U, we usually write ¢(p) = {a*} = {z'(p),2*(p), ..., 2" (p)}
NB: The choice of chart is arbitrary
—Einstein Equivalence Principle.

1.3 Meshing Condition: Coordinate Transformations

Suppose we have two charts ¢, ¢2 on UCM. Since these charts ae in jective
they are invertible e.g.
o7t (U)C R - U

We may define
$0¢r ! 1 R" = R": ¢1(U) — ¢2(U)

We require these maps to be smooth (C°°) where they are defined. For peU,
the map ¢ o ¢; *(p) defines a co-ord transformation from the co-ords

¢1(p) = {«'(p),2*(p), ..., =" (p)}
to the co-ords
$2(p) = {X (p), X?(p), ..., X"(p)}
1.3.1 Example

Let Me R?, let ¢; be a map p to Cartesian coords (x,y) and ¢» map p to a differ-
ent set of cartesian coords (X,Y) obtained from the first by a rotation through
the angle a.

ppo 7t i (x,y) — (X =xcosa+ysina,Y = —zsina + ycosa)

We can define a derivative matrix

1 %—f %—Y cosa  sina
D(gaod17)=| ov & —< >

oy oy —SsSma  CoS«



Where Jacobian ] = det(D)=1

Reminder J /neg 0 implies invertible transformation. ] non—singular2 im-
plies ¢1, ¢2 are C"ftY related Introduce another chart ¢3, which maps p to
polar co-ords (r, §).

03007 (2,9) = (r = Va2 2,0 = tan )

]=det(D)=% $1, 91 are C™ related except at r = 0. To cover all of /mathdsR?,
we would need at least two sets of polar co-ords with different origins.

1.3.2 Example: Stereographic Projection

x2+y2—|—22:1

describes a 2-sphere embedded in R3.

¢1(w7y,2)z(w1,w2):< 2r 2y >

1-2"1-2

maps U : S? —{0,0,1} — ¢ (U)(R") ?

1.4 Definition of a manifold

Informally a monifold is a set of points M that locally looks like a subset of R™.
The simplest example of a curved manifold is S%. A set of C*°-relatd charts s.t.
every pointpeM lies in the domain of at least one chart is a C'*°-atlas for M.
The union of all such atlases is the C'*° maximal atlas.

Definition 2. We define a C*° n-dimensional manifold by a set M along with a max-
imal atlas.

2 Tangent Vectors and Tangent Spaces

In our familiar treatmane tof vectors in R™ they represent ”directed magni-
tudes”. This idea is no longer useful in DG, rather to each point pcM, we have
a set of all possible vectors at p known as the tangent space, T,,(M).

Prefer to describe geometry of M from intrinsic properties alone, we won't rely
on embedding in a hgher dimensional space.

Zhas no singularities
3defined for every point on 2-sphere except north pole. do the same with z = 1 plane except
from suoth pole to get entire map. (on first assignment)



2.1 Smooth Function
Let M be a manifold, f be a real function
f+M—-R

How do we define the “smoothness” of f?
We introduce a chart ¢. We define F s.t.

F:R" R, F=fo¢ !

We say that f is smooth iff F is smooth in the usual sense.
Theorem 1. The smoothness of f is chart independent.
Proof 1. Let ¢y, ¢2 be two meshing charts.

F=fo¢;'i=1,2

Fy=fog¢r"
=fody ogaogr!
Fi=Foprop!

@1, o are meshing charts and thus smooth. Smoothness properties of Fy are thus the
same as Fy. W

Definition of smooth functions may be generalised toa function mapping a
manifold M to another manifold N.

f:M—N

Let ¢ be a chart in M (dim n;)
Let ¢ be a chath in N (din ns)
Define F' = ¢5 0 f o qﬁfl, f smooth iff F smooth. Easy to prove that this is chart
independent.
E 4
of OF  0(¢ao0fogi)

Ozt Oxk OxH
2.2 Smooth Curves
Let I = (a,b) be an interval of R. We define a curve in M as a map
ViR — M, y(s) —p
The curve v is smooth if its image
povy:T —R" ¢pory(s)={z'(s),2%(s),...,2"(s)}

is smooth

“the first part of the following is not really defined on manifolds but is kinda ok to write becasue
they look locally like R™



2.3 Tangent Space as a Space of directional Derivatives

We wish to construct the tangent space at pcM (i.e. T,(M)) using inly the in-
trinsic properties to M.
We combine the concept of smooth functions f, and smooth curves, v and de-
fine

Fil =R, s =F(s) = for(s) = f(r(s))
i.e.F evaluates f along the curve
The rate at which mathcal F' changes, %~ gives the rate of change of f following
the curve. The tangent vector to the curve v at p where (w.l.o.g., take s = 0 at
p) is the real map from the set of real functions to R, defined by

d
Ypf = "Ypfz"Yp(f) = [deO'Y}

s=0

Claim Let ¢ be a chart s.t. ¢ : ¢(p) — " (p)
Then

where F = fog¢™!
Proof
F(s)=foy=fop togpon
= F o ¢y(s)
The function 7 o ¢ maps s to the coords of ~(s)
Identify F = F{z'(v(s)), 2?(7(5)), ..., 2" (v(s))}

i f = {d_f} - [dF(xl(v(S))7~--,w"(V(S))}

ds ds <=0

Chain Rule:

(81 ) ] o (), [0
- ; (gjt)ﬂp) [dwuéz(s))} s=0

(o)., [ 7L

Einstein’s summation convention

Swithout loss of generality



2.3.1 Example

Let M = R? take y = 22 — 3 to be a parabola in R?. We parametrise this by
T =Ss, y:282_3(¢07)
$o(s) = (z(s),y(s)) = (5,25 = 3)
F = F(s,25* —3)

dF dF dF

D i

ds dx * dy g

=T -VF

where T = [1, 45]
the RHS (f - VF) is the rate of change of F in the direction of 7' (might be

familiar from fluid dynamics)
The map 4, : f — [4f] _, we called a tangent vector at p. We must further

show that these maps live in a vector space of dimension n = dim (M)

Theorem 2. The set of tangent vectors at p, T,,(M), form a vector space ®

6(closed under vector addition, and scalar multiplication)



