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LECTURE1: 19/1/12

1 Introduction

1.1 References
e Partial differnetial equations by Evans,
o Applied partial differential equations by Habermann,

e Partial differential equations, an introduction by Strauss,

1.2 Definitions

PDE vs. ODE: A differential equation is one that involves an unknown
function, u, and its derivatives. If u=u(t) depends on one variable, we
denote its derivatives using primes. (u’, u”, etc.) and we call the equa-
tion ORDINARY, an ODE. If u = u(x1, 22,23, ...,x,) depends on n > 2
variables, we denote its derivatives using subscripts (u,,, u,,, etc.) and
we call the equation PARTIAL, a PDE.

Order: The highest-order derivative appearing in the equation.
For instance, v” — «' = sin(u) is a 2nd-order ODE.
and ., — u;, = u is a 3rd-order PDE.
We’ll generally omit the dependance on variables and avoid writing

Uge (T, Y) — Uyy(z,y)* = u(z,y).

Linear: An ODE or PDE is linear if the coefficients of the unknown
function u and its derivatives do not depend on either u or its deriva-
tives. eg. u, + yu, = z’u is linear (despite the %), u2 + yu, = 0 is
nonlinear, uu, = 1 nonlinear and so on. Second order LINEAR ODEs
have the form

a(t)u”(t) + b(t)u'(t) + c(t) = d(t)
First order LINEAR PDEs in u=u(x,y):

a(x, y)ux + b(xa y)uy + C(:C, y)u - d(xa y)



2 Seperation of Variables

This is a method for solving some equation and finding some solutions.
The idea is to look for solutions involving functions of one variable, say
u(z,y) = F(x)G(z) or u(z,y, 2) = F(r)G(y)H(2). Those are called seper-
able.

Example2.1 1
Consider the PDE u, + zu, = 0, where u=u(x,y).
Take

u(z,y) = F(z)Gy) = F(2)Gy) +aF(2)G'(y) =0

Flo) -Gy _,
Fz)  Gly)

LHS is indep. of y and RHS is indep of x

Fl(z) = AxF(z) & G'(y) = —AG(y)

F'(x) G'(y)
=\r & = -
F(x) G(y)
A2
logF(z) = - ta & logGy) = —Ay + ¢

2.1 Transport (or Traffic Flow) Equations

This is a simple but useful PDE.

Consider the traffic flow through a one-dimensional road (or the flow of
a liquid through a one-dimensional pipe)

Let u(x,t)=density of cars at point x and at time t. i.e. mass/length,

and v(x,t)=velocity of cars (overall) at point x and time t i.e.length /time.
We assume v is known and u is unknown. Then fab u(z,t)dr = total
number of cars in the interval [a,b].

b
= %/ u(z,t)dr = —(outflow atb) + (inflow at a)



— —u(b, t)v(b, t) + ula, t)v(a, t)

=— /ab[uv]md:z:

b
= / [ur + (wv),]de =0

for any a,b!!!
Thus,
ur + (uv), =0

gives the transport equation when v is known.

If we had a road that gets narrower we could choose a v function that
gets smaller at those points. We can just make sure the velocity is bigger
when the road has for example, more lanes or smaller when there is
more turns.

Example2.2 2
Take v = v(t) for simplicity. Then we get u; + vu, = 0.
Say u(z,t) = F(2)G(t) = F(x)G'(t) + vF'(z)G(t) = 0.

G'(t)  —vF'(x)

MO O
¢w_ o Pl
G =M & =

logG(t) = )x/v(t) +ca & logF(x) = —Ax + ¢

G(t) = e PO & F(z) = cue™

LECTURE 2: Friday 20 January, 10am

Example 2.3 3
Consider the PDE vs. ODE.

Uy + YUy + YUy = 0
There are seperable solutions u=F(x)G(y)H(z). Then, this becomes

F'GH +yFG' +y2FGH' = 0

3



F' yG  yzH'
—_ — 0
F G
The part of the equation that is only dependent on x is directly related to

the part that isn't dependent on z, then the following must be the case:

Fle) _ yG'(y) y=H'(z) _
F(x) Gly)  H(z)
Fl(z) = \F(z) & g((;)) + ZZS) = —g

Same thing again with the second equation.

e o HG _n G A
FUI=Are) & gy =2 % Gy =y "

Thus we have to solution:

logF(z) = Ax+c1 & logH(z) = plogz+ca & logG(y) = —Nogy—py+-cs

Pla)=Ce™ & H(z)=c & Gly) =y et

3 Method of characteristics

This is a general method due to Hamilton, and applies to any first-order
PDE. Consider a simple example:

a(z, y)uz + bz, y)uy =0

au, + buy, =0
This looks like the chain rule.

r=ux(s) & y=yls)

(3.y) = du dxu n dy
u = u(x — = Uy + —
e ds ds ds
But these derivatives are equal to 0, a, and b respectively. We solve

dx dy du

Uy



Which are ODEs. The first two ODEs give a curve in the xy-plane x=x(s),
y=y(s). The third equation says u is constant along the curve. We thus
need only know the value of u at some point on the curve.

Example 3.1 A
We solve u, — u, = 0 subject to u(z,0) = f(x).
Say z = z(s),y = y(s) = % =y, % + uy%
Need to solve

dx dy du
—=La0)=z & y(0) =0 & —==0,u(0) = f(x)
by writing u(xz¢,0) = f(xo).
r=S8+c =S+ X
Weget y=-s+c=-s
u = constant = f(x)
Eliminate z,s(in terms of (x,y).
s=—y,xo=r—s=x+y=u= f(zx+y).
Charac: x = s+ 29 = —y+ 29 = x +y = xg = constant
Example 3.2 B
We solve zu, + u, = 0 subject to u(xg,0) = f(zo).
dx dy du r=ce’ = 33068
Charecteristics ds ds ds . We get =s4+c=s |[!
(:C(O)::UO y(0)=0 u:f(sz:)> 5 Y

u= f(z)
Eliminate zy, s: s = y, 20 = ze ¥ = u = f(xg) = f(ze™Y)
Characteristic curves: 2

re Vv =x9=rc

x=0C"Y

LECTURE 3: 20/1/12

Example 3.3 C

YUy + Uy

1%:/\mz>%:/\d3:>x206>‘5
2

our charecteristic curves intersect with the real curves so we will see later what happens when they
don’t intersect



Subject to u(z,0) = f(z). Solve

dx dy du
= 1 _— = _ =
ds & ds y & ds 0

r=s+xy & y=ye’ & u=uy

In our case, the initial conditions give
r=s+zp & y=0 & u= f(xg)

So we cannot eliminate x, s, Note that the characteristic curves are

(L'() X

r=s+xy & y=wyoe’® =y=1ye" " =1y

We had an initial condition on y = 0, and that was a charecteristic curve!

3.1 Characteristics

Consider au, + bu, = ¢ with a, b, c functions of x,y, u. Let z = x(s) and

y = y(s). Solve

dx dy du

Subject to the initial conditionsﬁ
z(0) =z & y(0)=yo & u(0)=uy

Suppose a, b, c are smooth in Equation 3.4.1. By ODE theory, there exists
a unique solution (defined for some s). This is defined in terms of =, and
s, say. We wish to elimate those, so we wish to invert the transformation

(z,y) = (20, 5)

We can do that, provided that the Jacobian, | is nonzero on the initial

curve.
dr dz
J=det| B &
dyo ds

This solvability condition merely says that the initial curve should not
be a multiple of the characteristic curve on the initial curve.

dx dac a
d.l?() —
dyo ds
3this next equation can (and should) be expressed in terms of one variable, say u(z¢,0) = f(zo) or

u(0,y) = f(vo)




We’ll prove this in more detail (and also uniqueness).

Example 3.4 D (No Solutions)
Consider u, + yu, = u, subject to u(z,0) = x. We have:

dx dy du
-1 A av _
ds & ds y & ds “

e Checking Solvability; if the initial condition is u(xy,0) = =, the

Jacobian is
11 11
J—det<0y>—0 :>det<0 0)

e Pick another initial curve , say, u(0,y) = f(yo). The solvability
condition requires

01 01
J—det<1 y>:>det<1 O)#O

which is fine.

e Now solve:
u; +yuy =u & u(0,y0) = f(yo)

We have:
d—x—l = T =S5
ds -
d
d—yzy =y =ye
S
du
E:u =  u= f(yp)e’

Thus v = f(y),e ", e”--- gives solutions to the PDE. Thus u(z,0) =
f(0)e*, so we can never have u(z,0) = z.

Example 3.5 E Infinitely Many Solutions
Consider

Uy + YUy = U
as before, but impose u(x,0) = e”. Then, we can have u = f(ye™)e” and
u(z,0) = e, implies f(0) = 1. We can take f(z) = 1, f(2) = €°, or even
f(z) = 2"+ 1etc.



LECTURE 4: Thursday 26 January

Theorem 3.6  Characteristics
Consider the first-order PDE au, + bu, = c with a, b, c smooth functions
of z,y and u = u(x,y). Impose the initial conditions = = zy,y = yo,u =
ug expressed in terms of one variable, say xy. Let z(s),y(s), u(s) be the
solution of y y p
x Yy u

% = a & % =b & % = C

subject to the same initial conditions. If the solvability condition:

o dv
det @ Cffyo #0

ds dyo

holds on the initial curve, then the PDE has a unique local solution, ob-
tained by inverting the transformation

(2, y) = (20, 5)

Proof. Solve the system of ODEs. There is a local solution, so we can
express z,y, u in terms of z, s. By assumption and the inverse function
theorem, we can solve xg, s in terms of x, y. Define

u(z,y) = u(zo(z,y), s(z,y))

Then
+ b — %% + @@ + b %% + @%
@l T OUy =4 Oxg Or  0sOx Oxrg Or  0s Oy
ou 0o 0xo ou { 0s Js
— b a2 a2
O0xg (a ox i 8y) i 0s (a@x i 8y>
but
ou 0s ds _0Os drg  Oxg
g—c & a%+ba—y—2as—l & aax—as—()

This proves existence of a solution.
To prove uniqueness, suppose v(z, y) is another solution. Then

d dx dy

o (s).yls)) = e+ v

8



= av, + b,

= c(z(s),y(s),v(x(s), y(s))
and we have uniqueness of solutions by ODE theory, so v(z(s),y(s))

u(x(s), y(s))

LIl

3.1.1 Remark

The method of characteristics still applies when u depends on 3 or more
variable. If u = u(z, y, ) depends on 3 variables and

au, + bu, +cu, = A

one solves

dx dy dz du

The initial condition becomes u(z,y,0) = f(z,y) so it descirbes a surface.

Example 3.7 A
We'll solve

Uy + 20Yuy + 2U; = U

Characteristic Equations:

d d d d
Y1k —y:2xy 8 Y-, & d_u:
S

ds ds ds - Y

ﬁWe get

r=s+xy & z=z+¢€ & u=uye’

Then we can solve

dy

= opy =2

o Ty (s + xo)y
d
Y _ (2s + 2x0)ds
Y

logy = s + 2205 + log 4y
y = €s2€2m()sy0

We avoid imposing z, = 0 or even y, = 0. Say 2y = 0 and start eliminat-
ing: initial condition is «(0, vo, 20) = f(vo, 20). Then we have

r=s5 & y:y0652 & z=z0e€" & u=wupe’ = f(yo,20)e"

4 ’ dy _
we can’t solve ¢ = 2xy yet!



So finally:
u= f(ye—a? ze")e"
This is quite a general solution to the PDE but we will do it in more
generality tomorrow!
Visit http://www.maths.tcd.ie/ pete/pde2 in order to find home-
work ther tomorrow.

LECTURE 5: 27/01/12

3.2 Fully Non-Linear Case

Consider any 1st-order PDE in any number of variables. Suppose u =
u(xy, x9,x3,- - ,x,) and let Vu = (uy,, Uy, -+ ,uy, ). A first order PDE
has the form

F(u,Vu,7) =0
We’ve seen the case

a1 Uy, + QoUy, + -+ + apy, =0

in which case we get

dx; du
! = Qa; _— = b
s " « ds
We now treat the general case
F(Z,u,Vu)=0

Write p = Vu forconveniencel} p; = u,,

3.3 Derivation of the Characteristic equations
We need to determine z;(s), u(s), p;(s). The most dificult term is:

dp? apz ax] . /
Z ax] Os Jz:; Ugia;

j_

Urir; = o
derivation could be on the exam). leferentlate the PDE with respect to
ZT;.
- Oy,
Fy, + Fyug, + z; Fuy 5 =0
=

5p here would be momentum

10



Suppose

zy(s) = F, (3.2)

u'(s) = Zpini (3.3)
i=1

pi(s) = —Fy, — piFy (3.4)

For each 1 < ¢ < n. This is a closed system of 2n + 1 ODEs that we can
solve as before.

3.3.1 Special Case 1

Consider the PDE of the form

n

Z iUy, =0

i=1
This gives
F= Z aipi — b
Char equations:
d.%‘i
(3.2) = a;
ds

du
(3.3) i Zaipi =0
If a;, b are functions of z; and w, this is a closed system. So we don’t need
Eq. 3.4.

3.3.2 Special Case 2

Consider a Hamilton-Jacobi equation, namely a PDE of the form

where
T= (11,22, "+ ,Zy)
u=u(r1,Te, + ,Ty)
VU = (Ugy, Ugyy -+ 5 U, )

Think of ¢t as x,,;1.
Characteristic equations

F = Pn+1 + H(xlv o 7xn7pn+1)

11



B2 «.=H, & t'=1 forl<i<n

B4 p,=-H, & p,, =0 forl<i<n
The only nontrivial ODEs are

!
:: p/xi___]j% }Hamilton’s Equations

Once we have solved this system, u can be obtained be
B3 ' =) piFy +pus:
i=1

upon integration.

3.3.3 Special case 3

Suppose
u=u(z,y)

and let p = u,, In that case
B2 2'=F, & y =F,

(3.3) u’:pr+qu
" p/:_Fx_pFu & q/:_Fy_un

LECTURE 6: 27/01/12

where u = u(z,y), p = uy, ¢ = uyand F(z,y,u,p,q) =0

Example 3.8 A
We solve
2

uyuy, =1

subject to u(z,0) = x
Characteristics — F=pq—-1=0

t=2pq & Y =p’
¢g=3 = u=3s+u =35+ g
pP=0 = p=p

¢=0 = q=q

12



Thus
T = 2ppqos + xg

Y =D+ o
u = 35 + x9
P = Do
4= 90
e We have to eliminate x, py, qo, S
We can determine pg, gy from the initial condition and the PDE.
Since u(z,0) = = we get u,(x,0) = 1 so py = 1.
We can get ¢ from the PDE.

nv=1 = q=1
e Putting everything together
T =28+ x
y=-s = u=3y+(r—2y)=c+y
u = 3s + xg

3.4 Heat (or diffusion) Equation

e A 2nd-order PDE that describes heat propogation ansd also diffu-
sion

e Heat propogation through a 1-dim object (a rod) is described by
up — ktpy =0

where u(x,t) =temperature at point x at time t, and £ > 0 a con-
stant.

e For 2-dim objects (a membrane), we get:
U — Kty — Kty = 0
where u = u(zx,y, t).

e For n-dim objects:
u — kAu =0

where u = u(x1, T, -+, Ty, t) and Au Y, Uy,

e Diffusion is described by the same PDE with v =concentration of
the dissolving subtance at point 7 at time t.

13



3.5 Derivation of the heat/diffusion equation

e We need the basic facts

1. Fourier’s Law: heat flows from hot to cold at a rate which is
proportional to the temperature difference. Note the differnce
between heat & temperature

2. Heat is proportional to temperature times mass

e Let u be the temperature. Let ¢ be the heat flux. The derivation is
easier in 1-d.
Then 1 says
¢ = —ClUy

and 2 says
Heat = comu

e Consider a small portion of the rod with constant cross section A
and uniform density p. Then

mass = pAdzx
= heat = pAu(zx,t)dz
Thus the heat contained in the whole rod is

b
H:/ pAu dx

e Therefore,
H, = / ' copus do
but also a
H, = (heat flowing inside) — (heat going outside)
= ¢(a,t) — ¢(a,b)
= —cug(a,t) + cru, (b, t)

b
:/ Qg (x,t) dx

This gives u; = kug,

14



e In n-dimensions 1 becomes ¢ — ¢; Vu and 2 remains the same
Heat = / copu dV
A
H;, = / copuy dV
H = [ ¢.idS

H, = — /01Vu.ﬁ ds = 01/div(Vu) dVv

LECTURE 7: Thursday 2 February

4 Boundary Value Problems

Consider the heat equation
up — kg, =0

that describes the temperature of a metal rod, say. We impose some ini-
tial condition u(z,0) = f(z) where 0 < x < L and L =Length of rod. In
this case, the initial condition does not uniquely determine the soltuion:
We have to specify conditions at the endpoints

DIRICHLET conditions: we get to specify the value of u on the bound-
ary

NEUMANN conditions: we get to specify the value of the derivative
of u on the boundary. For n-dimensional problems that would be the
normal derivative

Vu-n

PERIODIC conditions: this is for the 1d-case

4.1 DIRICHLET PROBLEM for the heat equation in [0,L]
This problem can be described as
ur —kug, =0 for 0<a<L,t>0

15



u(z,0) = f(z) for 0<zx<L
u(0,t) =a(t) for t>0
(L,t) =b(t) for t>0

Step 1
We'll use seperation of variables to find some solutions. Take a(t) =0 =
b(t), zero Dirichlet conditions. Take

u(z,t) = F(x)G(t)

Need
Ut = kumx
F(2)G'(t) = kF"(2)G(t)
G'(t) _ F'(x)

MEO IR

where ) is a constant. We get
G'(t) = —kXG(t) = G(t)=cre ™
F'"(z) = =\F(x)
but Zero Dirichlet condtions

— F(0)=0= F(L)

We have to solve the problem

{00 Fin |

Let’s look for nonzero solutions!! Such solutions exist only for some .
We solve F"(z) + A\F(z) =0

1. If A =0, we get F(z) = ¢; + cpz. Since F'(0) = 0,¢; = 0. Then
F(L)y=clL = =0 = F=0

2. If A >0,say A = a?, we get F” + a*F =0

SO

F(x) = c1sin(ax) + ¢o cos(ax)
Since F'(0) = 0, we get co = 0. Then
0= F(L) = ¢ysin(al)
and we need aL = nr for some integer n. That is

nmw nmtx

)\:(T>2 & F(x):clsin(T)

16



Lemma4.1 1
The problem

L ity S0k |

has nonzero solutions only when A = ( ) for some positive integer n,

in which case

T
F(x) = ¢y sin (nzx)

Lemma4.2 2
The heat equation u; — ku,, = 0 has solutions

 csin (M) M)
u(z,t) = csin < T > e
Those satisfy u(0,t) = 0 = u(L,t) and also lim;_,~,u(z,t) = 0 for all x.

Lemma43 3
Suppose

(I = e

and F(x) nonzero. Then A > 0
Proof. Multiply the ODE by F'(z):

/OL F(x)F"(z) dov = —)\ /OL F(z)* dx

= /OL F'(z)* dr = A/F(az)2 da

u(z,t) = csin <?> ek(E)t

satisfies the PDE and the boundary conditions! We have to now worry
about the initial condition.

Step 2

Find more general solutions. Since u; — ku,, = 0 is linear, the sum of two
solutions is a solution:

In particular,

— kuy, =0
—kvg, =0 = w; — kw, =0
w=u-+v

17



LECTURE 8: Friday 3 February 10am

Similarly, any scalar multiple of a solution is a solution. This means{

0 2
u(z,t) = Z a, sin (?) e k()
n=1

is still a solution of the PDE that satisties the boundary conditions. The
initial conditions requires

- . (NTX
flx) = nz:; a, sin (T>
which is the Fourier sine series for f(z).
Step 3
We determine the Fourier coefficients a,,. We use the formulas
L
/0 sin <?> sin (mza:) dr =0 4.1)
whenever n # m.
L
L
/0 sin (?) sin (”—Z‘r) dz =3 (4.2)

Assuming those, the coefficients a,, can be found as follows:

n=1
= f(z)sin ey _ ia sin (@) sin ke
L) & L L
L

L
= i f(z)sin (IWTT‘%)) dx = arg

Thus the only possible solution is
u(z,t) =) apsin (@) k()

n=1

with

6should remember this formula until June!!

18



41.1 Remark

Equation holds because the functions f(z) = sin (“7%£) solve the
problem

ey — (MY
fi@) == () fula)
say
fi(@) = =Anfu(2)
Equation says { f.} are orthogonal. For vectors 7, ¢/, . . . orthogonal-

ity Z Ty, = 0
For functions f, g. .. orthogonality [ fg =0

Theorem 4.4  Orthogonality
Suppose

frlr/L — _Amfm
f;: - _/\nfn
with A, # \,,. Suppose f,,, f, vanish at 0, L. Then

[ i) a) az =0

fnfylrlL — _Amfmfn

Proof. We have

and
fmf;l, = _)‘nfmfn
SO
/ij—MW— M) [
The left hand side is

okl — fnfl)E =

Theorem 4.5 Uniqueness of Solutions
Consider the most general problem associated with the heat equation

— kug, = H(z,t)

u(z,0) = f(x)

19



Then at most one solution exists.

Proof. To check the uniquness, suppose u and v are both solutions. We
need to show w = u — v is zero. Note that

— kw,, =0
w(z,0) =0
w(0,t) =0
w(L,t) =0
LECTURE 9: Friday 3 February
Let
L
G(t) :/ w(x,t)? do
0
Then
L L
G'(t) :/ 2ww; dx :/ 2kww,, dr
0 0

L

G'(t) = [2kww,]y — / 2kw? dx
0

(z,0)? dz = 0. Since G(t) > 0, we get

so G(t) decreases, but G(0) = fOL w

G=0,sow=0. []
i

Example 4.6  Zero Dirichlet conditions 1

We solve

— kg, =0
subject to zero Dirichlet conditions andﬁ

3
u(z,0) = 2sin (%) — 3sin <%m)

“this kind of proof could very well be asked on the exam, at least the idea of proving uniqueness etc
note that we could say that L = 7 to make our equations nicer to write if we want!

20



We know the solution is
> nmwx ( )2
u(x,t) = a sin(—) M) 1
( ) nz:; n I €

where the coefficient a,, is chosen such that:

oo

u(z,0) = Z ay, sin (n_g:)

n=1
Thus a1 = 2, a3 = —3, all others a,, = 0. Thus

)2t — Jsin <37T—x) e_9k(%)2t

T

u(x,t) = 2sin <f> ek

SE

L

Example 4.7  Zero Dirichlet conditions 2
We solve
Up — kg

subject to zero Dirichlet conditions and subject to u(z,0) =
The solution is given by the usual formula with

2 /L i <mr:(:> J
a, = — in(——
I/ 7 T dx

Integrate by parts:

2L cos <n7rx) L N 2L
ap = — | —= — —
nmL L o nmL Jy

L

CcOS (?) dx

So

2L cos(nm) L+ 212 { , (nm;ﬂL
a, = ——— cos(nm sin [ ——
nwlL (nm)2L L /o

Since sin(nm) = 0, we get

2L 2L
n=——— = —_—— —]_ n
an, — cos(nm) nw( )
Therefore
= 2L nwx nr )2
1) = o (—1)"si (_) k()
u(x,t) ng_l mr( )" sin )¢

21



4.2 Non-homogeneuos case, heat equation, zero Dirichlet

e We solve
— kg, = H(z,t)

u(z,0) = f(z)
u(0,t) =0
u(L,t) =0

e Decompose as

v(z,0) = f(x)
v(0,t) =0
v(L,t) =0

plus

—kw,, = H
w(z,0) =0
w(0,t) =0
w(L,t) =0

The first problem is the same as the one we had before. We need to
solve the non-homogeneous one.

e [.ook at the Fourier series:

Mg

nmx
a,(t) sin

n=1

obtained for each time t. We have to determine a,, ().

We’ll relate this Fourier series to those of

Z b, (1) sin (mm:)
Wyp = Z (1) sin <n_zx>
H = Z d,(t) sin (mrx)

b, — kc, = d,

Then

22



by the PDE. also

b, L/ wy Sin (n_zx) dx
[ mrx) da:}

= a,— ke, =d,

1o

d
dt

now a and c are unknown but d is known.

LECTURE 10: Thursday 9 February

Step 1
First, we solve the homogeneuos problem with Dirichlet conditions

—kuy, =0 & u(z,0)=f(z) & wu(0,t) =0=u(L,t)

We did this using seperation of variables:

This gives A = (2)” and F(z) = csin (“2£) and the solution becomes

provided that

namely when

Step 2
Next, we solve the non-homogeneous

— kuy, = H(z,t) & u(z,0) = f(2)

23



with zero Dirichlet conditions
u(0,t) =0 =wu(L,t)
Let v be the solution to the homogeous problem 1.
u —kug, = H & u(x,0)=0
v — kv, =0 & v(x,0) = f(x)
Then w = u + v satisfies
wy —kwy,, = H & w(z,0) = f(z)
namely the whole problem. We have to solve

up — kg, = H(z,t)
u(z,0) =0
u(0,t) = u(L,t) =0

Suppose the solution is

u(z,t) = i a,(t) sin <$>

n=1

We have to determine the coefficients a,,. We'll relate those to the coeffi-
cients of u;, u,,, H denoted by b,,.c,, d,, respectively. First of all

2
bnzz/sin<n—zx>utd@”:a;
2 /L i (mrx) J
Cn = — my\ —- Tx
I/ 7 U T

L
. 2 sin (mrx) 2 /mr (mrx) g
n= |7 — JUy| ——= | —cos|—)u,dx
L L o LJ L L

. 2nm o (nmz) L9 /L (n7r)2 ) (nm;>
n = |—— —lu| — = — ) sin|{— | u
L L L o LJo L L

(7)
Cpn = —\—7/ n
L a

d, = b, — ke, by the PDE

2
= a;ﬂrk(n%) a, =d,

24



This is a first order linear!! We can solve using integrating factors:

{anek("g)zt}/ _ g ()

a,(t) = /Ot dn(s)ek(%f(s*ﬂ ds

Step 3

We’ll Solve the general problem
up — kug, = H
u(z,0) = f(x)
u(0,t) = a(t)
u(L,t) = b(t)

The new part is the presence of nonzero Dirichlet conditions. The idea
is to pick ANY function that satisfies them, say

vz, t) = alt) + %[b(t) —a(t)]

This is some function that satisfies only the boundary condtions. Let
w = u —v. Then
Wy — kwyy = (up — kugy) — (v — kvg,) = H — vy
w(z,0) = f(z) = v(z,0)
w(0,t) =0=w(L,t)

we know how to solve this problem [

LECTURE 11: Friday 10th February

4.3 Fourier Series Facts

4.3.1 Full Fourier series

Suppose f is (piecewise) smooth on [—L, L]. Then

oo oo
T) = a,, sin @> b,, cos (@>
fla) = X sin () + 3 -
for some unique coefficients a,, b,. The series converges to f(z) at points
where f is continuous and to the average value at the other points. This
makes the Fourier series periodic with period 2L.

°H — v; and f(z) — v(x,0) are known functions

25



4.3.2 Fourier Sine Series

Suppose { is piecewise smooth on [0, L]. Then

flz) = f: ay, sin <?>

a, = %/{)Lsin (?) f(z) dx
)

The series converges to f(z) at all points where f is continuous and to 0
at the endpoints (for any f). USEFUL FOR DIRICHLET

with

4.3.3 Fourier Cosine Series

We have .
nmwx
f(z) = nz:% by, cos (T)
with ,
2 nmwx
= — — >1
by, L/o cos( 7 )f(a:) dx forn >

and

1 L
bozz/o f(x) dx

The derivative of this series will vanish at the endpoints. USEFUL FOR
NEUMANN

4.3.4 WARNING

Let fu(x) = 75 This is differentiable for all z, however
- 0 ifr=0

so the sum is not even continuous

e For power (Taylor) series

(0.¢]

f(x) = Z ATy,

n=0

one can differentiate term by term (in the interval of convergence)

26



e For Fourier series

flx) = Z a;, sin (?)

this is fine if f(0) = 0 = f(L). For Fourier cosine series, it’s always
fine.

e For functions of two variables

u(z,t) = Z a,(t) sin (?)

one has to know something about a,(¢) in order to differentiatem

For example

u(z,t) = Z a,(t) sin (?)

n=1
nmwx

u(z,t) = Z al (t) sin (T) 777

to expand u; using Fouries, the coefficients are

9 L
bn:Z/O sin(n—zx)ut dx

d[2 (v  /nrx ,
b, = pr [Z/O sin (T) udx] = a, (t)

4.4 Heat Equation, Neumann Conditions

Consider the problem
up — ktpy =0

u(z,0) = f(z)
uz(0,t) =0 = u, (L, t)
Look for seperable solutions

G'(t) _ F'(x)

kG({#)  F(z) =

Thus
F'(z) = = F(z) & G'(t)=—k\G(t)

Yan infintie sum is really just a limit. >~ 7 | a,, = limy_,o0 Ziv:l ay,. Thus when we want to diffentiate
infinite series what we are really asking is does the limit commute with the derivative, this is not always
true!
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Lemma 4.8 )\ and F solution
Suppose F'is a non-zero solution of

F"(z) + \F(z) =0
F'(0) = 0= F'(L)
Then A = (%)* with n > 0 and
nmx

F(x) = acos (T)

Proof.
F'"+ AF =0

implies
\F? = —FF"

= A/F(:I;)2 = — / FF'"=[-FF§ + /(F’)2

[~ F ']} = 0 by Dirichlet/Neumann/periodic
This shows A > 0. We get

A=0 = F(x)=Az+B
A = 0because F'(L) =0
A>0 = A=d’
= F(x) = cisin(azx) + ¢ cos(ax)

c1 = 0 becasuse F'(0) = 0 Also

F'(z) = —cysin(ax)

= a= n% because F'(L)=0

Thus -
-3 ML) k()
u(z,t) 2 by, cos ( 7 > e

so anything we did for the Dsirichlet condition, we can do for the Neu-
mann!.

LECTURE 12: Friday 10 February 3pm
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4.5 Wave Equation
We now look at the wave equation
Uy — Clipy = 0

that describes the propogation of waves and also the motion of a guitar
string. This is second-order in time so we have to specify two initial
conditions:

Uy — gy = H(z,1)

u(z,0) = f(x)
u(x,0) = g(z)
( )

4.5.1 Uniqueness of Solutions
Suppose u, v solutions. Then w = u — v satisifes
2 —
Wy — CWyy = 0

with zero initial and boundary conditions. Consider
1 C2 L

L
E'(t) = / wiwy + wpwy dr
0

Then

L
E'(t) :/ wiw,, + [CQIwat]OL — /Cmewt
0
The boundary terms are zero assuming Neumann w, = 0 but also

. w(0,t) =0
Dirichlet { w(L.t) = 0

} = w; = 0 at endpoints. So
E(t)=FE0)=0 = w =w,=0atall points
= w is constant, hence 0.

Example 49 wave equation
We'll solve

Uy — CQum =0

29



u(z,0) =0
Ut(x70) - g(SU)
uz(0,t) = uy(L,t) =0

Seperation of Variables

u= F(x)G(t)
_ G"(t) _ F"(x)
AG(t)  F(x)
F'(z) = =\F(z) & G"=-\*G
F(0)=0 & G(0)=0
FI(L)=0

The first problem gives
nm 2
=|— >
A ( L) , n>0
nrx
F(x) = ¢ cos (T)

And then )
7 nme —
")+ ( - ) Gty =0
= G(t) = cysin (mrct)
L
Thus

u(z,t) = Z by, cos (?) sin (m;ct)

n=0

and we need u(x.0) = g(x). Let’s find the Fouries cosine series of u;:

2 /L o <n7rx> dr — d /L o (mmc)
L), " L) al) " L
= z/L (x) cos (@) _4 b, sin nmet) | - B, cos nmet
L), ? L) a|™" L )| L
b 2 [ (x) cos (mra:) if n > 1 (n = 0is irrelevant)
n=— x — n>1(n=
nwe J g L
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4.6 Laplace Equation over a triangle

The equation is Au = 0 or simply
Ugy + Uyy = 0

It descirbes the time-independent solution of u; — kAu = 0, heat equa-
tion, or u; — c2Au, wave.

Let’s solve this linear PDE over a rectangle 0 < z < L,0 <y < M. There
are boundary conditions on the four sides

picture
Seperation of variables
u=F(z)G(y)
F// G//
ATFTG

F'=-\F & G'=)\G
F(L)=0 & G(M)=0,G(0)=0

SO

()
G(y) = ¢ sin (n—]\?>
and then

_ nm(x — L
F(x) = ¢y sinh <(T))
LECTURE 13: Thursday 16 February
5 Eigenvalue Problems
A typical problem is
F'"+ AF =0
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One has to find eigenvalues )\ for which non-zero solutions (eigenfunctions) F’
exist when we impose boundary conditions, either Dirichlet or Neu-
mann. A generalization of this when u = u(xy, 29, --- ,z,) and

—Au = \u in some set A

u = 0 on the boundary 0A

or % = 0 on the boundary 0A

We’ve seen the special case A = [0, L] in the interval R. Under Dirichlet

conditions

2
A\, = (%) withn > 1

up () = sin (?)

Moreover, these eigenfunctions are orthogonal in the sense that

and

/OL U (T)up () dx =0

and smooth function f(x) = ) c,u,(x). Our goal is to show that we
always have a sequence

O0< A <A<

of eigenvalues with A — oo as n — oo, eigenfunctions with distinct
eigenvalues are orthogonal and any smooth function can be expressed
as

flx) = Z Cntin ()

n=1

un(x) being the eigenfunction.

5.1 Calculus Facts

One has the divergence theorem

/ VF = / Fii
A 9A
with F a vector and 7 the unit normal vector to A, and

VF=F, +F,+--
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We'll need this fact in the case that F' = u.Vuv for scalar functions u, v. In
this case

divF = (F*),,
k
divE = Z(uvxk)xk
k
divE = Z Uy, Vs, + Uy,

k
divF = YVuVv + uAv

/Vqu+uAv:/ uVon
A DA

We'll generally write ¢ =normal derivative of u = Vu.ii

/UAU: —/VUVU+ u@ (5.1)
A A g4 On

/ uAv — vAu = / u@ — v% (5.2)
A AA on on

We get

Theorem 5.1 1
Consider the eigenvalue problem

—Au = \u

in A. Then the eigenvalues are positive, if one requires © = 0 on 94, and
non-negative, if % =0ondA

Proof. Suppose —Au = Au and u is non-zero. Then

—/uAu:A/u2
A A

and we can use (5.1) to get

)\/u2:—/uAu:/\Vu\2— u@
A A A oA On

but [,, us% = 0. Thus
A:

and if A = 0 then u is constant. []
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Theorem 5.2 2
Eigenfunctions that correspond to distinct eigenvalues are orthogonal:

/Au(:r;)v(a:) =0

if
—Au = \u
—Av = v
AF

Moreover, the gradients Vu, Vv are also orthogonal.

Proof. We have

—vAu = \uv
and
—ulAv = puv
SO
/uAv—vAu:()\—,u)/uv
A A
Ov ou
= — —v—=(A—-
HA u@n ! on ( ,M) /A e
= / uv =0
A
Moreover/|

O:/uAv:—/Vqu—/ u@
A A o4 On

LECTURE 14: 17th February 10am

Consider the eigenvalue problem
—Au = A\u

in some bounded subset A € R" subject to Dirichlet conditions © = 0 on

0A. Note that
)\/u2=—/uAu:/\Vu\2—/ u@
A A A o4 On

Uboundary terms will be zero by either neumann or dirichlet
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We call the right hand side the RAYLEIGH QUOTIENT

R(u) = 44V

fA u?

If u is an eigenfunction, then R(u) = A is the corresponding eigenvalue.
We'll show that the eigenvalues form a sequence A\; < Xy < -- -, that the
first eigenfunctions u; is a function that minimizes R(u), the second u;
minimizes R(u) over all v L u; nd so on.

Example 5.3  Eigenvalue problem
Take A = [0,1] € R and Dirichlet conditions. Then )\, = (n7)? = n’n?
and the least eigenvalue is 7%. The eigenfunctions are u,, = sin(n7z). The
claim above implies

n? < Ju' (@)’

for all functions with «(0) = 0 = u(1). Thus, there is no function u with
1 1
/ u'(r)? = 9/ u(z)?
0 0

Theorem 5.4 3, First eigenfunction and eigenvalue
Suppose that R(u) has a minimum, say m = min R(u) over all functions
in

with u(0) = 0 = u(1).

X={uecC*A): u=00on0Aandu#0}

Then m is an eigenvalue, it is the least eigenvalue and any function that
minimizes R(u) is an eigenfunction.

We'll give two proofs based on the same idea; the derivative should
be zero at points of min/max.

Definition 5.5  First Variation or Frechet derivative
Suppose I(u) is a functional that depends on a function u. Then the first
variation of I(u) or the Frechet derivative in the direction of ¢ is

e—0 €
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Example 5.6  I(u) example
Let I(u) = [, |Vu(z)[>. Then

I(u-l—e¢):/\Vu+eV¢\2

_ / (Vi + Vo) (Vi + eV)

:/\vu12+2evuv¢+e2|v¢|2

SO

I'(u)p = /QVqub

Example 5.7  another I(u)
Let I(u) = [u* dx Then

I(u+ep) = /u2 + 2epu + €2¢*

SO

I'(u)p = /ngb dx

Proof. of theorem 3

We are assuming R(u) has a minimum value m attained at w, say. Then
R'(w)¢ = 0 for any function ¢. We could use the quotient rule but we
won't.

By above, the function

f(e) = R(w + €¢)
_ JIVw+eVe)
J(w + ep)?

a function of one variable!!. Namely

[ IVwP +2e [VuVe+ e [ |V
B [ w? + 2ewe + €2¢?

f(€)

That’s
_ay + bie+ cr€2 _ N(e)

fle) = g + bye + €2 De)
Then f/'(0) = 0 by calculus

N'(0)D(0) — D'(0)N(0)
D(0)2

= 0= /f'(0)=
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= biag —bsa; =0

= @ [vuvo) [v) - ([2u0)( [ [FuP) =0

= /Vqub— /wqu(w) =0

= / VwVeo —mwe =0
for all ¢ € X. Integrate by parts to get

/(—Aw —mw)p =0
A
for all ¢ € X. This implies
—Aw —mw =0
—Aw = mw

so w is an eigenfunction, m is an eigenvalue. It's also the least since
R(u) = X for eigenfunction u O

LECTURE 15: 17th February 3pm

We gave one proof using calculus by looking at f(z) = r(u + €¢)

Proof. Second proof using Frechet derivatives

Note that R(cu) = R(u) for any constant c. This means we can look for
a minimizer with [ v? = 1. This is a constrained minimzation problem
I(u) = [, |Vu|* subject to the constant

J(u):/Au2:1

By Lagrange multipliers, one has

I'(u)¢ = AJ'(u)

for all directions ¢. Thus

/AQVqub:/\/AQUgb
/A—Augb:/A/\ugb

—Au = \u

for all ¢.
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Theorem 5.8 4, Characterization of the nth eigenvalue
Suppose that R(u) attains a minimum over the set

X,={uecC*A) :u=00n0Au#0&u L uy, - up}

Then any functions that minimizes R(u) over X, is an eigenfunction u,,
with eigenvalue
An = min R(u)

ueX,
and obviously perpendicular to u;, - - - , u,—; and obviously \,_; < A,.

Proof. Suppose that m = min,cx, R(u) exists. Then f(e) = R(w + €¢)
becomes min when € = 0 so f(0) = 0 and we get

o=

exactly as before, but only for ¢ € X,,. This does not automatically imply
—Aw = mw. We now claim this equation holds for any function ¢ € X.
Write -

VY =11 + 1y
with ¥ L uq,ug, -+, uy_1. NamelyH
n—1
Uy = Z CrUL
k=1
n—1
=0 =) ey
k=1
Since -
/wluz‘ = /Wi«z - ch/ukuz
k=1
we need
0:/¢ui—ci/u§
J
for all 7.
We know that

o=

38

12Need ¢ L u; for all ¢



holds for ;. Thus it remains to check it for ¢y = ZZ: crur. We need to

check
—/Aw%:/mw@bg
A A

—/Awuk:/mwuk (5.3)
A A

Integrate by parts to move the Laplacian onto u;:

or simply

ov 8u
Av —vAu = — — V=
/Au v — vAu uan (9ﬁ
This reduces (5.3)) to
& —/wAuk = /mwuk
& WAL UL = /mwuk
~ )\k: — )/wuk =0
This holds since w € X, N

We now know \; < Ay < --- assuming that min,cx, R(u) exists. We'll
check this and also completeness: any smooth function can be expanded

as
00

n=1

LECTURE 16: Thursday 23rd February

We have assumed that the Rayleigh quotient R(u) = Jalv Af " attains a

mimimum over X{u € C? : u = 0 ondA, u # 0}. If that is true, the
minimum J; is the first eigenvalue and similarly A, is the minimum of
R(u) over X,{u € C? : w = 0 on 0A, u # 0 and u L uy, -+ ,u, 1}
assuming this exists. This gives a sequence of eigenvalues

0< A <A<

and we’ll show A — oo as n — oo. Assuming this, one can easily show
there is no other eigenvalue )\, < A < A\41.

To show that the minima above exist, we need some facts about
L?, the set of u with [, u* finite
H!, the Sobolev space, the set of all u with [, v?, [, |[Vu|* finite. Here
1l |Vu\2 Jul +- -+ ul
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5.2 The Main Idea

We need to minimize f v ‘2
U

R —

() =

over all nonzero functions in H'. Since R(cu) = R(u), this is the same as

minimizing
{/\Vu\2:/u2:1}

inquHl{/ |Vul?: /u2 =1}

and try to show that the inf is attained. Since d =inf of a set, we have
a sequence that converges to it. There is a function u,, in the set we're
minimizing over such that

Start with

1
d < / Vu,|> <d+~ (5.4)
n

/ u? =1 (5.5)

We are hoping that u,, converges to some function u with

/\Vu\2:d
/u2:1

Such a function is a minimizer!!!

Theorem 5.9 A, Rellich’s Compactness Theorem
Suppose A C R" is bounded. Let u, be a sequence of functions which

are bounded in H!:
/ui+/|vun\2 <C

for all n and some constant C'. Then there is a subsequence u,, (to be
denoted by u,,) that converges to some function @ in L*:

lim/ lu, — @|* =0 (5.6)
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Theorem 5.10 B, Banach-Alaoglu
Suppse A, u,, are as before. Then there is a subsequence that converges
weakly in H':

lim [ (u, —u)p =0 5.7)
n—oo
lim [ V(u, —u)Vyp =0 (5.8)
n—oo

for any functiontion ¢ € H'.

Step 1
These two limits are the same:

[ -7 0 68
and
[t = ure 0 €2

imply v = 4. Namely

| [ 0= @)l < o = el = 0
for any ¢. Thus

/(un—&)gp — 0

/ n—u)p — 0
for all ¢ € H'!

= / Uy = / up
Step 2

Let u,, be the minimizing sequence:
1
/ui=1 & d§/|Vun|2§d+—
n

Then [ u? = 1 because (5.6) implies

/ui—Quun-l—uQ — 0

SO

/ui—?uu—kuz — 0 by (5.7)
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SO

/ui—>/u2

Thusu € H' and [u? =1so0

d:inf{|Vu\2:/u2:1} & d§/|Vu\2

We'll show [ [Vul? > d.

LECTURE 17: Friday 24th February 10am

5.3 Existence of a minimum

d:inf{/|Vu\2 ; /u2:1,u:00n8A}
a A

We automatically get a sequence u,, € H' with

Let

1
/u2:1 & d§/|Vu|2§d+— & u,=0o0on0dA
n

Then we get (using the hard theorems) a subsequence that we’ll denote
by u,, such that

/(un—u)2—>0 & /unqﬁ—>/ugb & /Vunv¢—>/VuV¢

for some function u € H' that vanishes on 9A and all ¢ € H'.
The first of those limits gives strong convergence in L?. The second is
weak convergence.

/(un —u)p — 0
Note that
\/mn —u>¢\ < lhtn — ullz 16l

by Holder’s
Using the first, we get

/ui—?uun—l—u2—>0 & /ui—u2—>0

1:nm/u§:/u2
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Therefore

/|vu|2 > d

by definition of d. We’ll show

/|Vu|2 <d

/]Vu|2 = /VUVU = lim [ Vu,Vu = lim inf/VunVu

n—o0 n—o0

In fact,

< lim inf||Vuy,||2 ||Vull2
n—oo

= Vd [|Vullz

and so
1Vul]> < Vd || Vull

Which implies that either ||Vu|| = 0 or ||Vu|| < v/d. In the latter case

/|vu|2 <d

In the former case, v is a constant which is equal to 0 (by Dirichlet), and
that’s a contradiction, since [ uy = 1.

Corollary 5.11 )\, — >
One has \,, — .

Proof. By construction A, is the min value of R(u) over all functions or-
thogonal to uy, - - - , u,—; (the corresponding eigenfunctions). Thus ), is
increasing. Suppose A, < L, and that u,, are orthonormal

2 _
uy, =1

Then
/ Vul = R(u,) = A,

and u2 = 1. By Rellich’s compactness theorem, there is a subsequence

/(un—u)2—>0

for some u € H?. Then



for large m, n.

/(un—um)Qz/ufl—2umun+ufn:2

which is a contradiction. []

Theorem 5.12 Completeness
Suppose {u,} are the eigenfunctions for the eigenstate problem —Au =
Au. Then every f € L? can be written as

00
f = Z Cpn
n=1

for some unique c,. More precisely, one has

N
Ry = f - Z CnUn
n=1

which satisfies [ R% — 0.

Proof. We'll prove this for some C? functions that vanish on 9A. The gen-
eral case follows by approximating f € L? by such functions. Assume
{u,} orthonormal. We claim that

RNJ_ul,--- , UN (59)
in the sense that [ Ryuy, = 0, and
VRN 1L Vul, cet ,VUN (510)

in the sense that [ VRyVu; = 0.
To check this, let 1 < k£ < N. Then

N
Ryu, = /ukf — Z Cn / upuy, = urf — ¢ ---by orthonormality = 0
n=1

because ¢, = [ uyf by definition. Similarly

N N
/ VR, Vu; = / VuV =) e / Vu,Vu; = — / Aupf + ) cnNuyuy,
n=1 n=1

as —Au, = A\pug. Thus

N
coe= /Akka — Z AnCpln Uj; = Ak/%kf — Aer =0
n=1
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We will now use equations (5.9) and (5.10) show that

/R?\,—>O

By equation (5.9), the Rayleigh quotient

JIVRy|?
| Ry

and it suffices to show that the lefthand side is bounded. However,

[ 192 = [ VR Y eVuf = VR S eV = [ IVRAP

[]

> ANt1 = /|VRN|2 > >\N+1/R?\f

LECTURE 18: Firday 24th February 3pm

6 The Hard Theorems

We'll give a sketch of their proofs. Theorem B (Banach Alaoglu) claims
that a sequence u,, € H' with [u?, [ |Vu,|? bounded has a subsequence

with
/ungp — /ugp & /Vuncp — VuVe

for some function u € H' and all ¢ € H'.

Proof. (sketch) The main point is that H', just like L?, has a countable
dense subdet D. This also implies that every orthonormal basis is count-
able: say {v,} is orthonormal. Then

/(va—vﬁ):/vz—v%:2

and each ball of radius 11/2 with center in D covers the space by density
and each ball contains at most one v,,.

Now, take a countable orthonormal basis {w, }'° ; and consider the bounded
sequence u,. Then

/%mSWMWM<m
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and that’s a sequence of reals. There is a subsequence u) such that
[ u2w; converges. Similarly [wu2wi, [u?w, both converge for some sub-
sequence u2. We get instinctively

k
/ u,w; converges

for 1 <i < k. Then
/ u, Ww; converges

for all ¢ (any fixed 7)
We now show [ u¢ is convergent for any ¢ € H'. To see this, write

p=> cw & ci:/wiso
/@2 — /Zciwicjwj = ZC?
i.j i

Then

soc — 0
We show [ ul'p is CAUCHY. Write

p = Zczwﬁ Z Ciw;

i=N+1
N

SOZZCiw¢+RN

1=1

then .
/ B= 3 ¢ o0
i=N-+1
and

N
/ (W — ulp = / (= u) Ry + / (n — u™)es,
=1

The first term is bounded by
[y, =l BN | < 20| Ry[[* — 0

The second term is bounded by

maxc u—u w — 0
el X [ !
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Theorem A (Rellich’s Compactness Theorem)
If [u2, [ |Vu,|* are bounded, then a subsequence satisfies

/(un—u)2 — 0

We'll only prove that when A C R, say A = [0, 1].

for some u € L?

Proof. First, we use Theorem B to get

1 1
/ Upp — / up
0 0
2 1
/ u o — / u'y’
0 0

where ' denotes differentiation, for all ¢ € H'. We note that

() — () = / " (2)

converges to (first term by fundamental theorem, second by banach alaoulu)

[ute) = = [
We also have

Juata) = wle@) = [ @) - et

by Lebesgue’s theorem [IJ

[ @@ > [u@e
by above
w(w) [ ola) + ulw) [ o)
un(y) — wuly) forally
Finally we claim

sup |up(z) —u(x) <e
O<z<1

Bintegral of limit is the same as the integral of the limit for certain conditions
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for large n. Suppose not, then 3z, : #, — =z up to a subequence and
€ < |up(xn) — u(zy)|
€ < |un(zn) — un(@)] + |un(z) — un(@n)| + |un(zn) — ulzn)|

The last term goes to 0 by above. [

) = () = [l < |G = > 0

LECTURE 19: 8th March 3pm

7 Calculus of Variations

The general idea is the following. If a function u of one (or more) vari-
ables minimizes/maximizes a functional, then it satisfies an ODE (or a

PDE).
For instance, consider

() = / V(o) d
A
where A C R" and subject to u(z) = f(x) on JA.

Suppose that J(u,) is the min value over all functions. Given any
function ¢ that vanishes on the boundary,

J(us +ep) — J(uy) >0

for all € (because u, + ep = f on JA).
SO

e—0 €

—0

This means J'(u. )¢ = 0 for all functions ¢ with ¢ = 0 on 0A.

In our case
Hu+eg) = [ [Vut el

!4the line is possibly not correct
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:/\VU\2+26VUV90—|—62\90\2

and so
0=J(u —11m/2Vquo—|—e/|gp|2

= /QVqup = —/ZAugo

for all ¢, hence Au = 0.

7.1 General Case

Consider a functional .J(y) that depends on a function y(¢) of variable,
say

b
Io) = [ Ltyle). ) d

for some given function L, called the Lagrangian.

Example 71 if y( ) m1n1mizes then we get an ODE
Take J(y f y(t 4 dt. If y(t) minimizes J(y), then

0=J(y)y

i Tt e0) — I ()

e—0 €

1
=lim— [ (y+ep)’ =y’ + (' + )" = (v)'

1 1
= lin% = [ 3ytep + [€%, €, terms] + —/4(y’)3eap + [%, €%, €', terms]
e—0 € €
Therefore
0= / 3yPp + 4(y')’ ¢/ (t) dt
= / 397 — 45 at
dt

for all p and so
3y —4 x3(y)% =0

a second order ODE.
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Theorem 7.2 1
Suppose y is a local min or max of

b
I9) = [ L0/ d
where y(t) is twice continuously differentiable. Then

0=J(y)y

oL oL

— t) di
oy (t)

for all ¢ with ¢ = 0 on 0A.
In particular y(¢) is a solution of the Euler-Lagrange equations.

a (ony _or
dt \oy') Oy

or simply
d
%Ly’ =L,
Note
d - oL
oL contains 3 terms and % only one!

Proof. We have

If y(t) is a local min/max, then

0= J'(y)p = lim J(y+ep) = J(y)

e—0 €

We have to compute
L(t,y + o,y + eg') = L(t,y,9/)
Let’s use Taylor series:

f(:z:,y) = f(x()a yO) + fa:(ﬂf()ay())(x - x()) + fy(xo,yo)(y — yo) R

In our case this gives

L(t,y +ep,y +ep') — L(t,y,y") =
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oL oL :
_0_y(€ ©) + 9y —(e¢’) + [¢” terms etc ]

70 oL oL
J'(y)ep a¢+ay¢
B oL d oL B
-/ (a—y - i)
This is true for all ¢ so
oL doL
dy  dtoy

LECTURE 20: Friday 9th March 10am

Taylor Series

£ (g
:Zf n(' )(SC—CC())

n=0

Py =3 ZIE08)

n!
n=0

e 8"8m Io y())

2.0

n=0 m=0

f(zo,v0) + fa(xo, yo)(z — x0) + fy (20, v0)(y — yo) + higher order terms
We started with a local min/max of

J@ﬁi/Lawmyw»ﬁ

and we ended up with

= )y — o)

_/*8L_d8L P

). oy dtoy v

for all ¢ vanishing at a, b.

Lemma 7. 3 Fundamental Lemma of Variational Calculus

Suppose f H(t)p(t) dt = 0 for all ¢ vanishing at a, b. If H is continuous,

then H = 0.
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Proof. Take
p(t) = (0 =)t —a)H(t)

Then ,
/ (b—t)(t —a)H(t)* dt =0
= (b-t)(t—a)H({t)=0
= H = 0 on [a, b] by continuity. O

Example 7.4 1, Standard

Consider the graphs passing through y(a) = yp and y(b) = y;. The short-
est path betweeen these points is a line. We have to minimize the ar-
clength

J(y) = / V1+y(t)?dt

Over all functions y(t) with y(a) = yo, y(b) = y;.
The boundary condtions do not affect the problem: if y(¢) is a local
min/max then

e—0 €

since y + ey satisfies the boundary condtions.
We get
d oL 0L
dtoy Oy

with L = /1 + (¢/)2.

Since % =0, we find

= ¢ is aline!!
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Definition 7.5 y an extremal
We say y is an extremal (or critical point) for

b
I(y) = / L dt
if
doL_oL
dtoy Oy
Example 7.6
We find the extremals of

I(y) = / () — o + 2ty) dt
=0

subject to y(0) = y(1)

In this case
dOL 0L

dtoy — dy

2y = 2t — 2y
So

y' +y(t) =t
Which is a second order, linear, non-homogeneous ODE!
Homogeneous solution...

y'+y=0
Yy =ci18int + cocost

Particular solution...
y=At+B = y=t

y=cysint 4+ cocost 4+t

We need
y(0)=0 = =0
y(1)=0 = ¢sinl+1=0
sint
= y=t— -
sin 1

Theorem 7.7 Several unknowns
Suppose

J(y1,~-~ ayn> :/ L(tvyl(t>7"' 7yn(t)7yi<t)7"' 7y;(t>) dt
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Then every extremal satisfies

doL _ oL
dt 8y,’€ B oY
foreach1 < k <n.
Proof. Consider s, - - - .y, as constant. Viewing J as a function of y;, we
get
doL_oL
dtdyy Ay
Repeat. []
Example7.8 3
Consider )
Koz = [ W00+ yle) d
Then
4oL oL doL_oL
dtoy Oy dt oz 0z
Z” — 2y & y// — O
So

y=ct+c & 2'=2y=2ct2c
3

z:?ntczt +c3t+ ¢y

LECTURE 21: Friday, 9th March, 3pm

Example 7.9 Catenary
A chain hung (Pete wrote hanged, but this is more correct!) between two
points. What shape does it attain?

It’s center of mass is ,
fa yy/ 1+ 4/ (t)? dt
[P /T2 dt

The denominator = length of chain = constant.

The chain attains the most stable position, so it basically minimizes its
center of mass.

We need to minimize

J(y) =/ yv1+y'(t)*d
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subject to boundary conditions y(a) = yo, y(b) = 11
Euler Langrange equations:

d oL OL
dtoy Oy
Note that z = y’ 9L _ T is constant because

0L 0L 9L oL,

Z:yﬁy’+y3y oy ay =0

Hard way...

is seperable
Easy way... differentiation gives 2y'y" = 2251

1
= ' - -y =0
c
) t t
= y = Asinh(-) + B cosh(-)
c c
If we require y(0) = 0, for instance, we get
. t
y = Asinh(-)
c

as the only extremals.



7.2 Minimization with other Constraints

As an in’cent’ive to read my notes. I'll give you 1cent if you ask for it...
Suppose we want to find extremals of

b
J@:/yww

subject to ff V14 y/(t) dt = nd?. That is, maximize the area subject to
boundary conditions and also [ M(t,y(t),y/(t)) dt = ¢
Then J'(y)¢ may not be zero anymore because

e—0 €

and y + ep may not satisy the new constraint (so the numerator has no
(definite) sign.

When minimizing f(z,y) subject to a constraint g(z,y) = ¢ one can
use Lagrange multipliers:
Vf=AVg

unless Vg = 0 at all points]]

Theorem 7.10 Two minimization conditions
Suppose the Lagrangians L, M are twice continuously differentiable. Then
any extremal of

sy = [ 1o9te), o (0)
subject to b '
Iy) = [ Mlt(0).9/@) de = e
being constant (and possiblya other boundary conditions) then either:
1. I'(y)p =0forall p : p(a) = p(b) =0
2. J(y)p = A'(y)p for all ¢
Thus, y is an extremal of I of J — Al (for some \).

Example 711 1
We'll find the extremals of

5the point is that everything you have for calculus you have for functional
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subject to /(y) = f; Vv 1+ (y')? dt being constant and y(—1) = 0 = y(1)

Extremals of [:

doL 0L - -
oy oy & L=+1+(y)

d Yy
i S
dt \/1+ (y)?
SO
Yy’ oL .
1+ (y): oY
Then )
W) _.
1+ (y)?
SO

Extremals of J = —\I

d0L oL - _
Gy oy & L=y—XM/1+ ()

Ay’ oL

oy
VIHWPR oy

W) (t+e)’
o (50)

(?})2 - (tiC)Q -

t+c
=4
Y ety
y=cyt /N2 — (t+c)?
(y—Cg)Q—l—(t—l—Cl)Q Z)\Z

=t+c

LECTURE 22: 22 March, 3pm

Theorem 7.12 Lagrange Multipliers

Suppose u is an extremal of the functions .J(u) subject to the constraint
I(u) =consant. We assume J(u) = f; L(t,y(t),y'(t)) dt with L continu-
ously differentiable. Then either
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o ['(u)p = 0 for all ¢ and u is extremal or I.

o J'(u)p = Al'(u)p for some X and u is extremal of J — A/

Proof. Suppose I'(u)p # 0 for some ¢
We’ll show
S

J'(u)y = W] ()

For all .
Suppose not, then we can find :

I'(u)pJ (u) # J' ()l (u)t

Define
f(€,0) = J(u+ep + 09)
g(€,0) = I(u + ep + 67)
Recall
J'(u) = lim Jlut Ei) —J()
J(u+ 60)p = lim J(u+ep+ &i) — J(u+ 0v)
e—0 €
= f6<07 5)
This gives
J'(u)e = f(0,0)
J'(u) = £5(0,0)
I/(u)gp - ge(oa 0)
I'(u)y = g5(0,0)
Then
g€f5 - feg(5 7£ 0
SO

f5 fe
det{ga 96] # 0

In particular, the transformation
(€,0) = (f,9)

is an invertible transformation, which cannot happen at a local min/max
of f (by Lagrange multipliers in R? or by the inverse function theorem)
O
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7.3 Second Variation

The condition J'(u)¢ = 0 is only necessary for having a local min/max.
To check if u is really a local min/max one needs to look at the 2nd
derivative.

Say f = f(x) depends on one variable. Suppose z is a critical point.

Then ”
o) = o) + £z — ) + L0

If f'(zg) > 0, then we have f(z) > f(xg) near z = xy. hence a local
minimum.

If f'(xy) < 0 we have a local max
If f"(xg) =0, then f"(zy) = 0 and one looks at f""(x) etc.

(af—l’o)2—|—---

7.3.1 First variation(or derivative) of J(u)

Is defined as

, . J(u+tep)—J(u
Fage = iy T0F0) = T

Thus
J(u+ep)=J(u)+ e (u)p+€eR

with R - 0ase — 0

7.3.2 Second variation (or derivative) of J(u)

Is defined by the formula

2
J(u+ep) = J(u) +eJ (u)p + ;J”(u)go + R

with R — 0 as ¢ — 0. This means

Example 7.13  J(u)
Take J(u) = [ u? Then

J(u+ep) = /u2 + 2eup + 2p?
2
= J(u) + e (u)p + T (u)p
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so J'(u)p = [ 2up
and J"(u)p = [ 2¢?

Example 714 ]
Let J(u) = [u® Then

J(u)e= [ 3u’p

J
J"(u)p = / Gup?

and

LECTURE 23: Friday 23 March 10am

Note that yesterday we used "u” instead of 'y’. We will continue to
use "u’ but the it is the same as the original "y’

Theorem 7.15  Explicit Formula
Suppose

b
J(u) = / L(t u, ) dt
Then ,
Jl(u)gp — / Lyp + Lu’gpl dt
and similarly
b
J”(U)90 - / Lngpz + 2Luu’9090l + Lu/U’(QOI)2

Proof. We use Taylor expansion for functions of two variables.

1
L(t,u+ep,u +ep') = L(t,u,u’) + epL, + €' Ly + 5(6@)2Luu+

1
+(690) (ESOI)LUU/ _I_ E(ESOI)QLu/u’ _|— €2R
with R - 0ase — 0 0

Theorem 7.16  Necessary Condition for a local extremum
If J(u) has a local min at the function u, then J'(u)p = 0 and J"(u)p > 0
for all . If u is a local max, then J'(u)p =0 > J"(u)p.
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Proof. We prove this for a local min.
We know J'(u)p = 0 at a local min. Write

2
J(u+eg) = J(w) +eJ (we + 5T (e + R

Suppose J"(u)p < 0 for some . Then

: J(u+€¢)_J(u)_1 "
then R — 0 and we have a clear contradiction. []

Theorem 7.17  Sufficient Condition for a local extremum
Suppose u is an extremal, a critical point, of .J(u). Suppose also that

T (u)p > 6 Ub ¥+ /ab(so’)ﬂ

for some § > 0 and all ¢. Then J(u) attains a local min at the function w.
There is a similar conditions for a local max.

Proof. Use a Taylor expansion as before:
€2
L(u,u+ep,u +ep') = L(t,u,u’) + epL, + €0 Ly + (—— Lyu+

2
62(90/)2
2

+€%0 Ly + Luw) +€(©" + (¢))R

where R — 0 as ¢ — 0[19
We integrate this to get

Hu+ep) = I + ST W+ € [+ ()R

Thus 1 ) ) 5
: u+ep)—Ju 2 n2y (2
iy B =T ([ [P (54 8)
with § + R positive for small enough . O

Note that neither J”(u)¢ > 0 nor the other condition is easy to check
for all ¢ vanishing at a, b.

YR+ \/(z —20)2+ (y — yo)? i.e. just a distance

61



Theorem 7.18 Legendre necessary condtion
Suppose

J(u) = / Lt ) di

Suppose u is a local minimum. Then L,,,, > 0(at all points)
For instance J(u) = [u* — (u')* has no local min.

Proof. We know J"(u)p > 0 for all ¢. This means

b
0 S J”(U)QO - / LUUSOZ + 2Luu/(9090/) + LU'U’(SOI)Q

b
d
= / (Luu - %Z—Juu’)%)2 + Lu’u’(¢/)2

:/Pw¢+mmw2

We need to show Q(¢) > 0 at all points.
Suppose Q(ty) < 0. Assume a < t; < b, the case ¢ty = a, b being similar.
Then Q(t) is negative on [ty — €,y + €¢]. We take

oft) = sin2 (M) to—e<t<ty+e
0 elsewhere

Then]
to+e o T to+e 7t — 2
0< /t_+ P(t)sin’ (M) dt+€—22 ’ Q1) [sin <M>} dt

to— €

to+e o 2
§ma:1:\P(t)\26—|—7€T—22ma:1:Q(t)/ i [sin <M>] dt

0—€ €

where the last integral is

€ 21

— sin?z do = Ce
27T —27

This gives
0 < Cie+ @maxQ(t) — 00
€

,a contradiction. N

7there was originally a mistake in this but I have just removed the thing the Pete did wrong
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LECTURE 24: 23 March, 3pm

Example 719 1
Take

J(u) = /_1115\/1+(u’)2 dt

t
(1+ (u)?)?
changes sign on [—1, 1] so there is no local extrema.

Then

u'u’

Example 7.20 2

Take .
J(u) = / Vu?+ (u)?
0
Then )
Lu’u’ — ¢ : 2 0

(u? + (w)?)2
but there are no local maxima (homework!).

7.4 Symmetries and Noether’s theorem

Consider a functional like

J(u) = /b L(t,u,u’) dt

If L has some symmetry, then there is a conserved quantity.
Ex take J(u) = f; L(t,u') dt, there is no u dependence. Replacing u by
u + € does not affect J(u). The Euler-Lagrange equation gives

doL_oL
dtou — Ou
and the quantity 2% is conserved (for extremals).

Example 721 1
Let m,k > 0and
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In this case, the integral does not depends on ¢, we have the invariance.
Euler-Lagrange equation

doL _oL
dtou'  Ou
(mu)’ = —ku
mu” = —ku

Multiply by 2u and integrate to get
m(u')? + ku® = ¢
conservation of energy.

Definition 7.22 Invariance
Consider the functional

b
J(u) = / L(t, u(t), /(1) dt
We say it’s invariant under the transformation
(t,u) —  (te,us)

depending on some parameter e, if

b by
/L(t,u(t),u’(t)) :/ L(ty, us(ty), ul(ty)) dt,

and also t, = t,u, = uwhene =20
Typical choices would be

t, =t+€,u, =u time invariance

t, =t,u, = u+ € translation invariance

t, =tcose —usine,u, = tsine +ucose rotational invariance

Definition 7.23  Infinitesimal generators
Suppose we have a transformation

te = f(t,u)
us = g(t,u)
depending on a parameter € with ¢, = ¢, u, = u when € = 0. We define

_9f
T e
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_ 9y

Theorem 7.24  Noether’s Theorem
Suppose J(u) is invariant under (¢,u) — (., u,) depending on e. Then

oL 0L

is conserved for all extremals of the functional.
For instance, take

No time dependance, thus

e =1+¢€
U =
Then ¢ = 1,7 = 0 so,
oL 1
L— u'% = —§m(u’)2 — ku? — o —ma

butv — mu' =0

LECTURE 25: Thursday 29 March 3pm

Theorem 7.25 Noether’s Theorem
Suppose the functional

J(u) = /bL(t,u,u') dt
a
is invariant under the transformation
te= f(t,u)) & us=g(t,u)
depending on parameter € with ¢, = ¢, u, = u whene = 0. Let { = g—f _

=0

andn = % R Then the quantity

P
oL ,0L
is conserved (independent of t) for each extremal u of the functional.
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Proof. The proof is a somewhat messy (but straightforward) computa-
tion. Invariance means

/ L(t u(t), o/ (1)) dt = / (b, (1), 20, (1)) dt.

The idea is to expand the right hand side in a Taylor series on € and
compare the coefficients of e. We may thus ignore all terms involving ¢
and higher powers of e. Note that

0
t*zf(t,u):f(t,u)|eo+€_f + o=t +el+---
Oe 0
and similarly
U :U+€77

We could write 0t = £ & du = en.
First we expand the integrand L(%,, u.(t.), v/ (t.)) as a Taylor series in
t, keeping u, fixed. We get

Lt w(te), w(t:)) = Lty ue (D) (1)) + (£ — t)%L

but (t. — t) = e£€. We write
d
L(te,uy) + L(t,uy) + eé’EL
Similarly, we can expand

L(t,us) = L(t,u) + (us — u)%L

We now use this fact in the identity

b b
/ L(t,u,u’) dt :/ L(t,, us, ) dt,
We know thatt, =t 4 €
= dt, =dt + e&dt = (1 + €€)dt

so the right hand side is

b oL oL _ d
/a (L + %516 + %5”& + 66;[;) (1 + éft)dt
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We may ignore terms that contain ¢’

b
oL L d
/ L+ —du+ a—éu’ + ESEL + €& dt

ou ou/
Here the L will cancel the LHS and £ %L + €&, is a perfect derivative;
(e£L); We thus get
b
oL oL _ , -
/a (%&L + %(M) dt + [e€L], =0

Integration by parts gives
L L b
/ a——ia— ou dt + a—L5u+e§L =0
ou’
We have cheated a little bit here by using du but it’s fine.
The integral is zero by Euler-Lagrange equations. Thus, the expresion

in brackets attains the same value at the endpoints a, b (which are arbi-
trary). Thus

a

oL
€L + —du = constant
ou’

We wish to show

oL oL
- L —u ==
Tow 6 < ! 8u’>

is constant, namely

oL

¢L+ %(77 — &u') = constant
we have to show that
du = en = eéu’

In fact
us(ts) —u(t) = en
and we need an expression for
du = u,(t) — u(t)
wa(t) = () + . (t) — ult)
but u,(t) — u(t) = (t — t.)% and u.(t,) — u(t) = en, so
du = —eéu' +en

This proof is not on the exam!

LECTURE 26: 30th March 10am
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8 Final Exam topics

1. Characteristics
2. Boundary value Problems
3. Eigenvalue Problems

4. Variational problems

One problem per topic a 3/4 exam. You can just forget about one topic
if you want, thus you can pass on just 6 lectures!

8.1 To Know
e formulas for Fourier series (coefficients)

e charasteric equations (for au, + bu, = c for for fully non-linear (use
or derive)

e Euler-Lagrange equations g_ﬁ — %%
e Don’t need to memorize other equations

e various proofs except for Banach/Alaoglu, Rellich’s + Noether’s

8.2 Sample question for 3

1. Show that the eigenvalues for —Vu = A\u are positive when u = 0
on 0A (will be more precise on the exam)

2. Show that the smallest eigenvalue corresponds to the minimum of
the Rayleigh quotient. You may assume the minimum is attained.

3. Find eigenvalues/eigenfunctions for —u” + 3u’ = Au with u(0) =
u(2)=0

68



	Introduction
	References
	Definitions

	Seperation of Variables
	Transport (or Traffic Flow) Equations

	Method of characteristics
	Characteristics
	Remark

	Fully Non-Linear Case
	Derivation of the Characteristic equations
	Special Case 1
	Special Case 2
	Special case 3

	Heat (or diffusion) Equation
	Derivation of the heat/diffusion equation

	Boundary Value Problems
	DIRICHLET PROBLEM for the heat equation in [0,L]
	Remark

	Non-homogeneuos case, heat equation, zero Dirichlet
	Fourier Series Facts
	Full Fourier series
	Fourier Sine Series
	Fourier Cosine Series
	WARNING

	Heat Equation, Neumann Conditions
	Wave Equation
	Uniqueness of Solutions

	Laplace Equation over a triangle

	Eigenvalue Problems
	Calculus Facts
	The Main Idea
	Existence of a minimum

	The Hard Theorems
	Calculus of Variations
	General Case
	Minimization with other Constraints
	Second Variation
	First variation(or derivative) of J(u)
	Second variation (or derivative) of J(u)

	Symmetries and Noether's theorem

	Final Exam topics
	To Know
	Sample question for 3


