Course 1214 - Introduction to group theory 2015

Sheet 2

Due: at the end of the lecture

Exercise 1

For which binary operations * on the rational numbers \mathbb{Q} there is identity element:

- (i) m * n = mn;
- (ii) m * n = m + n 1;
- (iii) $m * n = \frac{m+n}{2};$
- (iv) m * n = -1.

Exercise 2

Prove that associativity (ab)c = a(bc) holds automatically whenever one of the elements a, b, c is the identity e.

Exercise 3

Which sets S with operations are groups:

- (i) $S = \{-1, 1, 0\}$ with respect to multiplication;
- (ii) $S = \{-1, 0, 1\}$ with respect to addition;
- (iii) $S = \mathbb{Z} \setminus \{0\}$ with respect to multiplication;
- (iv) $S = \{5n : n \in \mathbb{Z}\}$ with respect to addition;
- (v) $S = \{5n : n \in \mathbb{Z}\}$ with respect to multiplication;
- (vi) $S = \mathbb{Z}$ with respect to subtraction;
- (vii) $S = \{(-2)^n : n \in \mathbb{Z}\}$ with respect to multiplication.

Exercise 4

Prove that in any group

(i) $(xy)^{-1} = y^{-1}x^{-1};$

(ii) identity e is the only solution of the equation $x^2 = x$.

Prove or give a counterexample:

(iii) Is e always the only solution of $x^3 = x$?