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Abstract

Recent measurements of Type Ia Supernovae indicate that the universe is
currently undergoing a period of accelerated cosmic expansion. We are thus
directed to the conclusion that our universe is filled with an elusive Dark Energy.
While the standard model of the dark energy is that of a Cosmological Constant,
the hunt for an explanation of such effects has led to the proposal of a Fifth
Force, often dubbed Quintessence. The usual quintessence theory consists of a
slim scalar field which couples to all matter fields. However, a novel proposal
has been made in which this field has a mass which is a function of the ambient
background density, and is called a Chameleon scalar field.

In this exposition the scalar-tensor theory of gravity with a chameleon field
is reviewed. The inflationary and cosmological evolution of the chameleon field
is investigated. It is found that equipartition after reheating with a standard
inflaton scalar field leads to a chameleon field which overshoots the minimum of
its effective potential. As each Standard Model particle species becomes non-
relativistic during the evolution of the early universe the chameleon field moves
towards the minimum of its effective potential energy function, which it must
reach before the beginning of Big Bang Nucleosynthesis. This is necessary in
order to conform to experimental bounds on the possible change in the mass
of the elementary particles since the time of Big Bang Nucleosynthesis. This
minimum value is an attractor solution which the chameleon field then follows
until today. In the late universe, for a runaway potential, this gives rise to an
additional constant term in the Einstein field equations which plays the rôle of
the cosmological constant. That is, it gives accelerated cosmic expansion.

The effect of the chameleon field on the cosmic microwave background
anisotropies due to a Chameleonic Sunyaev-Zel’Dovich Effect is then discussed.
The cosmic microwave background is introduced and described in brief. So too are
two models for the magnetic field of a galaxy cluster introduced, the Cell Model
and the Power Spectrum Model respectively. This is followed by a short account
of the Thermal Sunyaev-Zel’Dovich Effect. Finally the chameleonic modifications
to the cosmic microwave background anisotropies as a possibility for testing the
theory will be explored. It is found that using the Coma cluster as an example
to study a bound of MF > 1.1×109GeV on the scale of the chameleon theory is
obtained.
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Chapter 1

Introduction

1.1 The Road To A Fifth Force

Our universe is governed by four fundamental forces, which in order of elucidation are

the Gravitational Force, the Electromagnetic Force, the Weak Interactions, and the

Strong Interactions. The gravitational and electromagnetic forces are long range, and

permeate our lives. Thus we are most familiar with them. The gravitational force was

first put on firm footing by Newton in 1678[1], and brought into its modern relativistic

formulation by Einstein in the 1910s[2, 3].

The first Physical Cosmology was that of a Static Einstein Universe[4]. This

consisted of a temporally infinite but spatially finite flat universe with a positive

cosmological constant ΛE given by

ΛE =
4πGρ

c2
(1.1)

where ρ is the matter density, G is the Newtonian gravitational constant and c is the

limiting speed of Special Relativity [5]. This cosmological constant causes a repulsive

force so as to overcome the gravitational attraction of distant massive bodies. Hence

the universe is kept in an unstable stationary state.

This was followed by the de Sitter Universe later the same year. Here the universe

is spatially flat and has no matter content, but does have a positive cosmological

constant Λ. This causes constant exponential expansion, that is, Inflation, with an

expansion rate

H ∝
√

Λ (1.2)

A number of years later, in 1922, came the positive curvature spherical Friedmann
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1.1. The Road To A Fifth Force 1. INTRODUCTION

Universe[6]. This idea was extended in 1924[7] to allow for the case of a universe with

negative curvature.

In 1927 the first Big Bang Theory [8, 9] was proposed by Lemâıtre, based on the

Friedmann universe. This Friedmann-Lemâıtre Model has a positive cosmological

constant to give a universe which expands from an initial dense state.

Through the measurement of Cepheid variable stars in distant galaxies, in 1929

Hubble[10] determined that in fact we live in an expanding universe. Explicitly, the

velocity v of a distant galaxy is given by Hubble’s Law

v = H0d (1.3)

where H0'10−33eV is the Hubble Constant today, and d is the distance to the galaxy.

The Friedmann-Lemâıtre model was further extended by Robertson and Walker

in 1935[11, 12, 13, 14]. These Friedmann-Lemâıtre-Robertson-Walker Universes are

isotropic, homogeneous and uniformly expanding.

Recent measurements of Type Ia Supernovae[15, 16] indicate the the universe is

currently undergoing a period of accelerated cosmic expansion. The search for an

explanation for such effects has led to the proposal of a Fifth Force[17, 18, 19, 20],

usually dubbed Quintessence. If this fifth force is to explain the accelerating cosmic

expansion then it too must permeate all of space and time.

The usual quintessence theory consists of a slim scalar field which couples to all

matter fields. Experimental searches for a fifth force however have thus far found no

deviation to the Equivalence Principle. This places many constraints on the existence

of such a slim field which couples to the standard model matter fields gravitationally.

A novel proposal has been made by Khoury and Weltman[21, 22] in which this

scalar field has a mass which is a function of the ambient background density. Thus,

on Earth, where the density of matter is large, the field would have a large mass

term, mφ, and so not contradict current local tests of gravity. However, on the vast

cosmological scale the field would be slim, with a mass term satisfying mφ'H0 where

H0 is the Hubble constant today. Hence it would be a rolling scalar field. Therefore

a linearisation of its potential function would give a constant term of the same scale

as the cosmological constant today. That is, the field changes in accordance with its

background, and so is called a Chameleon scalar field∗. This model shall be the focus

∗It should be noted that chameleon lizards do not in fact change their colour in order to match
their background, contradictory to common perception. Rather, they do this in response to their
physical and emotional state[23]

2



1.2. Quintessence 1. INTRODUCTION

of this essay.

1.2 Quintessence

We first briefly discuss the usual quintessence theory. Here[24] an additional dynamical

scalar field gives the small vacuum energy density. This field is taken to have a long

time attractor solution[25, 26]. In this case, a rolling scalar field is not sensitive to

the initial conditions. Such a potential may be described by that of the Ratra-Peebles

Model [27, 28]. In order to have a rolling field today we must have

mφ ' H0

today. Then the equation of state for the quintessence field would be different from

that of a cosmological constant. Consequently, the quintessence must be a massless

scalar field. This produces a contradiction, since gravitational tests of the Equivalence

Principle give highly constrained bounds on the interaction of a massless quintessence

field with the usual Standard Model matter fields.
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Chapter 2

The Chameleon Model

2.1 The Chameleon Model

We wish to consider the specifics of the chameleon scalar field model. In doing so

we follow [29] closely throughout. We will discuss the action of the theory, and the

equations of motion that arise from it. Next we will show how the theory may avoid

the bounds set on the quintessence theory by gravitational experiments. Following

this, we will show that for a general class of potential energy functions the chameleon

field can indeed give rise to late universe accelerated cosmic expansion. Finally we

investigate the evolution of the universe with a chameleon field. This gives rise to

some limits on the possible initial condition of the chameleon field, namely that it

must reach the minimum of its effective potential function before the start of Big Bang

Nucleosynthesis. As well as this, the inflationary epoch of the very early universe with

a chameleon field is explored. In doing so we follow the model of a scalar inflaton field.

To begin, we have the following scalar-tensor action for the chameleon field

S =

∫
d4x
√
−g

(
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

)
−
∫

d4xLm(ψ(i)
m , g(i)

µν) (2.1)

where

MPl =
1√

8πG

' 1018GeV (2.2)

is the Reduced Planck Mass in natural units such that h=c=1 with Lm the Lagrangian

for the matter fields ψ
(i)
m .

4



2.1. The Chameleon Model 2. THE CHAMELEON MODEL

We assume a conformal coupling of the chameleon field to the matter fields ψ
(i)
m of

species i. That is, the chameleon field gives rise to a fifth force. Then

g(i)
µν = exp

(
2βiφ

MPl

)
(2.3)

where gµν is the Einstein frame metric tensor, with βi being some constant. This gives

a Klein-Gordon field equation

∇2φ = V,φ(φ)−
∑
i

βi
MPl

exp

(
4βiφ

MPl

)
gµν(i)T (i)

µν (2.4)

where

T (i)
µν =

2
√
−g (i)

δLm
δgµν(i)

For relativistic degrees of freedom we may let

Tµµ = 0

However, when a particle species becomes non-relativistic during the evolution of

the early universe we get

Tµµ 6= 0

for about one e-fold of expansion.

We may approximate non-relativistic matter of energy density ρ̃i as that of a

perfect fluid such that

gµν(i)T
(i)
µν = −ρ̃i

where

ρi = ρ̃i exp

(
3βiφ

MPl

)
is conserved in the Einstein frame.

Hence our Klein-Gordon field equation becomes

∇2φ = V,φ(φ) +
∑
i

βi
MPl

ρi exp

(
βiφ

MPl

)
(2.5)

and we see that we have an effective potential energy function

VEff(φ) = V (φ) +
∑
i

ρi exp

(
βiφ

MPl

)
(2.6)

5



2.1. The Chameleon Model 2. THE CHAMELEON MODEL

which is a combination of the scalar field potential and a term proportional to the

matter energy-density such that

VEff = VEff(ρi)

Now, if either the potential V (φ) is monotonically decreasing with φ and βi>0 ,

or, if V (φ) is monotonically increasing with φ and βi<0, then we see that the effective

potential VEff(φ) has a minimum for some value φmin of the chameleon field such that

VEff,φ (φmin) = V,φ(φmin) +
∑
i

βi
MPl

ρi exp

(
βiφmin

MPl

)
= 0 (2.7)

For small fluctuations about the minimum of the effective potential we get a mass

term

m2
φ = VEff,φφ (φmin)

= V,φφ(φmin) +
∑
i

β2
i

M2
Pl

ρi exp

(
βiφmin

MPl

)
(2.8)

We let V (φ) be a runaway Ratra-Peebles potential such that

V (φ) = M4f

(
φ

M

)
(2.9)

say, where M is the scale of the interaction, and f is some function which gives a

quintessence potential with a tracker solution. Thus we impose a tracker solution

such that Γ defined as

Γ =
V,φφ(φ)V (φ)

V 2
,φ(φ)

(2.10)

satisfies Γ>1. In addition, we impose that the potential diverge at some finite value

of φ,

φ = φ∗

say. That is, we impose that

f ′′
(

φ
MPl

)
f
(

φ
MPl

)
(
f ′
(

φ
MPl

))2 > 1 (2.11)
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2.2. The Thin-Shell Effect 2. THE CHAMELEON MODEL

and

lim
x→x∗

f(x)→∞ (2.12)

In what follows we let

φ∗ = 0

Therefore both the minimum φmin and the massmφ are functions of the background

matter density ρm. Moreover, mφ is an increasing function of φ. Thus, for large matter

density ρm we get a large field value φ, which in turn gives a large chameleon mass

mφ. That is, the physical properties of the chameleon field vary with the environment.

2.2 The Thin-Shell Effect

We next consider the Thin-Shell Effect of the interaction of the chameleon field with

a large massive object. This mechanism allows the chameleon field to go undetected

thus far during gravitational experiments which search for a fifth force performed on

Earth. Here we follow the approach of [30].

We note the non-linearity of the Klein-Gordon equation (2.4). Moreover, we con-

sider a potential energy function of the form

V (φ) = M4 exp

(
Mn

φn

)
(2.13)

such that the coupling of the chameleon field to matter given by the exponential

function. We let β be of order one, let the chameleon field be finite valued at the

origin, and let

φ = φ∞

say, at far from the object. Then inside the large massive object there is a minimum

value of the effective potential energy function for some value of the chameleon field

φC , say, such that equation (2.7) holds. However, at some finite thickness from the

surface of the object ∆R, say, the value of the chameleon field satisfies

φ > φC

Furthermore, outside the object we get

φ ∝ 1

r
exp(−m0r)

7



2.3. Experimental Constraints 2. THE CHAMELEON MODEL

where m0 is the mass of the chameleon field at far from the object. This implies that

∆R

R
=

φ∞ − φC
6βMPlΦN

(2.14)

where

ΦN =
M

8πM2
PlR

is the Newtonian gravitational potential energy. Hence outside the object we find that

φ(r) ' −
(

β

4πMPl

)(
3∆R

R

)
M

r
exp [−m0(r −R)] (2.15)

In order for the shell to be thin we must have

∆R

R
� 1

Therefore, by equation (2.14) we must have the Newtonian potential ΦN very large.

So, by equation (2.15) we get a correction to the Newtonian gravitational force given

by

F = (1 + θ)FN

where FN is the usual Newtonian gravitational force, with

θ = 2β2

(
3∆R

R

)
Thus for a small value of θ we see that we only get a small alteration to the Newtonian

gravitational force. However this occurs exactly when the shell is thin. Then this in

turn occurs when the Newtonian gravitational potential ΦN is very large, as shown

above, which is the case for a large massive object. Therefore for a large massive

object there will only be a small deviation from the Newtonian gravitational force

FN .

2.3 Experimental Constraints

In this short section, we shall show that the bounds given by gravitational experiments

allow us to set a useful upper-bound on the scale of the chameleon theory.

For a scalar field fifth-force interaction we get a Yukawa Potential

U(r) = αGM1M2
exp

(−r
λ

)
r

(2.16)

8



2.4. Fiducial Potential 2. THE CHAMELEON MODEL

By experimental constraint we have no fifth force which has range λ satisfying

λ&100µm, for α of order one.

To conform to the bounds set by vacuum chamber experiments we need the range

of the chameleon interaction in the atmosphere of the Earth to satisfy m−1
atmo.1 mm.

If this were not the case existing experiments would have been able to find evidence

of the interaction between the chameleon field and the usual Standard Model matter

fields. However thus far no such fifth-force interactions have been found.

For a potential energy function of the form given by equation (2.13) this leads to

a constraint on the scale of the chameleon interaction of

M . 10−3eV (2.17)

This bound on the scale of the chameleon theory will prove useful in much of the

discussion that follows.

2.4 Fiducial Potential

We now consider the implications of the particular choice of a general runaway po-

tential energy function for the chameleon field theory. We will find that indeed the

chameleon field, similarly to the quintessence scalar field, can give rise to a vacuum

energy density that is tiny compared to the Planck mass scale. In addition we will

obtain some useful relations, including the fact that the value of the chameleon field

when at the minimum of the effective potential is much less than the Planck mass

scale for all times since the Hot Big Bang until today.

For a quintessence theory a potential energy function of the form given by equation

(2.13) above is usually chosen. Then expanding this potential we find that both locally

and on cosmological scales today

V (φ) 'M4 +M4

(
Mn

φn

)
+ . . . (2.18)

Therefore with M. 10−3eV as given by the bound (2.17) we get a constant term

M4 ' 10−12eV (2.19)

of the same order as the vacuum energy today. This constant term however is negligible

when considering gravitational tests.

9



2.4. Fiducial Potential 2. THE CHAMELEON MODEL

We consider only a single matter particle species. Differentiating the potential

(2.13) gives

V ′(φ) = −nMnφ−(n+1)V (φ)

Then substituting this into equation (2.7) we find that at the minimum of the effective

potential (
M

φmin

)n+1

=
1

V (φmin)

β

n

M

MPl
ρm exp

(
βφmin

MPl

)
(2.20)

In addition, differentiating the potential (2.13) twice and substituting into equation

(2.8) we see that the mass term is

m2
φ =

βρm
MMPl

exp

(
βφmin

MPl

)[
n

(
M

φmin

)n+1

+ (n+ 1)

(
M

φmin

)
+β

M

MPl

]
(2.21)

We have from equation (2.18) that

V (φmin) 'M4 (2.22)

Also

ρm exp

(
βφmin

MPl

)
'M4

Then substituting these into equation (2.20) above, we see that today the value of the

chameleon field at the minimum of the effective potential satisfies

φ
(0)
min '

(
β

n

) 1
n+1
(
M

MPl

) n
n+1

MPl

or

φ
(0)
min '

(
M

MPl

) n
n+1

MPl (2.23)

for both β and n of order one. Furthermore, since M�MPl equation (2.23) yields

φ
(0)
min �MPl (2.24)

We note that φmin is an increasing function of time, since φmin∝ρ−1
m , while ρm∝ t−1.

Thus we find that equation (2.24) holds for all relevant times since the Hot Big Bang

until today.

Consequently we can approximate equation (2.21) as

m2
φ =

βρm
φminMPl

exp

(
βφmin

MPl

)[
1 + n+ n

(
M

φmin

)n]
(2.25)

10



2.5. Cosmological Evolution 2. THE CHAMELEON MODEL

on ignoring the β M
MPl

term.

We wish to find the conditions that give

φmin 'M

Using the approximation (2.22) we get the critical matter density ρCrit which gives

this condition by using equation (2.20) to be

ρCrit '
MPl

M

n

β
M4 (2.26)

when φmin'M . Then letting both β and n be of order one, with M '10−3eV by the

bound (2.17), we see that

ρCrit ' 10−12eV

This corresponds to a temperature TCrit of

TCrit ' 10 MeV (2.27)

and a fractional matter energy density Ωm of

Ωm ' 10−6 (2.28)

where Ωm is defined as

Ωm = ρm exp

(
βφmin

MPl

)
1

3H2M2
Pl

(2.29)

This critical temperature will aid our later discussion of the equation of state of the

chameleon field.

2.5 Cosmological Evolution

We now develop the standard cosmological model which will guide our discussion for

the remainder of this chapter.

To this end, we invoke the Cosmological Principle, such that we assume a flat,

isotropic, homogeneous universe. Then our metric gµν becomes the usual Friedmann-

Lemâıtre-Robertson-Walker metric

ds2 = dt2 − a2(t)
[
dr2 + r2dΩ2

]
(2.30)

11



2.6. Attractor Solution 2. THE CHAMELEON MODEL

This reduces our Klein-Gordon field equation (2.4) to

φ̈+ 3Hφ̇ = −V,φ(φ)− β

MPl
ρm exp

(
βφ

MPl

)
(2.31)

We recall that the stress-energy-momentum tensor for a scalar field φ is

Tµν = ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ− V (φ)

]
Then taking the 00-component gives the energy density of the chameleon field

ρφ = ∂0φ∂0φ− δ0
0

[
1

2
(∂0φ∂0φ− ∂iφ∂iφ)− V (φ)

]
=

1

2
φ̇2 + V (φ) (2.32)

since φ = φ(t) only. Adding the energy density of the matter fields ρm and the

radiation energy density ρr the usual Friedmann equation

ȧ2(t) =
8πG

3
ρa2(t) (2.33)

becomes

3H2M2
Pl =

1

2
φ̇2 + V (φ)− β

MPl
exp

(
βφ

MPl

)
ρm + ρr (2.34)

Finally, we recall that
ρ̇m
ρm

= −3H (2.35)

and
ρ̇r
ρr

= −4H (2.36)

2.6 Attractor Solution

In the next six sections we develop the consequences of the attractor solution of the

quintessence theory in the framework of the chameleon field theory. Here the value of

the scalar field φ follows the minimum of the effective potential energy function VEff

as it changes during the evolution of the universe, whence

φmin = φmin(t) (2.37)

12



2.6. Attractor Solution 2. THE CHAMELEON MODEL

We first consider the case in which the initial value of the chameleon field φi is

φi = φmin (2.38)

Then as the matter density decreases the minimum of the effective potential energy

function shifts to larger and larger values of the chameleon field. This shift occurs on

a timescale of about the Hubble time, H−1.

If the chameleon field undergoes small oscillations with a period of m−1
φ about the

minimum of the effective potential, then we find the ratio of these two timescales by

equation (2.25) to be

m2
φ

H2
' 3βΩm

MPl

φmin

[
1 + n+ n

(
M

φmin

)n]
(2.39)

If mφ�H such that m−1
φ �H−1 the the chameleon field will evolve adiabatically

as the minimum φmin of the effective potential energy function changes.

If on the other hand mφ�H such that m−1
φ �H−1 we find that the chameleon

field will lag behind the minimum of the effective potential.

However, if we consider the two cases of φ.M and φ�M we find that indeed

mφ�H for cases.

For the former case of φ.M , by equation (2.39)

m2
φ

H2
& 3βΩmn

M

MPl
(2.40)

However, during both the radiation dominated era and the matter dominated era

Ωm is monotonically increasing. That is, Ωm is monotonically increasing with time,

and so for all relevant times since the Hot Big Bang until today we have

Ωm & 10−28

Thus with M. 10−3eV as given by the bound (2.17) for equation (2.40) we get

m2
φ

H2
> 3βn(102) (2.41)

which, for both β and n of order one, is much larger than one.

13



2.6. Attractor Solution 2. THE CHAMELEON MODEL

On the other hand, if φ�M then equation (2.39) becomes

m2
φ

H2
' 3β(n+ 1)

M

φmin

MPl

M
Ωm (2.42)

on ignoring the
(

M
φmin

)n
term which goes to zero.

Furthermore, using approximation (2.22), equation (2.20) becomes

(
M

φmin

)n+1

' β

n

M

MPl
Ωm

3H2M2
Pl

M4
(2.43)

Then for equation (2.42) this yields

m2
φ

H2
' 3(n+ 1)β

(
β

n

) 1
n+1

[(
MPl

M

)n
Ωn+2
m

3H2M2
Pl

M4

] 1
n+1

or
m2
φ

H2
'
[(

MPl

M

)n
Ωn+2
m

3H2M2
Pl

M4

] 1
n+1

(2.44)

on ignoring the constant term in β and n.

Here the H2M2
Pl term on the right-hand-side is decreasing with time, and with

M . 10−3eV as per the bound (2.17) is of the order of M4 today. Hence for all

relevant times since the Hot Big Bang until today we find that

m2
φ

H2
'
[(

MPl

M

)n
Ωn+2
m

] 1
n+1

(2.45)

We recall that by equation (2.28)

Ωm ' 10−6

when φmin ' M . Thus, since Ωm is an increasing function with time in both the

radiation-dominated era and the matter-dominated era we have

Ωm � 10−6

when φ�M . So using equation (2.17) we get

m2
φ

H2
� 10

12(2n−1)
n+1 (2.46)

Here the right-hand-side is greater than one for n greater than order one. Therefore

14
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we see that indeed mφ>H when φ�M .

So overall we find that the chameleon field follows an attractor solution given by

the minimum of the effective potential such that

φ(t) = φmin(t) (2.47)

for all relevant times since the Hot Big Bang until today.

Eventually the matter energy density ρm will become dominated by the vacuum

energy density such that we may take

ρm → 0

Thus the universe will evolve as a de Sitter universe. The chameleon field will follow

the minimum of the effective potential energy function until mφ ' H, whence the

chameleon field will no longer follow the minimum of the effective potential adiabati-

cally. Rather it will lag behind the minimum of the effective potential. Therefore the

field φ becomes the usual quintessence scalar field.

2.7 The Dynamics Along The Attractor

We next show that the chameleon field is slow rolling. In addition we show that the

equation of state of the chameleon field is different from that of the usual quintessence

theory, both of which are different from the

wΛ = −1

equation of state of a cosmological constant. Furthermore, we find that the equation

of state of the chameleon field need not be constant.

By equation (2.7) we have

−V,φ(φmin) =
β

MPl
ρm exp

(
βφmin

MPl

)
Thus by equation (2.25) we get

m2 ' −V,φ(φmin)
β

MPl

15
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Then taking the time derivative gives

φ̇min ' −3H
V,φ(φmin)

V,φφ(φmin)
(2.48)

Thus, using equation (2.25) and the definition of Γ (2.10) we see that

φ̇2
min(t)

2V (φmin(t))
' 9

2

H2

m2
φ

1

Γ
(2.49)

So since m2
φ�H2 according to our discussion in section 2.6, and since we have

demanded that Γ>1 in section 2.1, we get

φ̇2
min(t)

2V φmin(t)
� 1 (2.50)

Therefore the chameleon field is slow-rolling along the attractor solution that is the

minimum of the effective potential energy function.

Since the chameleon field is non-minimally coupled we have

w 6= φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(2.51)

Rather, with the energy density of the chameleon field given by equation (2.32),

through equation (2.50) we see that at the minimum

ρφ ' V (φmin)

Hence taking the time derivative of ρφ, the definition (2.10) and equation (2.48) yield

ρ̇φ
ρφ
'
V,φ(φmin)

V (φmin)
φ̇min (2.52)

= −3H
1

Γ

We recall that the continuity equation is given by

ρ̇φ
ρφ

= −3H(1 + wEff) (2.53)

Accordingly for the chameleon field we must have

wEff =
1

Γ
− 1 (2.54)
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Differentiating the fiducial potential (2.13) we get

Γ(φmin(t)) = 1 +

(
1 +

1

n

)(
φmin(t)

M

)n
(2.55)

Thus by equation (2.54), if φmin �M then Γ'1, giving

wEff ' 0

while if φmin �M we get Γ�1, giving

wEff ' −1

However, as per our discussion at the end of section 2.4, φmin'M at a temperature

of TCrit'10 MeV, as in equation (2.27). Therefore

wEff ' 0

at early times in the universe when T � 10 MeV, while

wEff ' −1

at late times in the universe when T � 10 MeV. That is, in the early universe the

chameleon field has equation of state similar to that of matter, while in the late

universe it has equation of state similar to a cosmological constant.

Usually the equation of state is given by equation (2.51), which reduces to

wusual =
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)

=

φ̇2

2V (φ) − 1

1 + . . .

' φ̇2

2V (φ)
− 1 (2.56)

by equation (2.50). Equivalently, by equation (2.49) we see that

wusual '
9

2

H2

m2

1

Γ
− 1
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For a quintessence theory the equation of state is given by

wQ '
wB − 2(Γ− 1)

1 + 2(Γ− 1)
(2.57)

where wB is the equation of state for a perfect fluid background. By contrast, for

the chameleon field the effective equation of state is independent of the background

equation of state. Consequently, the evolution of the chameleon field is insensitive to

whether the universe is in a radiation dominated era or a matter dominated era.

2.8 Approaching The Attractor

Moving on, during the course of the next three sections, we consider three cases for

the initial value of the chameleon field. Explicitly, we consider the case of the initial

field value being at the minimum of the effective potential energy function, that of the

initial field value being much larger than the minimum, and finally that of the initial

field value being much smaller than the minimum.

We assume that initially the chameleon field has vanishing kinetic energy. In

addition, we let both ρφ < ρm and ρφ < ρr initially, as per the case of equipartition

at reheating. For some initial value of the chameleon field φi, say, at time ti, say, we

recall that the effective potential has a minimum for some φmin(ti), say. If

φi = φmin(ti)

then the chameleon field will follow this minimum. Similarly, as long as it is neither

the case that φi � φmin(ti) nor φi � φmin(ti) then the chameleon field will undergo

small oscillations about the minimum, eventually settling to the minimum φmin(ti) of

the effective potential.

2.9 Undershooting

Next we consider the non-trivial case in which the initial value of the chameleon field

is much larger than the minimum of the effective potential energy function such that

φi � φmin(ti)
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In this case we may neglect the V,φ(φ) term in equation (2.31). We reintroduce the

stress-energy-momentum tensor Tµµ whence the Klein-Gordon equation of motion

becomes

φ̈+ 3Hφ̇ = − β

MPl
Tµµ (2.58)

Here the φ̇ term due to the expansion of the universe acts like a friction term, while

the Tµµ term acts like a force term.

If Tµµ is negligibly small for relativistic degrees of freedom then we may put

Tµµ ' −ρm (2.59)

However, in this case, during the radiation dominated era we get

ρm � 3Hφ̇

and so we find that the chameleon field is over-damped. Then the chameleon field

would remain frozen at its initial value φi. That is, it would not be at the minimum

of the effective potential.

During the evolution of the early universe particles of species i become non-

relativistic when the temperature of the universe satisfies

T ' mi

where mi is the mass of the particle of species i. This gives a non-zero trace of

the stress-energy-momentum tensor for about one e-fold of expansion. Hence the

chameleon field is driven towards the minimum of the effective potential φmin. Namely,

each particle species contributes

Tµ(i)
µ = −45

π
H2M2

Pl

gi
g∗(T )

τ
(mi

T

)
(2.60)

where

g∗(T ) =
∑

Bosons

g
(Boson)
i

(
Ti
T

)4

+
7

8

∑
Fermions

g
(Fermion)
i

(
Ti
T

)4

(2.61)

is the effective number of relativistic degrees of freedom, while the gi are the number

of relativistic degrees of freedom. Furthermore, τ is given by

τ(x) = x2

∫ ∞
x

√
u2 − x2

exp(u)± 1
du (2.62)
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with a plus sign for Fermions, and a minus sign for Bosons, where

x =
mi
T

Here τ(x)�1 for both x�1 and x�1, while τ(x)'1 for x'1.

From the equation of motion (2.58), numerical calculations[29] show that the value

of the chameleon field shifts from its initial value by an amount

(∆φi) = −β gi
g∗(mi)

MPl×A (2.63)

with A = 7
8 for Fermionic particle species and A = 1 for Bosonic particle species. We

here omit the full calculation which is carried out in Appendix B of [29]

The total change in the value of the chameleon field is given by summing the

contribution to ∆φ due to each relevant particle species. We must have the chameleon

field at the minimum of the effective potential energy function by the start of Big

Bang Nucleosynthesis. This occurs at a temperature of T '1 MeV. Hence the electron

and positron do not contribute to pushing the chameleon field towards the minimum

value φmin, since they do not become non-relativistic before the start of Big Bang

Nucleosynthesis. Thus we get a total change of

(∆φi)Total ' −βMPl (2.64)

Therefore, if φi.MPl the value of the chameleon field will be driven towards the

minimum of the effective potential. The chameleon field then undergoes oscillations

until it settles to the minimum of the effective potential. If it reaches the minimum

of the effective potential before the final relevant particle has become non-relativistic,

the kick due to that and any subsequent particle simply causes the chameleon field to

start oscillating about the minimum of the effective potential. It then oscillates until

it again settles to the minimum value.

2.10 Overshooting

Finally we consider the case of

φi � φmin(ti)

such that the initial value of the chameleon field is much less than the minimum of

the effective potential energy function. Here the matter density term ρm is negligible.
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Hence the Klein-Gordon equation (2.31) becomes

φ̈+ 3Hφ̇ = −V,φ(φ) (2.65)

and this is a minimally coupled scalar field.

However, for φi�φmin(ti) by equation (2.8) we find that

V,φφ(φi)� m2
i

where

m2
i = V,φφ (φmin(ti))

Then since m2
φ�H2 as per our discussion in section 2.6 for all relevant times since

the Hot Big Bang until today we find that

V,φφ(φi)� H2
i

where Hi=H(ti) is the value of the Hubble parameter initially. Hence the chameleon

field is under-damped. Therefore the dynamics of the chameleon field are dominated

by the V,φ(φ) term in the field equation of motion, and so it behaves like a free field.

Thus most of the energy of the chameleon field is in the form of kinetic energy and

it becomes kinetic energy dominated such that

φ̇2 � V (φ)

However we have φi�φmin(ti), and so this implies that the chameleon field will roll

past the minimum value of the effective potential. That is, it will Overshoot the

minimum. As it rolls the energy of the chameleon field gets red-shifted, which means

that the damping term becomes important. Eventually the chameleon field stops for

some value

φstop > φmin

Since we know that φ̇∝a−3(t) and that a∝ t
1
2 during the radiation dominated era we

find that

a
dφ

da
=

√
6Ω

(i)
φ

(ai
a

)
MPl (2.66)
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where ai=a(ti). Then integrating from

φi = φ(ti) and ai = a(ti)

yields

φ(a) = φi +

√
6Ω

(i)
φ MPl

(
1− ai

a

)
(2.67)

In the limit of a� ai this becomes

φ(a) = φi +

√
6Ω

(i)
φ MPl (2.68)

That is, we get the undershooting case, but now we have the initial undershooting

field value φ
(undershoot)
i given by the value at which the field stopped rolling, namely

φstop.

2.11 Converging To The Minimum

Continuing onwards, we study how the chameleon field settles to the minimum of the

effective potential when it has a field value near to but different from that minimum.

We assume that a linear approximation is sufficient to describe the effective po-

tential energy function of the chameleon field, such that we get harmonic oscillations.

Moreover, we neglect the kinetic energy term from the final particle contribution to the

change in the chameleon field value. Then, in this linear approximation our effective

potential becomes

VEff(φ) ' 1

2
m2
φ(t) [φ(t)− φmin(t)]2 (2.69)

Thus the total energy is

ρφ '
1

2
m2
φ(t)

[
φ̇(t)− φ̇min(t)

]2
+

1

2
m2
φ(t) [φ(t)− φmin(t)]2 (2.70)

So averaging over many oscillations gives

ρφ '
1

2
m2
φ(t)

〈
φ̇(t)− φ̇min(t)

〉2
(2.71)

Now, since m�H, as discussed in section 2.6, this means that this is analogous to an

oscillating pendulum which is slowly being lengthened[31]. Hence we get a conserved
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quantity given by

N =
ρφφ

3

mφ(t)
(2.72)

Accordingly,

mφ(t)
〈
φ̇(t)− φ̇min(t)

〉2
∝ a−3 (2.73)

However since mφ(t) is a function of time, and since by equation (2.8)

mφ(t) '
√
V,φφ (φmin(t))

by substituting φ̇min as given in equation (2.48) we see that

ṁφ(t)

mφ(t)
' 3

2
H
V,φφφ(φ)V,φ(φ)

V 2
,φφ(φ)

(2.74)

For V (φ)∝φ−n as in equation (2.18) we get

ṁφ(t)

mφ(t)
' 3

2
H

(n+ 2)(n+ 1)

(n+ 1)2

' 3

2
H

(n+ 2)

(n+ 1)
(2.75)

Consequently, integrating equation (2.75), with

H =
ȧ(t)

a(t)

we find that

mφ(t) ∝ a
−3(n+2)
2(n+1) (2.76)

So, by equation (2.73), we find that

〈
φ̇(t)− φ̇min(t)

〉 1
2 ∝ a

−3n
4(n+1) (2.77)

2.12 Constraints On Initial Conditions

We now wish to explore the bound on the initial energy density of the chameleon field

that is set by the experimental constraint on the change in the mass of the elementary

particles since the Big Bang Nucleosynthesis until today. From our previous discussion

of the undershooting case of the initial value of the chameleon field in section 2.9 we

already have an upper bound on the initial value of the chameleon field given by
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equation (2.64).

By the conformal coupling (2.3) of the chameleon field to the matter fields, a

constant mass m(i) in the matter-frame is related to a mass

m = m(φ)

in the Einstein frame by the re-scaling

m(φ) = exp

(
βiφ

MPl

)
m(i)

Thus performing a variational calculation we see that a variation in the chameleon

field ∆φ causes a variation in the mass of the matter fields ∆m of∣∣∣∣∆m(φ)

m(φ)

∣∣∣∣ ' β

MPl
|∆φ| (2.78)

Measurements of the abundance of light elements constrain the variation in the

mass ∆m(φ) between the onset of Big Bang Nucleosynthesis, tNuc, and today, t0, to

be less than about 10%. Thus we need

∣∣∣φBBN − φ(0)
∣∣∣ . 0.10×MPl

β

where φBBN is the value of the chameleon field at the start of Big Bang Nucleosynthesis

and φ(0) is the value of the chameleon field today. Since today we have φmin�MPl

this means that the chameleon field must satisfy

φBBN .0.10× MPl

β
(2.79)

Given that we require φi . βMPl and φstop . βMPl, on neglecting the initial field

value φi and letting β be of order one, equation (2.68) gives the bound

Ω
(i)
φ .

1

6
(2.80)

2.13 The Chameleon Field During Inflation

It remains to examine the behaviour of a universe with a chameleon field which un-

dergoes very early universe cosmic inflation.
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During the inflationary epoch our effective potential energy function (2.6) becomes[29]

VEff(φ) = M4 exp

(
Mn

φn

)
+ ρVac exp

(
4βφ

MPl

)
(2.81)

where ρVac is the vacuum energy of the inflaton field. So in analogy with the analysis

in section 2.4, this effective potential (2.81) has a minimum for some value φmin of

the chameleon field which satisfies φmin�M . However ρVac is constant, and so the

minimum of the effective potential is constant during the inflationary epoch. Therefore

the chameleon field is stable.

In analogy to the derivation of equation (2.39), using the effective potential (2.81)

we find that the mass of the chameleon field at the minimum of the effective potential

satisfies

m2
φ ' 12βn

MPl

M

(
M

φmin

)n+1

H2 (2.82)

and so again we see that m2
φ�H2. However, mφ is constant during the inflation-

ary epoch, and so the chameleon field oscillates about the minimum of the effective

potential with amplitude 〈
(φ(t)− φmin(t))2

〉
∝ a−3 (2.83)

Hence the chameleon field behaves like dust matter during the period of cosmic infla-

tion. However, during the inflationary epoch the scale factor a grows exponentially,

and so the chameleon field settles to the minimum of the effective potential rapidly.

During the reheating phase of the very early universe production of quanta of

the chameleon field is suppressed due to its large mass. Thus the universe becomes

radiation dominated at the end of the cosmic inflationary epoch. Hence the minimum

of the effective potential shifts to a very large value of the chameleon field, such that

at the end of the cosmic inflationary epoch

φi � φmin

Therefore we find that an overshooting scenario is the likely outcome given the occur-

rence of a cosmic inflationary epoch.
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Chapter 3

The Cosmic Microwave

Background

3.1 The Cosmic Microwave Background

For this second part of the essay we wish to consider the modification of the cosmic

microwave background anisotropies due to the presence of the chameleon field. In

doing so we follow [32] closely throughout. Moreover, we cite this paper and the

references therein on many occasions.

This modification to the cosmic microwave background anisotropies occurs due

to interactions between the chameleon field and the photon field in the presence of

a magnetic field. Hence such interactions may occur in the intra-cluster-medium of

galaxy clusters. To investigate this effect we must first discuss the cosmic microwave

background. Following this we give an introduction to the theory of the magnetic fields

of galaxy clusters. We focus on two models, namely the cell model and the power

spectrum model. Next we discuss consequences of the standard thermal Sunyaev-

Zel’Dovich effect on the cosmic microwave background. We will then be able to

examine the modified chameleonic Sunyaev-Zel’Dovich Effect.

To begin, we recall that the cosmic microwave background is approximately uni-

form across the sky to one part in ten-thousand, with a black-body intensity spectrum

given by

I0 =
kBT0

2π2

ω2

c2

x

exp(x)− 1
(3.1)

with a temperature of

T0 = 2.725K
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where

x =
ω

kBT

with ω the frequency and kB = 1.38× 1023JK−1 is the usual Boltzmann constant.

Small fluctuations in the cosmic microwave background are due to primordial den-

sity fluctuations at the time of emission of the cosmic microwave background radiation

some 380, 000 years after the Big Bang. These are related to changes in the black-body

temperature by
δI

I0
=

x

1− exp(−x)

δT

T0
(3.2)

The root-mean-square average of these primary fluctuations is about 100µK.

We now wish to consider the possibility for an interaction between the chameleon

field and the electromagnetic field. We extend the scalar-tensor action (2.1) for the

chameleon field so as to include the electromagnetic field tensor Fµν such that

S → SI =

∫
d4x
√
−g

(
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)− 1

4
FµνFµν −

1

4

φ

MF
FµνFµν

)
−
∫

d4xLm(ψ(i)
m , g(i)

µν) (3.3)

where as usual

Fµν = ∂µAν(x)− ∂νAµ(x)

and M−1
F is the coupling strength of the electromagnetic interaction between the

chameleon field and the photon field. Here the coupling of the chameleon field to the

matter fields is in general not the same as the coupling of the chameleon field to the

photon field. This interaction alters the intensity and polarisation of radiation which

enters a magnetic region. Therefore the observational effects may be detected in the

laboratory or in some astro-physical phenomenon.

By performing a variational calculation we get an equation of motion for the

chameleon field given by

�φ =
∂

∂φ

[
V (φ) +

1

4
FµνFµν +

1

4

φ

MF
FµνFµν + Tm

]
(3.4)

where

Tm = ρm − 3Pm

is the trace of the stress-energy-momentum tensor. We see that this equation of

motion is non-linear in the chameleon field φ. In particular, we recall that the mass of
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the chameleon field is heavier in dense environments, as per the discussion in section

2.1. We also recall that for small perturbations about the minimum of the effective

potential energy function the mass of the chameleon field is given by equation (2.8).

In order to conform to the bound set by the PVLAS experiment we must have

MF & 2×106 GeV[33, 34]. In addition, the CAST experiment at CERN[35] sets a

bound of MF & 1.1×109 GeV[36].

We recall that for the fiducial potential (2.13), with M . 10−3eV as given by the

bound (2.17), expanding gives (2.18)

V (φ) 'M4 +M4

(
Mn

φn

)
+ . . .

That is, we get a constant term M4'10−12eV of the same order as the vacuum energy

density today. This gives a mass term for the chameleon field of

mφ � 10−14eV

in the galactic and intra-cluster-medium.

We consider the case of the cosmic microwave background radiation propagating

through the magnetic field of a galaxy cluster. Then interactions between the cosmic

microwave background photons and the chameleon field occur. Therefore, the cosmic

microwave background intensity and polarisation become altered. Again by perform-

ing a variational calculation we get an equation of motion for the electromagnetic field

given by

∇µ
[
Fµν +

φ

MF
Fµν

]
= Jν (3.5)

where Jν is a conserved current such that

∇µJµ = 0

We consider a sparse astro-physical background with a magnetic field ~B(xρ). For

electromagnetic radiation of frequency ω the chameleon field and the photon field vary

over a timescale of ω−1, that is, slowly. We let perturbations in the chameleon field φ

and the photon field aµ be given by

φ = Φ− Φ̄ and aµ = Aµ − Āµ

respectively.
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The plasma frequency in the intra-cluster-medium is given by[32]

ω2
Pl =

4παEMne
me

where ne is the electron number density and me is the mass of the electron. Then if

ω � H, ignoring the second order perturbation terms gives equations of motion

− ~̈a+∇2~a ' 1

MF

~∇φ× ~B + ω2
P~a (3.6)

and

− φ̈+∇2φ ' 1

MF

~B ·(~∇×φ) +m2
φφ (3.7)

respectively.

We consider photons propagating in the z-direction such that

~a =


γx(z)

γy(z)

0


We aim to obtain an equation of motion for the chameleon-photon system. We follow

an approach similar to (15 in [32]), however, here we simply quote the results. To

start, we make a redefinition

γi(z) = γ̃(z)i exp[iω(z − t) + iβ(z)] and φ(z) = φ̃(z) exp[iω(z − t) + iβ(z)]

where
∂

∂z
β(z) = −

ω2
Pl(z)

2ω

Then approximating

−∂2
t ' ω2 and ω2 + ∂2

z ' 2ω(ω + i∂z)

and making the redefinition

~u =


γ̃x(z)

γ̃y(z)

exp
[
2i∆(z)φ̃(z)

]
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where

∆(z) =

∫ z

0

m2
Eff(x)

4ω
dx (3.8)

with

m2
Eff = m2

φ(z)− ω2
Pl(z) (3.9)

we get an equation of motion[32] for both φ and ~a given by

∂

∂z
~u =

B(z)

2MF
~u (3.10)

where

B(z) =


0 0 −By exp[−2i∆(z)]

0 0 Bx exp[−2i∆(z)]

By exp[2i∆(z)] −Bx exp[2i∆(z)] 0


We recall the Stokes’ Parameters for the polarisation of photon radiation of inten-

sity

Iγ(z) = |γx(z)|2 + |γy(z)|2 (3.11)

linear polarisation

Q(z) = |γx(z)|2 − |γy(z)|2 and U(z) = 2R{γx(z)γy(z)} (3.12)

and circular polarisation

V (z) = 2I{γ∗x(z)γy(z)} (3.13)

These will prove useful in describing the magnitude of the mixing between the chameleon

field and the photon field. So, for a vanishing initial chameleon field flux

Iφ = |φ|2

= 0

the final photon intensity is given by[32]

Iγ(z) = Iγ(0) [1− Pγ↔φ(z)] +Q(0)Qq(z) + U(0)Qu(z) + V (0)Qv(z) (3.14)

where

Pγ↔φ(z) =
1

2

[
|Ax(z)|2 + |Ay(z)|2

]
(3.15)
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while

Qq(z) =
1

2

[
|Ax(z)|2 − |Ay(z)|2

]
(3.16)

and

Qu(z) = R{A∗x(z)Ay(z)} (3.17)

with

Qv(z) = I{A∗x(z)γy(z)} (3.18)

where

Ai(z) =

∫ z

0

Bi(x) exp[2i∆(x)]

2MF
dx

In addition, we recall that the cosmic microwave background has a very small

intrinsic polarisation, with a linear polarisation of

〈Q(z)〉
1
2 ' 10−6 and 〈U(z)〉

1
2 ' 10−6 (3.19)

and a vanishing circular polarisation

V (z) = 0 (3.20)

such that
1

Iγ(0)

√
Q2(0) + U2(0) + V 2(0) � 1

Therefore the Stokes’ parameters for the modification of the cosmic microwave back-

ground intensity and polarisation due to the interactions between the chameleon field

and the photon field are

∆~S(z) = ∆


Iγ(z)

Q(z)

U(z)

V (z)



'


−Pγ↔φ(z)

Qq(z)

Qu(z)

Qv(z)

 Iγ(0) (3.21)
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A typical value for the electron number density for a galaxy cluster is

10−3cm . ne . 10−2cm (3.22)

giving a plasma frequency of ωPl ' 10−12eV. Thus for a chameleon field the plasma

frequency satisfies

ω2
Pl � m2

φ

Henceforth we assume that the chameleon field is slim such that equation (3.9) be-

comes

m2
Eff ' −ω2

Pl

with ω2
Pl ∝ ne. Therefore spatial variations in m2

Eff are due to variations in the electron

number density ne.

Finally, we recall that the Sunyaev-Zel’Dovich Effect [37, 38] causes warm spots in

the cosmic microwave background intensity in the direction of galaxy clusters. This

is because as cosmic microwave background photons pass through a galaxy cluster

inverse Compton scattering with the electrons in the hot plasma core of the cluster

cause a redistribution of the energy of the photons. That is, it causes a distortion

in the frequency spectrum of the intensity. Hence there is a change in the apparent

brightness of the cosmic microwave background radiation.

If the chameleon field couples to the photon field then there will be an additional

alteration to the flux of the cosmic microwave background photons due to these in-

teractions. Since the properties of the chameleon field are only weakly constrained in

high density regions we may overcome the bounds mentioned earlier in this section

due to the CAST and PVLAS experiments, for example. That is, we may have a

Chameleonic Sunyaev-Zel’Dovich Effect.

Hence, measurements of the Sunyaev-Zel’Dovich effect may be compared to the

modification made to the cosmic microwave background as predicted using a chameleon

field theory. This would allow us to constrain the parameters of the chameleon field

theory.

3.2 The Cell Model

The magnetic field of a galaxy may be modelled as having a regular part ~BReg(z) and

a fluctuating part δ~B(z). This fluctuating magnetic field has a first-order variation
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and changes its direction on small scales. In the Cell Model we let these changes of

direction occur on a scale of LCoh. Then we say that a path of length L, say, crosses

N magnetic domains, where

N =
L

LCoh

Thus the magnetic field strength and the electron number density are constant along

the path, but the fluctuating magnetic field component δ~B(z) points in a random

direction in each of the N domains.

We wish to calculate the magnitude of the mixing between the chameleon field and

the photon field. As we have been doing, we continue to follow [32] in our calculations.

We let

~B(z) = ~BReg + δ~B(z)

where ~BReg is constant over the path from the distant galaxy to the Earth-bound

observer. In addition, we let BRand be defined by

(δ~B)x = BRand cos(θn) and (δ~B)y = BRand sin(θn)

for (n − 1)LCoh<z<nLCoh where the θn∈ (0, 2π] are independent random variables.

We define ∆̄ by

∆̄ =
m2

EffL

4ω
(3.23)

Then, to quote [32], the expectation values of the parameters (3.15), (3.16), (3.17)

and (3.18) are

P̄γ↔φ(z) =
1

2

(
2 ~BRegω

MFm2
Eff

)2

sin2(∆̄) +
1

2
N

(
2BRandω

MFm2
Eff

)2

sin2

(
∆̄

N

)
(3.24)

with

Q̄q(z) =
1

2
cos(2θReg)

(
2 ~BRegω

MFm2
Eff

)2

sin2(∆̄) (3.25)

and

Q̄u(z) =
1

2
cos(2θReg)

(
2 ~BRegω

MFm2
Eff

)2

(3.26)

while

Q̄v(z) = 0 (3.27)
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where δ~B has zero expectation value

〈
δ~B
〉

= 0

and the θReg are defined by

( ~BReg)x = BReg cos(θReg) and ( ~BReg)y = BReg sin(θReg)

Then if
∆̄

N
� 1 (3.28)

when N � 1 we find that the variance of the Qi is of the same order as P̄2
γ↔φ. If

BRand ' BReg then we see that many magnetic regions of coherence length LCoh�L

give a chameleon-photon mixing probability enhancement factor of about N .

3.3 The Power Spectrum Model

The cell model described above is not[32], however, accurate for regions in which

|∆(z=L)| � 1, where ∆(z) is defined by equation (3.8). Furthermore, the cell model

does not give a divergenceless fluctuating magnetic field (17 in [32]), such that

~∇ · δ~B 6= 0

Rather, it is more accurate to consider a Power Spectrum Model in which the spectra

of fluctuations from large scales to small scales have a correlation function given by

RB(~x) =
〈
δ~B(~y) δ~B(~x+ ~y)

〉
We let δ~Bi(~x) be a Gaussian distributed random variable. In addition we let the

fluctuations be isotropic. Then

(RB)ij(~x, ~y) =
〈
δ~Bi(~y) δ~Bj(~x+ ~y)

〉
=

1

3
RB(~x, ~y)δij (3.29)

where δij is the usual Kronecker-delta. If the fluctuations are position independent

we find that

RB(~x, ~y) ' RB(x)
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where RB(x) is the magnetic field auto-correlation function.

We let the electron number density be given by

ne = n̄e + δne

Moreover, we let
(

1 + δne
ne

)
be a log-normally distributed random variable with mean

1 and variance
〈
δ2
n

〉
, where

δn =
δne
n̄e

Hence we define the electron number density auto-correlation function by

RN (x) = 〈δne(~y) δne(~x+ ~y)〉

The power spectra for the magnetic field and electron number density fluctuations

are defined by

RB(x) =
1

4π

∫
d3k exp

[
2πi~k · ~x

]
PB(k)

=

∫
k2PB(k)

sin(2πkx)

2πkx
dk (3.30)

and

RN (x) =
1

4π

∫
d3k exp

[
2πi~k · ~x

]
PN (k)

=

∫
k2PN (k)

sin(2πkx)

2πkx
dk (3.31)

Following (18 in [32]), we define the correlation length scale for the fluctuations by

LB =

∫∞
0 kPB(k) dk

2
∫∞

0 k2PB(k) dk
(3.32)

and

LN =

∫∞
0 kPN (k) dk

2
∫∞

0 k2PN (k) dk
(3.33)

We let ∆̄ as given by (3.23) be

∆̄ ' −4παEMn̄eL

4meω
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and let

kCrit =

∣∣∣∣ ∆̄

πL

∣∣∣∣
Furthermore we let there exist some k

(−3)
B �kCrit and some k

(−3)
N �kCrit such that for

k > k
(−3)
B and k > k

(−3)
N each of PB(k) and PN (k) respectively decrease with k faster

that k−3 as k approaches infinity. Accordingly the main contributions to
〈
δ~B2
〉

and〈
n2
e

〉
come from spatial scales larger than k −1

Crit. Therefore we assume that k −1
Crit�LB

and k −1
Crit �LN . This means that

P̄γ↔φ '
1

2

[
2BEffω

MF m̄2
Eff

]2
I3
N −

1

4

[
2 ~BRegω

MF m̄2
Eff

]2
cos
(
2∆̄
)

+
B2

EffL

8M2
F n̄

2
e

I2
NWN (kCrit)

+
L

24M2
F

I3
NWB(kCrit) (3.34)

where

IN = 1 +
〈
δ2
n

〉
and

B2
Eff =

1

2

〈
(ẑ× ~B)2

〉
=

1

2
~B2

Reg +
1

3

〈
δ~B2
〉

with

WB(kCrit) =

∫ ∞
kCrit

kPB(k) dk and WN (kCrit) =

∫ ∞
kCrit

kPN (k) dk (3.35)

Therefore we find that

Q̄q = Q0 cos(2θReg) and Q̄u = Q0 sin(2θReg) (3.36)

while

Q̄v = 0 (3.37)

where

Q0 =
1

4

[
2 ~BRegω

MF m̄2
Eff

]2
I3
N −

1

4

[
2 ~BRegω

MF m̄2
Eff

]2
cos
(
2∆̄
)

+
~B2

RegL

16M2
F n̄

2
e

I2
NWN (kCrit)

Thus we get an extra term in the Stokes’ parameter which is proportional to L. Con-
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sequently, since ∆̄� 1, for cosmic microwave background photons in galaxy clusters

this is the dominant term.

We let

PB(k) ∝ kα−2 and PN (k) ∝ kα−2 (3.38)

when k'kCrit, for some α<−1. We define CK and CN as per (19 and 20 in [32]) by

k2PB(k) = 2CK

(
k

k0

)α
(3.39)

and

k2PN (k) = 2(2π)
1
3C 2

Nk
α (3.40)

respectively, with k0 = 1 kpc−1. Then performing the integrals (3.35) yields

WB(kCrit) ' 2
CK
|α|

(
kCrit

k0

)α
and WN (kCrit) ' 2

(2π)
1
3

|α|
C 2
Nk

α
Crit (3.41)

respectively. Therefore we get

k −1
Crit ' 2.4×10−2pc

( ν

100 GHz

)(10−3cm−3

n̄e

)
(3.42)

where

ν =
ω

2π

However, for galaxy clusters we have approximation (3.22) for the electron num-

ber density, while for cosmic microwave background photons the frequency satisfies

30 GHz<ν < 300 GHz. Hence we find that the critical scale satisfies 10−3pc.kCrit.

10−1pc.

3.4 The Magnetic Fields of Galaxy Clusters

The space between the individual galaxies in a galaxy cluster is filled with a hot

plasma. This gives rise to a magnetic field. These intra-cluster magnetic fields may

be up to 30µG, where 1 G=1×10−4T.

There are two main types of galaxy cluster. The first is the Non-Cooling Core

galaxy cluster. These have a magnetic field of about 5±5µG which is magnetically

ordered on a scale of about 15±5 kpc. The second type are the Cooling Core galaxy

clusters. These tend to have a larger magnetic field of about 20±10µG which, however,

is magnetically ordered on a smaller scale of about 5±5 kpc.
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The magnetic field of galaxy clusters is determined by the observation of the

Faraday Rotation Measure, FRM, given by

FRM(zsẑ) = a0

∫ zs

0
ne(xẑ)B‖(xẑ) dx (3.43)

where

a0 =
α 3

EM√
π me2

zs is the location of the source, and B‖ is the magnetic field along the line of sight.

For a uniform magnetic field we expect that

〈FRM〉 = a0B‖neL

However the dispersion of the Faraday rotation measures from extended radio sources

implies that it is not in fact a realistic model for the intra-cluster magnetic field[32].

Rather, the intra-cluster magnetic fields have a component which fluctuates on small

scales. Thus we use the cell model. Therefore, the rotation measure is a Gaussian

distributed random variable with zero mean and variation

〈F 2
RM〉 − 〈FRM〉2 ∝

1

2
a2

0LCoh

∫ L

0

〈
~B2(z)

〉
n2
e(z) dz (3.44)

On the other hand, the power spectrum model is more realistic. We find that (18 in

[32])

〈F 2
RM〉 − 〈FRM〉2 ∝

1

2
a2

0LB

∫ L

0

〈
~B2(z)

〉
n2
e(z) dz (3.45)

Hence we must have

LB = LCoh

for these to match.

For galaxy clusters free from strong radio halos and widespread cooling flows the

average magnetic field strength and coherence length satisfy

〈|B|〉ICM = 7.5±2.5

[
Ldom
10 kpc

]− 1
2

h
1
2

75 µG (3.46)

where H0 = 75h75 km s−1Mpc−1. Here cooling-core galaxy clusters are excluded.

X-ray surface brightness observations give a determination of the electron number
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density. By ROSAT (26 in [32])

ne(r) = n0

[
1 +

r2

r2
c

]− 3β
2

(3.47)

where β here is of order one. Furthermore, by Magneto-Hydrodynamic Simulations of

galaxy clusters[32] we find that

〈
~B2
〉 1

2 ∝ 〈ne〉η

with

η = 1 (3.48)

However, from observations of the galaxy cluster Abell 119 (27 in [32])

η = 0.9 (3.49)

On the other hand, the theoretical prediction if the magnetic field is frozen in[32] is

η =
2

3
(3.50)

An alternative theoretical prediction is given if the total magnetic energy scales as the

thermal energy as per (26 in [32]), whence

η =
1

2
(3.51)

By the observation of Faraday rotation measures (25 in [32]) the magnetic field of

galaxy clusters extends as far as the ROSAT detectable X-ray emission coming purely

from the electron number density. Therefore the scale is about 500 kpc[32].

We recall that by Kolmogorov[39] the power spectrum of three-dimensional tur-

bulence on small scales is universal and is given by

P (k) ∝ k−
11
3 (3.52)

By (20 in [32])

α ' −5

3
(3.53)

for spatial scales satisfying 106 m<k−1<1013 m with C 2
N '10−3m−

20
3 .

Furthermore, by (28 in [32]) we also get the condition (3.53) for spatial scales
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satisfying 10−2pc.k−1.3.6 pc and CK'2.93×106 kg s−2.

On larger scales according to (19 in [32]) the magnetic flux power spectrum flattens

with

α ' −0.37± 0.1 (3.54)

for spatial scales satisfying 0.5 kpc.k−1.15 kpc and CK'2.1×106 kg s−2.

By (17 in and 18 in [32]) we get information about the power spectrum of the

galaxy cluster magnetic field fluctuations from the Faraday rotation measure images

which imply that

− 2 < α < 0 (3.55)

In addition, by (29 in [32]), for k & 1 kpc−1 we find that

− 2 < α < −1.6 (3.56)

Therefore this is consistent with Kolmogorov turbulence on small scales. However, if

k . 1 kpc−1

then we find that k2PB(k) is flat or increasing with k.

The mixing between the chameleon field and the photon field is sensitive[32] to

PB(k) and PN (k) on scales of k −1
Crit, where for the cosmic microwave background in

galaxy clusters

10−3 pc . k −1
Crit < 0.1 pc

We let α be given by that of Kolmogorov turbulence below k −1
Crit. The dominant

contribution to
〈
δ~B2
〉

comes from the scale where

η = 3 (3.57)

with

PB(k) ∝ k−η (3.58)

as k increases. This gives a scale k∗, say, such that

k2PB(k) = 2CK

(
k

k0

)− 5
3

(3.59)
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for k > k∗ such that we get Kolmogorov turbulence. Meanwhile we let

k2PB(k) = 2CK

(
k∗
k0

)− 5
3
(
k

k∗

)β
(3.60)

for kmin < k < k∗, where β > −1 and we ignore the contribution of k2PB(k) when

k<kmin. That is, we let

lim
k→0

k2PB(k)→ C and lim
k→0

k2PN (k)→ C̃ (3.61)

where C and C̃ are some constants. Thus

〈
δ~B2
〉

=
1

4π

∫
d3k PB(k)

= [2f1+β(x) + 3]CKk∗

(
k∗
k0

)− 5
3

(3.62)

and

LB

〈
δ~B2
〉

=
1

2

∫
kPB(k) dk

=

[
fβ(x) +

3

5

]
CK

(
k∗
k0

)− 5
3

(3.63)

where

x =
kmin

k∗

with

fβ =
1

β

[
1− xβ

]
Hence substituting (3.62) into (3.63) gives

k∗ = L−1
B

[ (
fβ(x) + 3

5

)
(2f1+β(x) + 3)

]
(3.64)

Furthermore, substituting (3.64) back into (3.63) we find that

k
5
3
0 CK = g(x)

〈
δ~B2
〉
L
− 2

3
B

where

g(x) =

[
fβ(x) + 3

5

] 2
3

[2f1+β(x) + 3]
5
3
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On large scales of 100 kpc−1 . k . 10 kpc−1 by (29 in [32]) we get

β = 0 (3.65)

We let kmin'L −1
Clust, where LClust is the scale of the magnetic region. Moreover, we let

k∗'L−1
B whence

10 .
k∗
kmin

. 200

In this small β limit we see that

lim
β→0

fβ(x) = − log(x)

where we have written xβ as exp[β log(x)] and used L’Hôpital’s Rule, along with

lim
β→0

f1+β(x) = 1− x

Therefore with β=0 as given by (3.65) we find that[32]

5
7
3

4
g(x) =

[
5

8
log

(
k∗
kmin

)
+

3

8

]2
3

(3.66)

or

0.14 . g(x) . 0.22 (3.67)

Hence

0.14 .
k

5
3

0 CK〈
δ~B2
〉
L
− 2

3
B

. 0.22 (3.68)

and so

0.7 .
CK

3×106 kg s−2 . 2.2 (3.69)

for a galactic magnetic field with
〈
δ~B2
〉
'3µG and 20 pc.LB.50 pc.

3.5 The Thermal Sunyaev-Zel’Dovich Effect

By (30 in [32]) the fractional change in the cosmic microwave background temperature

due to the thermal Sunyaev-Zel’Dovich effect for a photon passing through a galaxy

cluster is
∆TSZ

T0
=
kBTe
me

τ0

[
x coth

(x
2

)
− 4
]

(3.70)
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where

τ0 =

∫
σTne(l) dl

is the optical depth, and σT ' 6.65× 10−29m2 is the Thompson scattering cross-

section for an electron in a plasma of temperature Te. At low frequencies this causes a

decrease in the temperature of the cosmic microwave background. On the other hand,

at high frequencies we find an increase in the temperature of the cosmic microwave

background.

We ignore higher order corrections to the Sunyaev-Zel’Dovich effect due to rela-

tivistic high velocity effects, for example.

3.6 The Modified Chameleonic Sunyaev-Zel’Dovich Ef-

fect

Since the intrinsic polarisation of the cosmic microwave background (3.19) and (3.20)

are so small, while 〈
P2
γ↔φ

〉1
2 ' P̄γ↔φ (3.71)

we may put 〈
Q2
i

〉1
2 ' P̄γ↔φ (3.72)

for each i. Then for the intensity (3.14) we get

Iγ(z) ' I(0)
[
1− P̄γ↔φ(L)

]
(3.73)

This yields a change in the cosmic microwave background intensity due to the chameleonic

Sunyaev-Zel’Dovich effect of

∆ICSZ

I0
= −P̄γ↔φ(L) (3.74)

Therefore, in terms of temperature we get a change

∆TCSZ

T0
=

1− exp(−x)

x

∆ICSZ

I0

=
1− exp(−x)

x
P̄γ↔φ(L) (3.75)
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By equation (3.24) we see that

Pγ↔φ(L) = Pγ↔φ(L, ne, ~B, ω) (3.76)

We let
〈
~B2
〉1

2 ∝〈ne〉η, for some η. Then for the cell model we get

∆ICSZ

I0
∝ n−2(1−η)

e ω2 (3.77)

Furthermore, for the power spectrum model, with PB(k) and PN (k) given by (3.38),

for k≥kCrit, by equation (3.42) we get

∆ICSZ

I0
∝ n2η+α

e ω−α (3.78)

where −2<α<−1. If α<−2 we get the same behaviour as that of the power spectrum

model for high frequencies. However, for low frequencies we get the same behaviour

as that of the cell model. For a Kolmogorov spectrum for the magnetic fluctuations

we let α be given by equation (3.53). If η = 0.9, as given by equation (3.49), then

the chameleonic Sunyaev-Zel’Dovich effect becomes proportional to n
2
15
e ω

5
3 . Contrast-

ingly the thermal Sunyaev-Zel’Dovich effect is proportional to n1
e. Furthermore, if

α = −5
3 and η = 0.9, as given by equations (3.53) and (3.49) respectively, then the

change in the intensity
∆ICSZ
I0

due to the chameleonic Sunyaev-Zel’Dovich effect has a

shallower dependence on the electron number density than the change in the intensity
∆ISZ
I0

due to the thermal Sunyaev-Zel’Dovich effect. Therefore we can distinguish the

chameleonic Sunyaev-Zel’Dovich effect from the thermal Sunyaev-Zel’Dovich effect by

looking at either the electron number density dependence or the frequency depen-

dence. However by equations (3.77) and (3.78) we see that we must have a magnetic

field correlation length and electron number density correlation length that do not

vary with the electron number density. To this end we let

LCoh = LB ∝ LN (3.79)

giving
∆ICSZ

I0
∝ n2η+α0

e ω−α0L1+α0
Coh (3.80)

where

α = α0
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for −2<α<−1, while in the cell model

α = −2 (3.81)

However, if α<−2 then this implies that the scaling with LCoh is more complicated

than that discussed so far. Hence we let −2≤α≤−1 for the power spectrum model.

3.7 The Magnitude of The Chameleonic Sunyaev-Zel’Dovich

Effect

In the power spectrum model, by equation (3.42) for k ≥ kCrit we have P̄γ↔φ ∝ ω−α

where −2<α<−1. We let

P̄γ↔φ(L, ω) = P̄γ↔φ(L, ω0)

(
ω

ω0

)−α
(3.82)

for some fixed ω0. We choose ω0 such that if −2 < α < −1 then P̄γ↔φ(L, ω0) is

independent of α.

By equations (3.24) and (3.34) a bound on P̄γ↔φ(L, ω0) gives a constraint on the

coupling gF , where

gF =
1

MF

We have the dependencies of P̄γ↔φ as given by equation (3.76), where values for〈
~B2
〉

, 〈ne〉,
〈
n2
e

〉
, LB, LN , CB and CN are known from observation. This means that

the accuracy to which these variables are know will affect the accuracy to which any

constraint on gF may be found. In addition, we note that gF is a function of α.

We consider both the cell model with α = −2 as in (3.81) and the Kolmogorov

turbulence model with α=−5
3 as in (3.53).

For the case of the cell model, from equation (3.24) we get

P̄(Cell)
γ↔φ (L, ν) =

(
3.2× 10−10

)
g2

10−10GeV−1B
2
10µGn

−2
0.01L200kpc

(
L

(Coh)
1kpc

)−1
ν2

214GHz
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where

B10µG =
1

10µG

〈
~B2
〉 1

2

n0.01 =
1

10−2 cm−3
ne

ν214GHz =
1

214 GHz
ν

L200kpc =
1

200 kpc
L

L
(Coh)

1kpc =
1

1 kpc
LCoh

and

g10−10GeV−1 =
1

10−10 GeV−1 gF

when (3.28) holds such that

sin2

(
∆̄

N

)
' 1

2

On the other hand, for the power spectrum model with the magnetic field and the

electron number density power spectra following a Kolmogorov law for L −1
Coh<k<kCrit

by equation (3.42), where for k≤L −1
Coh with η ' 0, and η>0, we see that the dominant

contribution to the magnetic field fluctuation comes from spatial scales of about LCoh.

Then with the bounds (3.68) by equation (3.34) we get

2.4×10−7 .
P̄(Kolmo)
γ↔φ (L, ν)

g 2
10−10GeV−1B

2
10µGn

− 5
3

0.01ν
5
3

214GHzL200kpc

(
L

(Coh)
1kpc

)− 2
3
[
I 2
N (2IN−1)

12

] . 3.8×10−7

(3.83)

where 1.IN .2 such that 1.I 2
N (2IN − 1).12.

By equation (3.46), with 1 kpc . LCoh . 100 kpc for a non-cooling core galaxy

cluster in the cell model we find that

8.0×10−14 .
P̄(Cell)
γ↔φ (L, ν)

g 2
10−10GeV−1n

− 5
3

0.01ν
5
3

214GHzL200kpc

. 3.2×10−9 (3.84)

while for the Kolmogorov power spectrum model we get

2.2×10−11 .
P̄(Kolmo)
γ↔φ (L, ν)

g 2
10−10GeV−1n

− 5
3

0.01ν
5
3

214GHzL200kpc

. 3.8×10−6 (3.85)

On the other hand cooling-core galaxy clusters tend to have higher magnetic field
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strength. Therefore there will be a greater chameleonic Sunyaev-Zel’Dovich effect.

By (21 in [32]) the galaxy cluster Hydra A has strong cooling flows. The Faraday

rotation measure from an embedded radio source gives a smooth magnetic field com-

ponent ~BReg of 6µG on a scale of 100 kpc and a fluctuating magnetic field component

δ~B of 30µG which changes on a scale of 4 kpc.

By X-ray data[32] we find that the galaxy core radius, RCore, is about RCore =

130 kpc while the average electron number density is about 〈ne〉=10−2cm−3 .

We let

L = LCore

= 2RCore

= 260 kpc

Then by the bounds (3.84) and (3.85) for the galaxy cluster Hydra A we get

P̄ (Cell)
Hydra A = (0.93×10−9)g 2

10−10GeV−1ν
2

214GHz (3.86)

and

0.97×10−7 ≤
P̄ (Kolmo)
Hydra A

g 2
10−10GeV−1ν

5
3

214GHz

≤ 17.9×10−7 (3.87)

respectively. On the other hand, for a non-cooling core galaxy cluster we find that

there is little change to the chameleon-photon interaction probability.

By (32 in [32]) from the Faraday rotation measure of a radio source at the centre

of the Coma cluster we find a smooth magnetic field component ~BReg of 0.2± 0.1µG

on a scale of 200 kpc and a fluctuating magnetic field component δ~B of 8.5 ± 1.5µG

which changes on a scale of 1 kpc. Thus with

L = LCore

= 198 kpc

and 〈ne〉=4×10−3cm−3 we find that

P̄ (Cell)
Coma = (1.4×10−9)g 2

10−10GeV−1ν
2

214GHz (3.88)
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while

0.64×10−7 ≤
P̄ (Kolmo)
Coma

g 2
10−10GeV−1ν

5
3

214GHz

≤ 12.79×10−7 (3.89)

Therefore the magnitude of the chameleonic Sunyaev-Zel’Dovich is similar for the

Hydra A galaxy cluster and the Coma galaxy cluster.

By (33 in [32]) we have a range of Sunyaev-Zel’Dovich effect measurements for the

Coma galaxy cluster.

By equation (3.70) the Sunyaev-Zel’Dovich effect depends on the optical depth τ0

and the electron temperature in the plasma core. For the Coma galaxy cluster

kBTe ' 8.2 keV

Including the chameleonic Sunyaev-Zel’Dovich effect, where ∆TCSZ∝ω−α, we get

∆T

T0
= 1.6×10−2τ0

[
x coth

(x
2

)
− 4
]

+ [exp(−x)− 1]x−α0−1

(
kBTe
me

)−α0

P̄ (Coma)
γ↔φ (ω0)

(3.90)

where

x =
ω

kBT0

and α0 =−5
3 as given by (3.53) if −2<α<−1 for the power spectrum model while

α0 =−2 as in (3.81) for the cell model.

We maximise the likelihood L over the optical depth τ0 and P̄ (Coma)
γ↔φ (ω0), where

−2 log(L) =
∑
i

[
∆T observ

i −∆Ti

(
τ0, P̄ (Coma)

γ↔φ

)]2

σ2
i

where the ∆T observ
i are the observed values of the temperature at frequencies of

ν =
ωi
2π

with standard error σi. For the best fit values τ̂0 and ˆ̄P(Coma)
γ↔φ we let

χ2
(
τ0, P̄ (Coma)

γ↔φ

)
= −2 log

L
(
τ0, P̄ (Coma)

γ↔φ

)
L
(
τ̂0,

ˆ̄P(Coma)
γ↔φ

)
 (3.91)

be given by a χ2-distribution.

For ω0 =0.844 meV, that is ν=204 GHz, the constraint on P̄ (Coma)
γ↔φ is independent
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of the parameter α0.

Maximising χ2
(
τ0, P̄ (Coma)

γ↔φ

)
with respect to P̄ (Coma)

γ↔φ gives a value for τ0 of

τ0 = (4.7±1.0)×10−3 (3.92)

Therefore to 95% confidence we find that

P̄ (Coma)
γ↔φ < 6.2×10−5 (3.93)

By equation (3.88) we find that

P̄ (Cell)
Coma (204 GHz) = (1.3×10−9)g 2

10−10GeV−1

(
BRand

8.5µG

)2(4×10−3cm−3

ne

)− 5
3
(

L

198LCoh

)
Moreover, by the bounds (3.89) we find that

0.59×10−7 ≤
P̄ (Kolmo)
Coma (204 GHz)

g 2
10−10GeV−1

(
BRand
8.5µG

)2(
4×10−3cm−3

ne

)− 5
3
(

L
198 kpc

)(
LCoh
1 kpc

)− 2
3

≤ 11.8×10−7

By observation

BRand = 8.5µG

L = 198 kpc

LCoh = 1 kpc

and

ne = 4×10−3cm−3

Hence to 95% confidence we get

g
(Cell)
F < 2.2×10−8 GeV−1 (3.94)

for a magnetic field described by the cell model, or

g
(Kolmo)
F < 7.2×10−10 GeV−1 (3.95)

for a turbulent Kolmogorov power spectrum model magnetic field. The stronger of
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these bounds, (3.95), corresponds to a bound on MF of

MF > 1.1×109 GeV (3.96)

This agrees with the bound obtained by considering the polarisation of starlight due

to the chameleon field.

50



Chapter 4

Conclusions

4.1 The Chameleon Model

To conclude a brief recap of some of the important results highlighted in this exposition

are given.

Firstly, recall that current astro-physical observations suggest that our universe

is currently undergoing an era of accelerated cosmic expansion. This motivates the

introduction of dark energy, modelled as a negative pressure cosmological constant in

the standard cosmology.

An alternative approach is to consider a dynamic scalar field, usually called quintessence,

which gives a small vacuum energy density in the late universe. This would then give

rise to accelerating cosmic expansion. Such a field would couple to all matter fields

gravitationally. However, such a field has not yet been detected, with a slim field

being ruled out in many cases.

It it worthwhile to repeat the consequences of taking the novel approach of con-

sidering a scalar field which has a potential energy function that is a function of the

surrounding matter density. This gives rise to a mass term for the scalar field which is

itself a function of the surrounding matter density. Hence the mass of the field changes

with its environment, motivating the name chameleon scalar field. This scalar field

may couple to the Standard Model matter fields gravitationally yet avoid experimental

detection.

Due to the bounds set by experimental searches for fifth-force interactions, the

scale of the chameleon theory must satisfy M . 10−3 eV, as set by equation (2.17).

Then performing an expansion of the effective potential energy function of the theory

as in equation (2.13) it is found that a constant term M4'10−12 eV of the same order
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as the vacuum energy density is obtained, as shown in equation (2.19).

4.2 The Cosmic Microwave Background

After much work, it was found that indeed the interaction of a chameleon field with

the photon may give rise to a detectable effect. In the presence of the magnetic field

of a galaxy cluster, interactions between the chameleon field and the photon field

of the cosmic microwave background are predicted to give a chameleonic Sunyaev-

Zel’Dovich effect. That is, these interactions would give rise to anisotropies in the

cosmic microwave background.

The usual thermal Sunyaev-Zel’Dovich effect occurs from the interaction of cosmic

microwave background photons with high energy electrons in the hot plasma core of

a galaxy cluster. Thus warm spots are found in the cosmic microwave background in

the direction of galaxy clusters.

With the addition of a coupling between the chameleon field and the photon field

to the scalar-tensor action of the chameleon theory, an expression for the change to the

cosmic microwave background was found in equation (3.75). The exact magnitude of

the effect is dependent on the model used to describe the magnetic field of the galaxy

cluster. For two such models, the cell model and power spectrum model respectively,

bounds were found on the theoretical chameleon-photon mixing probability, namely

equations (3.84) and (3.85). These bounds assume a non-cooling core galaxy cluster.

Using the Coma galaxy cluster as an example, these bounds on the probability of

interactions between the chameleon field and the photon field can be used to place

constraints on the chameleon field theory. The Coma galaxy cluster was chosen as

there exist many measurements of its magnetic field and the anisotropies it causes

on the cosmic microwave background via the Sunyaev-Zel’Dovich effect. To 95%

confidence it was found that the coupling of the chameleon-photon interaction must

satisfy g
(Cell)
F <2.2×10−8 GeV−1 using the cell model for the magnetic field, or g

(Kolmo)
F <

7.2×10−10 GeV−1 using the power spectrum model for the magnetic field, equations

(3.94) and (3.95) respectively. The stronger of these bounds, (3.95), corresponds to

a constraint on the scale of the chameleon theory of MF >1.1×109 GeV, by equation

(3.96).
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4.3 Future Work

The novel approach of a chameleon scalar field has been analysed for both the case of

a cyclic universe and a universe with large extra dimensions[40, 41].

A Cyclic Model of the universe[42, 43, 44] gives an alternative to cosmic inflation,

yet still solves the Cosmic Homogeneity and Isotropy Problem, the Cosmic Flatness

Problem, and the Magnetic Monopole Problem, while generating a spectrum of density

fluctuations which may give rise to Large-Scale-Structure Formation. In such a theory

it is postulated that the Big Bang is not the beginning of time. Rather, the evolution

of the universe is cyclic. The universe is claimed to consist of two branes, which are

separated by a microscopic gap. The observable Standard Model particles live on one

of these branes. The other brane consists of known or unknown particles which may

only interact with the particles of the first brane gravitationally. A scalar field φ,

say, measures the inter-brane separation in a higher dimension. Then the Big Bang

is proposed to be collisions between these two branes. After a collision, a period of

rapidly expanding inter-brane separation occurs. The branes start to slow, and the

universe can assume both a radiation dominated era and a matter dominated era.

In addition large-scale-structure may then be formed. Eventually the branes come

to a stop. At this stage, the potential energy between the branes causes accelerated

cosmic expansion. During this stage of accelerated cosmic expansion the branes are

stretched out, and so the matter, radiation and large-scale-structure become diluted.

Hence the branes approach a vacuum state. The acceleration stops, and a contraction

in the inter-brane separation begins. This leads to another brane collision, and the

process repeats. Quantum fluctuations during the period of contracting inter-brane

separation give rise to anisotropies in the following cycle of the universe which may

grow into the large-scale-structure.

In the latter theory, known as the Randall Sundrum Model [45], a fifth dimension

is postulated which is non-compact. Such an undetected extra dimension is possible

if the 5-dimensional metric is non-factorisable. In this case, there may be a bound

state of the graviton in the higher dimension. It is proposed that our universe lives on

a 3-brane in a 5-dimensional universe, with the fifth dimension having a boundary at

some finite distance. Then the coupling of the fields are governed by these boundary

conditions. A Kaluza-Klein reduction[46] of the 5-dimensional metric can give rise

to one scalar component which is a quantum mechanical wave-function in the fifth

dimension, and a 4-dimensional graviton.

53



4.3. Future Work 4. CONCLUSIONS

The φ field which describes the inter-brane separation of the cyclic universe may

be modelled as a chameleon field. In this case, the strict bound on the coupling of the

φ field to the Standard Model matter fields is greatly relaxed, since, as discussed at

length already, a chameleon field may avoid experimental detection.

In addition, the radion field φ of the Randall-Sundrum model may be a chameleon

field. Once again, the gravitational coupling of the radion to the standard model

matter fields is predicted to be too large, as it would violate experimental bounds

set by searches for a fifth force. However the chameleon field may yet again prove

fruitful in saving such a theory from experimental contradictions by giving a radion

field which would not be expected to have yet been detected by current experiments.

These, and other possibilities, await a description with the addition of a chameleon

scalar field.
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