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1 INTRODUCTION & THEORY

Abstract

The Gauss-Seidel Algorithm was used to solve Poisson’s Equation for the
electrostatic potential inside a coaxial tube as implemented with C++ programing
code. A void function was written to calculate the Electric Field at all points
between the tubes, and a graph of the x-component of the electric field along the
y direction was plotted, which was found to agree with Gauss’ Law for electric
charge. A double function was written to integrate the square magnitude of the
electric field throughout the tube for a rage of values of b, and again a graph of the
resulting data was plotted. Finally the Over-Relaxed Gauss-Seidel Algorithm was
used to calculate the electrostatic potential for a range of values of the relaxation
parameter ω and a graph of ω versus the number of iterations required was plotted
with a = 0.50 and b = 0.50.

1 Introduction & Theory

1.1 The Poisson Equation

Poisson’s Equation in two dimensions over some region D with boundary condi-
tions

u(x, y) = 0

on ∂D is
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0 (1)

Over a finite grid [i, j] for i, j = 0, 1, 2, ..., n this becomes

u(i+ 1, j) + u(i− 1, j) + u(i, j + 1) + u(i, j − 1)− 4u(i, j) = 0 (2)

1.2 The Gauss-Seidel Algorithm

Solving this equation reduces to resolving the matrix equation

Au(i, j) = 0

where here A is a sparse matrix. Then rewriting

P u(i, j) = −(A− P )u(i, j)

where P is an invertible matrix and taking

A = L+D + U

where D is the diagonal of A, and U and L are the upper and lower triangular matrices
of A respectively, for the Gauss-Seidel Algorithm

P = D + L

which gives

uk+1(i, j) =
1

4

(
uk(i+ 1, j) + uk+1(i− 1, j) + uk(i, j + 1) + uk+1(i, j − 1)

)
(3)
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1.3 The Electric Field

The Electric Field ~E is given by

~E = ~∇u(i, j)

=
∂u(i, j)

∂x
î+

∂u(i, j)

∂y
ĵ (4)

In a discretised grid system of size n×n the limit definition of a derivative may be
used whence

Ex(i, j) =
u(i+ 1, j)− u(i, j)

h
and Ey(i, j) =

u(i, j + 1)− u(i, j)

h
(5)

where h = 1/n.
Gauss’ Law for electric charge states that

~∇ · ~E = ρ (6)

This may also be expressed as

φ =

∮
S

~E · d ~A (7)

1.4 Darboux Sums and Darboux Integrals

For a partition P of an interval [a, b] with

P = (x0, x1, ..., xn)

the Upper and Lower Darboux Sums of f : [a, b]→ R with respect to P are defined as

Uf,P =
n∑

i=1

(xi − xi−1)Mi

and

Lf,P =
n∑

i=1

(xi − xi−1)mi

respectively, where
Mi = sup

x∈[xi−1,xi]

f(x)

and
mi = inf

x∈[xi−1,xi]
f(x)

The Upper and Lower Darboux Integrals of f are then

Uf = inf{Uf,P : P is a partition of [a, b]}

and
Uf = sup{Lf,P : P is a partition of [a, b]}

If Uf = Lf then f is Darboux Integrable and the integral of f(x) is given by∫ b

a

f(x) dx = Uf = Lf (8)

In this way a continuous integral can be discretised into a series sum by reversing the
above arguments.
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1.5 The Over-Relaxed Gauss-Seidel Algorithm

The Over-Relaxed Gauss-Seidel Algorithm is given by

uk+1
R (i, j) = (1 + ω)uk+1

G−S(i, j)− ωunR(i, j) (9)

where unG−S(i, j) is the usual Gauss-Seidel sequence entry. Here ω = 0 corresponds to
the usual Gauss-Seidel algorithm.

2 Experimental Method

2.1 The Electrostatic Potential

A new class was written called Potential to represent an n×n matrix as an n×n
array such that objects declared in this class could be arguments of any new functions
to be written.

A void function initial data was then written to set up the initial data, as a
function of a and b, the variables which define the lower left corner of the inner pole.
An if− else if− else loop was used to specify the initial data for the three cases
of the outer boundary, the inner pole, and all other points.

The bool function update gauss seidel was modified to implement the Gauss-
Seidel algorithm for the Poisson equation with no sources.

This code was then iterated using a do− while loop to converge the electrostatic
potential to a specified accuracy.

Graphs of the potential were then plotted as an splot using gnuplot.

2.2 The Electric Field

A class function was written to calculate the x- and y-components of the electric
field ~E. A double nested for loop was used to calculate the gradient by iterating over
all points (i, j) in the grid, where the derivative is taken in the opposite direction for
points on the boundaries i = n − 1 or j = n − 1. The x- and y-components of the
electric field were also plotted using gnuplot. In addition, a graph of the x-component
of the electric field versus y was plotted at x = 1/2.

A double function was then written to calculate the integral

L =

∫ 1

0

∫ 1

0

~E · ~E dx dy (10)

where for the discrete system dx = 1/n and dy = 1/n. This was done by using a
double nested for loop to iterate over all (i, j) which added together the squares of
both components of the electric field.

Moreover, a do− while loop was inserted in the main function to calculate L for
the range of values of b

0.05 ≤ b ≤ 0.95

A graph of L versus b was then plotted for this range.
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2.3 The Over-Relaxed Gauss-Seidel Algorithm

Finally, the update gauss seidel function was edited to be a function of the
relaxation parameter ω and allow it to implement the over-relaxed Gauss-Seidel algo-
rithm. Another for loop was added to the main function to repeat the calculation of
the electrostatic potential for the range of values of ω

0.00 ≤ ω ≤ 1.00

A graph of the number of iterations required versus the over-relaxation parameter
was then plotted.

Furthermore, code was added to the main function to read the arguments integrate
and relax from the command line. Two sets of if loops were used to distinguish
between the two cases, in order to perform one form of calculation or the other, to save
on computational expense.

3 Results & Analysis

3.1 The Electrostatic Potential

The following graphs of the electrostatic potential were plotted for values of a =
0.2 and b = 0.3 and a = 0.5 and b = 0.5 respectively

Figure 1: Electrostatic potential for a = 0.2 and b = 0.2

5



3.2 The Electric Field 3 RESULTS & ANALYSIS

Figure 2: Electrostatic potential for a = 0.5 and b = 0.5

3.2 The Electric Field

The following graphs were obtained for the x- and y-components of the electric
field ~E

Figure 3: X-component of the Electric Field

6



3.2 The Electric Field 3 RESULTS & ANALYSIS

Figure 4: Y-component of the Electric Field

A graph of the x-component of the electric field versus y was then plotted at x = 1/2
for values of a = 0.10 and b = 0.10 to give

Figure 5: X-component of the Electric Field versus y at x = 1/2

In addition, a graph of the integral L versus the value of b was plotted
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Figure 6: Integral L versus b

3.3 The Over-Relaxed Gauss-Seidel Algorithm

It was found that the electrostatic potential converged in the least number of
steps for a relaxation parameter of ω = 0.90, which required 80 iterations. A graph of
the dependence of the number of iterations m versus the relaxation parameter ω was
plotted

Figure 7: Number of Iterations m versus Relaxation Parameter ω
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4 Conclusions

It was found that the Gauss-Seidel algorithm was able to be used to solve Poisson’s
equation for the electrostatic potential everywhere inside a coaxial tube with C++
programing code.

Furthermore, C++ code was able to be used to calculate the electric field at all
points between the tubes from this electrostatic potential. It is clear that the graph
obtained agrees with Gauss’ law for electric charge, as the electric field is highest at the
boundary of the inner tube, corresponding to a charge concentration, and goes to zero
away from the inner tube as there are no charges present.

The dependence of the integral L was almost constant with the value of b, except
that it has a jump discontinuity at b = 0.7, as this corresponds to the inner tube
touching the edge of the outer tube.

Finally, it was seen that the over-relaxed Gauss-Seidel algorithm may effectively be
used to calculate the electrostatic potential in a shorter amount of iterations than the
usual Gauss-Seidel algorithm. For a range of values of the relaxation parameter ω the
minimum number of iterations required was found to be m = 80, which corresponded
to a value for the relaxation parameter of ω = 0.90.
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